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Convergence of mini batch SGD

1 Introduction

We consider the finite-sum optimization(FSOP) problem:

1 N
min {F(W) =5 g f(W;/)} (1)
=1

weRd

where certain assumptions are made for the component functions 7(+;/),Vi € {1,2,..., N} and the objective
function F. This standard problem arises in most machine learning tasks, including logistic regression, multi-kernel
learning, and neural networks training([2]). Due to the generality, open ended nature of the problem, there has
been a boom in research conducted around the finite-sum minimization problem([6], [8], [12]).

The main problem with trying to solve [T} arises from the fact that in practice, F is high dimensional, which
means that N is usually big. The fact that a normal gradient descent approach which computes all the gradients
of the component functions will require computational resources proportional to the dimensionality of the data,
coupled with the understanding that today, [1| needs to be solved on devices that have limited resources, pushed the
research community to find alternative algorithms for solving the FSOP. Therefore, the attention to solving [T was
shifted to the stochastic gradient descent algorithm ([10]), due exactly to its efficiency in dealing with large scale
problems that have data of high dimensions. Stochastic gradient descent instead of calculating the full gradient of
the objective function F like gradient descent would do, it calculates the gradient of only one component function
in each iteration. That makes it more efficient. More specifically, the updates of SGD in each iteration are:

Wiyl = We — T]ka(Wk, /), | € {1,2 ..... N} (2)

There are several ways i is chosen each iteration, that will be investigated later in section 1.1 where the updates
of normal GD would be:

N
Wert = we = MV F(wi) = we = 76 S VH(wi ) (3)
=1

Another reason why SGD attracts a lot of attention, is that it is widely used in practice in cases where the compo-
nent functions can are non-convex and it converges to global minima with great success ([3]). This is something
that GD is not able to achieve, as it gets stuck in local minima ([4]). The theoretical results on SGD are still being
developed and are still not matching compared to what is achieved in practice, therefore pushing the community
to investigate SGD's convergence gurantees.

On the downside, SGD can take longer than normal GD to converge to the stationary point. However, it
requires fewer computational resources which makes it more useful in practice.

All the reasons we mentioned above lead the community to study the convergence rates of SGD. Going back
to the initial discussion about GD and SGD, it seems that there is a fundamental trade-off: when one uses GD
they have a better convergence bound, and computational complexity when the assumptions on F are nice but no
gurantees when F is more general (for example non-convex), and when one uses SGD they get worse bounds but
more computationally efficient. In this paper, we try to explicitly show this trade-off between GD and SGD. Instead
of taking only the gradient of one component function (SGD) or the gradient of all the component functions (GD),
we try to take the gradient of a "batch” B of the component functions. If we have B = 1 we get SGD and if we
put B = N we recover normal GD. The main question we are trying to answer is what happens when 1 < B < N7.
One can explicitly see the tradeoff in figure
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The algorithm for this mini-batch idea is shown below.

Algorithm 1 Mini-Batch SGD with generic permutation selection

1: Initialization: Choose an initial point Wy € RY; Mini-batch size B € [1,N]; permutations o), i =
1,2,..., T,00) € Sy

2. fort=1,2,---,T do

3:  Set Wét) = Wioq,

4 for/:O,--~,L%J—1do

5 Update w'") := w® —pN0 1 S VW, o®(iB +));
6: end for

7: Set wy = WL(;/)/BJ;

8: end for

9

: Output: Choose wr.

1.1 Different Algorithm Regimes

As mentioned previously, and as can be seen from algorithm 1, it remains to define how exactly we choose to
permute our data {1,2,..., N} in each epoch. In each epoch of algorithm 1, we have a permutation o(® that
dictates in which order we are processing the data. Note that for GD we do not need this permutation because we
compute the gradient of the whole objective function. There are different lines of work that study different ways
in which these permutations are picked, according to the literature. The three main ones are the following:

1. Random Reshuffling: In each iteration of every epoch, sample a new random permutation from the family
of all permutations. [5].

2. Shuffle once: In the beginning of the algorith, choose a permutation randomly and stick with it in all the
iterations [I11].

3. Incremental gradient: Similar to shuffle once, here a permutation is chosen (either randomly or determin-
istically) in the very beginning and is used for each iteration of every epoch. [7].

In this paper, we study the generic shuffling line of work, which does not assume anything about the selection
of the permutation, and Random Reshuffling.

2 Our contributions

We start this section by outlining the different assumptions for which we have results on. We then specify the
types of convergence we are searching for and finally We split our results into two sections: the generic shuffling
regime results, and random reshuffling results.



2.1 Assumptions
First we start with an assumption of smoothness and the existence of stationary points we are interested in.

Assumption 1. Assume that the following are satisfied:

def

a) dom(F) = {x € RYF(x) < oo} # 0 and F, = inf,,cps F(w) > —c0

b) f(-;i) is L-smooth for all i € [N] £ {1,2,..., N}, u, v € R?, which means that

HVf(u; i) = VF(v; /)H < LHu - VH

Note that Assumption 1a) is establishing the well definiteness of our problem, while Assumption 1b), the so
called L-Smoothness of the component functions’ gradients f(u; ), is a standard assumption in literature. Both as-
sumptions are used for all of our results, and contain an interesting family of functions for which we are interested in.

We continue with the so-called mean bounded variance assumption.

Assumption 2 (Mean Bounded Variance). There exists two constants ©, o € [0, o) for which Vw € dom(F):
1 ' 2 2
> |[Vwii) = Fw)| < o vFw) | + 0
i=1

2

Setting © = 0, we get exactly the bounded variance assumption, that %Zfil HVf(W; i — F(W)H < 02,
which is usually assumed for non-convex objective functions ([3]). Our assumption is stronger than that and can
be applied to a bigger family of functions.

Finally, in our results we use the Strong convexity assumption, which is the following.

Assumption 3 (Strong-Convexity). The objective function F is u—strongly convex which means that:
w 2
F(v) > F(u) + (VF(u), v — u) + EHV - UH

It is also implied by the above condition that there is a unique solution w, to F for which holds

w 2 2 2 d
EHW_ wil| < F(w) — F(w) < EHVF(W)H ,VYw e R

Substituting 4 = 0 and we can use this assumption for when F is just convex. When . > 0 we have stronger
guarantees, for F, and usually looking for stronger convergence results, therefore we make the separation between
convex and strongly convex cases. One more thing to note is that, even though F has to be convex, there might
exist some component functions that are non-convex.

One more property of strongly convex functions, is that they have a unique optimal solution. This motivated
us to use the bounded variance of the optimal solution and use it in our analysis for strongly convex functions.

Remark. Because of the uniqueness of w, we can denote with o, the following
N
def 1 A2
e N Zl HVf(w*; /)H
1=

2.2 Convergence types

In this section, we provide our results for the convergence of [I] Convergence to a minimum point w* that solves
can be equivalent to proving any of the following:

2 2
HVF(WT)H <e HWT—W*H <e F(wr) — F(w*) <e

Note that wr is the point we end up after T epochs, and in the end we try to reach w*, the point that minimizes|[i]
All of the below results we show prove a convergence type of the three aforementioned ones. Convergence results



can further be categorized in last-iterate, average-iterate and min-iterate. For the purposes of this paper, we
only use last and average iterate convergence. Average iterate convergence for the above types will look like this:

T T
r 3 [[vFo] < 3|

From our generic shuffling results, Theorems 5 and 6 are of average-iterate convergence, and theorem 4 is of last
iterate convergence.

2 1 L
Wy — W*H <e¢ ?Z[F(Wt) —F(w")] <e

2.3 Generic Shuffling results
We have the following results for the strongly convex, convex and non-convex cases.

Theorem 4 (Strongly-convex). Under assumptions 1 and 3, after T epochs for sufficiently big enough T, and

t = 6IZQT(T) % we have that

F(wr) — F(w.) < F(WO)T—QF(W*) | 1802 (zuz;iéz) 1062 (T) .

Theorem 5 (Convex Case). Under assumptions 1 and 3, after T epochs for sufficiently big enough T, where
ne < min{&¢ SEBN|Ivo-we | BEt2Y we have that

To? '

L~ [T — w02
?;O[F(Wtfl) - F(w)] < ToATIBN (5)

Theorem 6 (Non-Convex Case). We have that under assumptions 1 and 2, after T epochs for sufficiently large

enough T with n, < & /3

i 2 4
7Bl VFG)|[ ] < 7 (F(wo) — F) + 6n7L%0 (6)
t=0

They are heavily inspired by [8]. The full proofs of these results are in the appendix, however we provide a
sketch for the non-convex and strongly convex proofs here.

Both Theorem 4 and Theorem 6, start by bounding the following quantity:

K1

B
| = Z le(t) — Wét)
i=1

Then they use the following standard inequality that is Implied from the L-smoothness of F ([I]):

2

- - Ly - - L. - 12
F(Wt+1) S F(Wt) — <VF(Wt), Wiyl — Wt> + EHW{—.H_ — Wt

2.4 Random Reshuffling results

In this section, we present two theorems that are for the Random Reshuffling Regime. These results are novel,
and have high probability convergence bounds, i.e. they hold with probability 1 — €, where € is a small constant.
Let us start the discussion with the non-convex result:

Theorem 7 (Non-convex). We have that under assumptions 1 and 2, after T epochs for sufficiently big enough

T, withmy = %, and n < i we have with probability 1 — € that:

(F(Wo) — F*)?/312/3¢2/3(In(T) + In(1/€))/3
N1/3T2/3 (7)

2
<

17
7 2wt

i=0
During the proof of Theorem 6, we encountered a term of the form:

Si= H% i ZB: (Vf(wé”; oW (kB +j)) — VF(Wét))) H2

k=0 j=1



which was bounded as:

Higii(Vf(vvé”:a“’(wﬂ))—VF<wé”>)H BiiHVf(W oO(kB +))) ~ V()|
k=0J=1 k=0 j=1

iz (elvred] +?)

The first inequality is an application of Cauchy Schwartz's inequality (10]) and the second one comes from Assump-
tion 3. We noticed that the second inequality is weak. Inspired by [12], we used a similar way to bound S with

probability 1 — ¢, as follows:
41n(2/9) (@HVF () +o2)
(1B)?

which is an improvement from the previous bound for S. Following the same path of the proof from Theorem 6
we get the results for theorem 7.

5 <

Below we present our final result, the novel result for the strongly convex case. This time, the term we optimize

Wiz

ZBjHVf(w*;a(/B +j))H2

which was bounded as

W|=

I mm

’Vf(w*;a(/B +j))H2 < No?
k=

in Theorem 4, but with our high probablllty lemma we have w.p.1 —§:

L

iHVf (w* o /B+J))H % -2

k=i
which is also an improvement.

Theorem 8 (Strongly-convex). We have that under assumptions 1 and 3, after T epochs for sufficiently big enough

T, and ne = 24TV B we have that with probability 1 — €

F(Wo) — F(w.) | 1802 (2u? + 1212 In(35T)) log®(T)
T2 + NT2p3 (8)

F(wr) = F(w,) <

3 Conclusion

In this paper we studied the convergence guarantees of mini-batch stochastic gradient descent, in the generic
shuffling and random reshuffling regime. We have two novel results for the random reshuffling technique, however,
they are not state of the art.

While our project started with trying to investigate the effect of the batch size on the convergence of the
algorithm, we did not succeed in mathematically showing such a trade-off. The fundamental reason as to why we
did not achieve that, is the fact that the quantity:

B

S, = H,};ZZ(WW 0 (kB +)) ~ VF(u") [

k=0 j=1

is extremely hard to bound if we know nothing about the permutation o(®). This is why we were able to achieve
something for Random Reshuffling, where each epoch we assume we get a fresh/random permutation, but in the
generic regime, we are not able to make such assumptions.
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4 Appendix

Here we include proofs of Theorems 4,5,6,7,8.

4.1 Useful Lemmas

Lemma 9. We have that for vectors u, v € R9:

=5 (el = o) ©)

Lemma 10 (Cauchy-Schwartz). We have that for vectors u € R?:
v <ol |+ (10

Lemma 11 (Lemma 1 from [8]). Let {Y;}+>1 be a non-negative sequence in R and q be a positive integer number.
Let p> 0 and D > 0 be two given constants and 0 < nt < % be given for all t > 1 and assume that, for all t > 1,
we have

Yirr < (1= pne)Ye + D9t

then choosing n; € (0, %),Vt > 1 we get:

Dnl — (1 - pn)")]
0

D q
< Yiexp(—pnt) + Tn

Yirr < (1 —pm)'™Y1+

4.2 Strongly-Convex Results (Theorem 4)

Lemma 12. We have that

N_1
5 2 /\/2 L2 o N2 5 N3
I'= Z HWf(t) - cht) < 877% 32 (Hw(t) w +"7t BQ > +77t B3 2 (11)
i=1
(12)
2
Proof. First we try to bound the quantity le-(t) Wét) . We have that:
[ — | = || % ZZV;‘( 08+ 1) (13)

-1

wl=z

s .
@%i ZZ(V?‘( (f)' (iB+]))) — Vf(w* U(/B+J)) va W*;Cf(iB—i—j))H2
k=0 j=1 k=i j=1
| J (14)
(b) 277% i-1 B " | | * | | )
IS (0B +) — Vi(w i o(iB+ ) [ + (15)
k=0 j=1
2nz : 2
+ S5 || oY vrwhiaiB +j))H 16
k=i j=1
© 2m2iB -~y O il RPN
S ZZHVf(Wk ;o(iB+J)) = Vf(w ;J(IB-H))H + (17)
k=0 j=1
2nZ (N J g8
+% > |[vrwietis -H))H (18)
k=i j=1
e R s
k=0
i—1 N BN
=on? (/BKZ%HWk(t) 2+(B’2)U§> 20

where above we used the following inequalities:



N_
1. (a) We use the fact that Z,fzol 21-521 Vi(w*;o(iB+j))=0
(b) lla+ bll < 2Jjall* + 2] b2

(c) Jensen's inequality

> e

(d) The Lipschitz condition plus the fact that:

Wz
Wiz

B 2
HVf(W*;a(/'B +J'))H =

B 2
ZHW(W*;U(/B +)| <

Now, note that because of 20}

2 2 2 2
R I [ DR T R VAR A G
- 2 (N—iB)N 2
< 4n? </L2 Z Hwﬁt) + Taf + 2Hwét) —w (22)
k=0
Summing up the above we get:
2 L N —jB)N
ij(t) —w*|| <2i Wét) —w* +4nfz <_jL2 Z Hw(t) w* %Uf (23)
Jj=0 J=
L 2 N B2
. t % t * H
2l — w +4»,;th2,2\] O — [+ am 2o </N2) (24)
Jj=0 k=0
) . L2 N Bi
=2 Wét) —w + on? L2 Z(/ —12)HW —wr|| +4nt =5 529 (’N - 2) (25)
(@) * 2,2 N (t) * N2 2
< 2illwg"” — w —|—27)L BQZHWJ —w +277t 520 (26)
Jj=0
| NIERRY e AP o2 V2
=2 Wét) —-w +2T]?§L2ZHVVJ(T:) +2nf§103 (27)
=0
Note that above we used that we set 7 such that 1 — 277tL2 N2 2 5, so we get that:
i—1 5 2
Z vaj(t) —wr| < 4/HWét) —w* + 4in?o? 82 (28)
j=0
Finally we have:
N N . N
B 5 5 i—1 > N B
i=1 i=1 k=0 i=1
5 -1
B I— 2 N /\/2 /\/2
2 2 (1) * 2
SQm L ;k_o W, ' —w +§U* (BBQBQ> (30)
§ i—1
B I— 2 N3
=207 | L? Z wi —wH|| + 553 o? (31)
i=1 k=0
N
B 2 N2 N3
2 2 Al (1) * 2 2 2
<on?|L ; (4/ Wy —w +4mt820*> + 5539 (32)
N2 . 2 N? N3
<4 ngﬁ (Hwét) w +nfB203> +nf§05 (33)
(34)
]



Lemma 13. We have that

F(Wet1) <

where 1)y = %m
Proof. We have

. - N . - L, . Ny
F(Wei1) < F(We) — (VF (W), Wep1 — W) + *||Wt+1 — We|]?
-1 p

:F(VNVt)—mBN< (We) Z

:F(V‘N/t)—i‘VF( t)

=2

’VF(Wt i U(/B +J) H

W

282

=

neN 2 -
= F(w) - 2 \vmm +

e
" 2NB (1 N Lm)

- N - 2
< Fw) — 2= VG| +

ZZV;‘ D.o(iB +J))H2

=0 j=1

77tBL Z H

=0 j=1

L, . -
o(iB +J))> + §||Wt+1 — We||?

H/v ZVf(W a(iB—i—j))H2+

ntN ~ 1 (). . ) 2
—B‘VF(Wt)—N . OZIVf(W,. ,U(/B-H))H -
=0 j=

2
o(iB Jrj))H

N_q B
~ NN ~ Mt \
< F) — 2 () |+ L IO;HW 018 + 1))~ V(w08 + )|
~ Nt ~|I? Nt - (t) . ~I?
:F(Wt)—E VF () +ﬂ HVf (We;0(iB+J)) = V(w7 0(iB —H))H
=0 j=1
N_1
~ A 2 Bl2 & 2
< F(iy) — %HV'E(Wt) ntg/\/ Z ‘ W/(t) _ Wét)
i=0

Proof of Theorem 4. We use Lemma 8 and Lemma 7 and we have:

N _

. BL2 g 2
F(nn) < Fin) — 2w F(w)| "+ 72 Z [t =
7 BL? >N
< F(w) - 2 [ | + 2 (877?L2 (w2 = w [ +5202) + 2 502)
o ﬁt 2 4adBLe H © L2, 47%02BL® #3202
= F(Wy) 5 VF(W)|| + N A + N 5
N q . AR3BLY 2 An202BLY A3 L%02
Fi) — Lo F(we) — F(w)] + [F(Wr) F(w)] + & -
2 N N 2
Subtracting F(w,) from both sides we have:
3 . 8/2BL4 3 ., (47202BL*  [20?

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)



Note that we already assume 7j; < i We want to have
S04 S2 4
8M;BL > W . 27;1,2 8N BL B < U N
Nu 3 3 Nu L2V 12B
The above also implies
Ro2BLY _ o’

Combining the above gives:

F(Wer) — F(w,) < (1 _ %

The above can be written as follows:

N - 3

)[F( t)—F(w*)]+ A3 o (2u? +3L?)

Yri1 < (1— pfe) Vi + 62D

Using Lemma we have that if A, < %:

Yre1 < (1— pfie) Yr + 73D < Yiexp(—pn,T) + ?

DA2

Choosing 1 = Q'%T(T), we have:
Y,  4Dlog*(T) Yy 4302 (2u?+3L2)log*(T)
Y71 < = 2.3 T2 YT
T T2p T T2
Which finally gives:
. F(Wo) — F(w,) 1802 (2u? + 3L?) log?(T)
F(WT) - F(W*) S T2 + ( TZ/J'?’ )
We choose T such that
_ 6logT 1w log(T) _ w? N
Me=—7 =M 2 12/3} T —o62V12B

Lemma 14 (Similar to[12)). /f we apply our theorem with probability 1 — § we have

HWf(t) e

5 i—1
< 277? (/'L2Z HW‘Et) —w*
k=0

2 In(2/6)N 2)

. o
B2

4.2.1 Results with high probability bounds (Theorem 8)

Lemma 15.

B
| = Z HWl(t) — Wét)
i=1

Previous bound:

<877th <H © _

N2
+ = 52 2) +n; 53

4n?02BL* N 41In(2/6)L%02

28N2|n(2/6)af

_ F(Wo) — F(w,) 1802 (2u? + 3L2) log?(T)
Fir) = F(w) < =" A 5. )
New bound with probability (1 — §)N7/B
F(Wo) — F(w,) 1802 (2u2 4+ 12L21n(2/68)) log?(T
Flitr) — F(w,) < FLF0) = Flwa) | 180% (24 + 1217 In(2/9)) log™(T)

T2

If indeed we want probability at least 1 — ¢, we want: § = ,ﬁ,—‘? We have with probability at least 1 — €:

1802 (2u? + 12L21In(341)) log®(T)

NT23

Fir) — F(w.) < —

F(i) — F(w.)

NT23

10

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)



4.3 Non Strongly-Convex Results (Theorem 5)

Lemma 16 (Lemma 3 from [8]). Let Xi,..., X, be n given vectors in RY, X = %Zle X, be their average,
and 02 := 37 ||X; — X||?> be their population variance. Fix any k € {1,..., n}, let Xp,, ..., Xr, be sampled

uniformly without replacement from {X, ..., X} and X = % Zf;l X, be their average. Then, we have:
S N2 n—k
EI%:] = X, Ell|Xx ~ X|F) = 17 —50

Lemma 17 (Similar to Lemma 7 in [8]). Under Assumption[1} the following holds:

3

—on[F( 1) - F(w)] + 502 (1)

2

HV\N/t — Wyl < HVT/tq — Wk

Proof. We have that:

\u!zz e
g )9 (w( O 0(kB +))) = VF(w.;0(kB +))) + VF(w.i o(kB +J))H
<2 ;szl(vzf(wk o(kB + 1))~ V(o (kB + )|+ ok + )|
e L ;)Z |77 otk +0)) = Vi othe + )|+ ks )|

Let us denote with B} := H S ZJ L Vif(w,; o(kB +J))H Summing the above from i =1to & — 1:

N_1 N_1
B ~ > 2?72 B -1 B - .
> ‘ W,.(LWHH <Y ZHV;‘ W o(kB +j)) — VF(wa; o(kB +)) H Z B:  (72)
=1 i=1 k=0 j=1
N_q B
om2N? & 2
< "7[;3 ZHVf(W(t) o(kB+J)) = VF(w; a(kB-H))H ”fB (73)
k=0 j=1
N_
Where B, = 22" B*. Now we have:
E-1 B
W — e = ey = wo = 5 > S VW 0 (kB +)))
k=0 j=1
2 51 8 > om 51 8
HVT/t—W* :HWf‘l_W* + 5| > vrwio (kB+j))’ Bf<wt L= 3 S VYo kB+j))>
k=0 j=1 k=0 j=1
51 8B
= || w1 = we +% (VAW 0(kB + 1) — VF(mio (kB + )| -
k=0 j=1
2 il
Nt/ - ) .
- F<Wt,1 — W, ZVf(W,Et), o(kB +J))>

k

< HVT/t—l — Wi

0 =1
nzNg 1B 2
t - '
-|- é2 ZZHVf( ,E);a(kB+J))—Vf(W*;U(kB-i-J))H -
k=0 j=1
-1 B
<m7t,1 —w,,, VE(wWY; o(kB —H))>

—0 j=1

oz

2M:
B

=

11



Now let us take a better look at the term:

N_1q B
B
T = Z<W*—Wt 1. VE(w, o O'(kB+j))>
k=0 j=1
-1 B -1 B
=33 (we = W VW o (kB +))) + 30 S (D = e, V(W o (kB +)))
k=0 j=1 k=0 j=1
N_ N_
(a) £ ! 8 (). L -1 B
< [FwD0(kB + 1)~ (108 + )] + 2 30 3 [wl® e +
k=0 j=1 =0 =1
N_1q B
B
+ Z<w*— w) VEw; o(kB +J))>
k=0 j=1
N_1 B
B
- Z Z { wy; 0(kB+J)) — f(W,Et); o(kB+j)) — <W* — W,St), Vf(w,gt); o(kB —|—J))>]
k=0 j=1
51 B ] ¥-1 B )
+ Z [f(w*;a(kB +J)) — f(We1;,0(kB +j))} +t3 ZHWIEf) _ VT/t,lH
k=0 j=1 k=0 j=1
N_q B N_q B
b 1 8 12 . L5 _ 2
S 2L ZHVf . 0 (kB +J) = VF(w (t). (kB +J)H + N{F(W*) - F(Wt—l)] + 5 HW,Et) — Wt_lH
k=0 j=1 k=0 j=1

Wz

-1

© (mEN?L 1
=\ B 2L
k=0

B

B 2 | n2
S| VrwiokB +5) = VEWOi ok )|+ N[F(w) - Fli)] + B
=1
The above hold because:
1. (a) Due to the convexity assumption

- . . - . L -2

<W/E ) Wq, Vi(w, (t), (kB -|—_/))> < f(W,Et);O'(kB +) — f(Weeq;0(kB+J)) + EHW’E” — Wt_1H
2. (b) Due to the convexity assumption
F(wa; 0(kB + ) — F(WD: 0 (kB +j)) — <W —w® VWD o (kB + >
*1 * k J))

> 2LHVf(W* o(kB +j) — V(w0 (kB —|—J)H

3. (c) This is due to[72]

Substituting back to [74] we have:

2 2 Ln?
Ve — Wi S H‘/T/tfl — Wk + % (N[F(W*) - F(Wtfl):| + gtB*> + (74)
N_1 B
2 3N2L AR ) NIK
+ ( ,797;_ + ntB3 ) Z HVf(W*;a(kB +J)) - Vf(w,ft);a(kB +J)H (75)
Choosing m; = # such that
B
me | 2mNL MmN n 2L 7P
- —— 4 <
Bl e e =0 = gty Tw=0
N 1 841 1++/8N/B+1
772+1*7§0:>(77**)2§B ﬁngy
2L 2BL? 41 1612 41

then the above becomes:

12



- 2 - 2 20N - 2L
HWt —wy| < HWH — W, ‘ + nBt [F(W*) - F(WH)} th B.
Finally, to bound B, we use[1f]in the following way:
r1 r-1
E[B]=E|> Bf| = Z H ZZV}C(W* o(kB +J))H (76)
=1 / 1 k=0 j=1
y1
=N (iB)E H F(w,; o(kB H 77
> (678 || 75 Zv (wei o (KB + 1)) (77)
%*1 [ i—1 2
_ . 2 i .
=Y (iBYE H,B ZVf(W*,a(kB +)) = VF(w) (78)
=1 L k=0 j=1
N_1 L]
3 N—iB 02 %
B)? 2< =N B(N—-iB 79
2B gy -1 = W 2 BN ) ()
2 3
_U’%B N%_B% :U’%B N73_N73 :/\ﬁgf (80)
N 2 3 N 2B2  3B2 6B
Finally we have:
- 2 - 2 2neN N 2Ln3 N?
Hwt —wy| < ‘ We 1 — Wil + Bt |:F(W*) - F(Wt_l)} + BQt 5 o2 (81)
- 2 - Ln®
- HWH —w| - Qﬂ[F(Wt_l) . F(W*)} S (82)
L]
Theorem[d. We have from [[7] that:
. 1 - N 2 Ln?
F(We_1) — F(wy) < 2 (‘ Wr_1 — Wi Wy — W, > + 6—/\/02 (83)
Summing up gives:
1 N 2 N 2 LTn?
Z[F(Wt)—F(W*)] — HWQ—W* —HWTH—W* + U 0?2 =
2n 6N
-
1 2 Ln o2
Tt; [F(Wer) = Fw)] < 5 oo it — |+ o
I
4.4 Non-Convex Results (Theorem 6)
Lemma 18. We have that
S o N 2. 2
=y HW,. -w|" < =5 ((3@+2)HVF(WO )H +0?) (84)
i=1

13



Proof. We have:

=] St oee o
B 2

SANTES » ey
=0 j=1
-1 B

23 % - (VA 0B +5)) - V0O kB + ) [+
k=0 j=1
i-1 b

3202 (|5 o3 (Ve 0O kB + ) - VF ) |+ [FF)|)
k=0 j=1

. i-1 B
pRa ZHWW oO(KkB +)) - VI (w0 ® (kB + || +

=
Il

0J

2
+ 3i%n? ( (@HVF( Y2 4 02 ) +||vFeE|)
(c) 3/ 77t ZZLzHWk Wét)
323 L2 i H © _ (0
== W — wy
! k=0

(@) Ni 2
< 3imzL21 + 307 (5 (SIVFW I + %) + || VFw) | )

37 (1 (QIVFO)IP +0%) + | wF )|

302 (g (GIVFIE + o2) + [

The above holds because of the following:

1. (@) (a+b+c)> < 3all*> + 36> + 3 c|I?

2. (b) If we denote by x; = Vf(w, OF o(j)) — VF(w, (t))we have that:
Ll o|[vFw)| + o2
H,B o < ,BZHXJH sl <5 (elvru +o)
3. (c
[ Ve o0 (kB + ) - V(" 0O (kB + )| < L|wf? - w?
4. (d)
B 5 -l 5 N
= wi? >§;"W,(f)—wét> Vi< g
= =

We can now finish off in the following way:

-1

W\Z

2 Ni 2 2
B[R DS <3th 14302 (5 (S| TF|| +02) + 2| vFul™)| ))
i= =
3n2L2IN? 3N3n2 NP, 2\, N°n; (t)
<
- YE (GHVF(WO )H +U)+ 5 ||V )H
Now choosing n; such that:
3NZLAIN? B \F
- < - < — 4/ =
Bz =2~ ™M=NrV3 (85)
The above becomes
N2n? 2
I < Bgf <<3@+2>HVF (0)y H +02)



Lemma 19. We have that: 2 3
F(Wesr) < F(r) — gHVF(wéf))H + L0 (86)

Proof. Here we assume that w; = Wét). We have:

. - . - Ly . e
F(Wei1) < F(We) — (VF(We), Wep1 — We) + EHWtH - W

N_

B

zsﬂwa—<Vmefg}:}:vmw”mos+n» = 9008+ )|

=1 j=1 =1 j=1

~ L'rlt 2
—F(Wt)+2B2 ZZV}‘ /B+J))’ _7‘VF(Wt

M1 2 < 2
R TED 3o TR LT ) s

=1 j=1 i=1 j=1

N_q B

Ln n \ T

= F(Wy) + (25’; - 2BfN) H SN vrw®;a(iB +J))H
=1 j=1

Th—/\/ - 1% r B tN - 2
BHVF(Wt)—Nz;z;w(W /B-H))H o
i=1
Now we take e = %, and n < 1. We also have:
B
p E1 8
S=|vFwm) - 5 X Y viw o8 +)))|
=1 j=1
571 B -1 B
— HNZZVf( ©): 6(iB+))) — ~ ZZW(W o(iB +J))H
=1 j=1 i=1 j=1
| B2 E
=511 22> (Vf(wo o(iB+j)) = V(w7 0(iB +J))) H
=1 j=1
NELE 2
< 25 2D |V o8 +0)) - VFwP:a(iE + )
i=1 j=1
BL?
< —]
- N
This gives:
N L2/
F(Wer1) < F(We) + ~ 5 ne - 7HVF(Wt)
2B 5

SINENYE 2 N
< F() + o 25m t(@HVF O +a2)—gtB‘VF(VT/t)

- 3 2 3
< F(wy) + (§L2n3@ )HVF( (6)) H + §n3L202

< F(w) — T vF )| + Sm 1202

Proof of Theorem[@ We have from 23

~ - . 2 3
FWeir) < F(We) — gHVF(Wt) + 5"73L202 (87)
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We can put expectations around F as follows:
2. 303202
4=

E[F(ie41)] < E[F()] - JE[|[VF () :

Rearranging gives:

E[||V F (i)

2 4
1< EE[F(VNVt) — F(Weg1)] + 60°L207

Summing up the above for t =0,1,..., T

.
S Bl VA ] < SEIFGR) - F(ir)] + 6L To?
i=0

Since F(Wr41) > F*, we get that:

T 2
7 S EI|vF()| 1 < o (FGi) - F) + oL (88)
i=0

4.5 New Non-Convex Results (Theorem 7)
We begin by proving the following Lemma.

Lemma 20 (inspired by [12], Lemma 8). Suppose there are N vectors X; € RY,j € [N], and X = & S X;, with

_112 _112
% Z,’-\’Zl HX,- —XH < GHXH + 02, then for a randomly sampled permutation o € Sy and for k < N, we have that
with probability at least 1 — ¢ that:

Hiéwm _)_()H _ 2\/m(§)N,(<e)_<2+02) )

We will use the following result from [9]:

Lemma 21. Suppose that a sequence of random variables {x;j}j>1 is a martingale taking values in R? and
> o2, ess supllx — X1l < c? , for some ¢ > 0. Then, for some XA > 0 we have that:

. A2
P(supflll:j = 1} 2 A) < 2exp( — =) (90)
Proof of Lemmal2d Consider the following sequence of random variables for j = 1,2, ...

1 min (k.Jj)

NN = min (k) 2 Koo =X)

t=1
We want to prove that the sequence of the random variables is a martingale, i.e.
E[x|xj-1, X2, ... xa] = Xj—1
As we can see from the formula, we have that x; = x;_; for j > k 4+ 1, so we want to prove it for j < k. Let us
rewrite x;:

j-1

_ 1 _
= X)) (X=X
5= ) oo ~ )+ gy Koo~ %)

t=1
j—1

1 1 j i
BLEGTICAESY Z o =90+ (Fingeg) 25 =X
1 —1 ) )
- N=minkj =) ;(X“” =)+ ey e = %)

16



If j < k, then
j-1

(N — J(/V J+1)4

X = Xj-1 7+

— (Xyy — X
=1 Xory — X) + N J( o) — X)
Note that:

1

j—1
E[Xcr(j)_>_<|0(1)v---vg(.j_1)]: _mZ(XU(t)_X)

N
1 _
/\/—j+1;(X"<”_X):

Thus when j < k, we have (using the above):
1 - 1
E[xj|x1, ... xi—1] = xj— Xoty — X) + ———E[Xq(jy — X] = x,—
[XJ|X1' ’XJ 1] XJ 1+(N_J)(N_J+1);( o(t) )+N—_/ [ 0)] ] XJ]-

Now, note that for j > k+ 1, x; — xj—1 = 0. Now we see that for 2 < j < k:

1 - , 1 12
x| = : : X —X+—.X-—XH
I = -1 H(N_JXN_J+1);} o)~ X) + =5 (X = X)

2 L ji(x X) g 1 (X X) ’
< 2| = 0|+ 2 7m0 - 0|
(N=J)(N—j+1) =770 N—j o0

N 2
HZ(XU(L“)_X)H +
t=j

2
(NN —j+ 1)

welen =%

N

2 . _1I2 ) 12

S(N—n%w—j+n20N1+”§:W%mXH*<NDﬂVﬂ»XH)
t=j

< s (55 o=+ -l

Since we know that:

i—1
: (Xom - X) == EN: (Xom X)
t= t=j

So that gives:

S_Z(Xom XQ)(/\/ J2+; —t)
P J
SZ(XUQ)_XQ)((N DAY
= t=1
k .
§j=2( Xo) = X 2)((/\/EJV ! (’\/Q—JJ')3>

x

S?HXUU) XH (N_ 2 (1+(Nj—j))

k ) )
= 2Hxao) XH (/\/ J)3 = (/\/ZNk)3 (@HXH2+(’2)

17
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2
Now, setting c® = % (@HXH +02> and applying lemma we have:

P(lxcll = A) < Plsup{llsgll - > 0} 3 A) < 2exp e K _
kll = = pPuXill - J = = < 2exp 2N2(®)_<2 ey
Ly v N2 (N — k)?
Y )| =n< Nk
il T ;(Xc,(t) %) 2 %) < 2exp ( arn Lo 02)>

Setting first A = Af—flk we have:

§2K2(N — k) )

P(Hitzj;(xvm - X)| 26 <205 (_2N2(e>‘<2 =)

/2511/\/2 @XZ 2
Substituting ¢’ = & we end up having:

kv N—k

\/20"N2 (OX2 + 02)

# (I3 S0 2 VI <ot

and thus setting up §” = In(g), with probability 1 — ¢ we have:

J B 2In(2/6)N? (©X2 + 02)
S0 2 L2

Note that if we have k < % with probability 1 — ¢ we have:

H% i(xa(t) - )?)H > \/4|n(2/6)/\2(@)_<2 + 0.2)

In order to prove the bound for a batch of size greater than % take again k < % and note that:

P(| j:(xg(t) - 3|20 =B ENZ (Xo(o = X)|| 2 2) < 2exp (—
t=1 t=j+1

which becomes

\/2|n(2/5)/\/2 (©X2 + 02)

N
Hﬁ Zl(x"‘f) *X)H & (N— k)3

Finally, observe that N — k > % so that becomes:

N B 4NIn(2/68) (©X2 + 02)
H/\/ikt;l(X”(f)_X)H = \/ N — k

which is what we wanted. Substituting back to our problem we have with probability at least 1 — d:

\/4In(2/6 <®HVF(W H +02>

i B
H,-lg;);V“W)—VF(W)H = iB

18

A2(N — k)3
2N2(6X2 + 02)

(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)



Lemma 22. We have that with probability 1 — ¢

N2n
SBZ

((3@+2)“VF(Wét))“ +a) (108)

N_

@ ol
/:ZHW,- - W,

i=1

Proof. We have with probability 1 — ¢ that:

szw ke + )|

Biiw(w o(kB +J))H
k=0 j=1

(<) 3127 /; ii (Vf(vv 0O (kB +))) — V(WD 0D (kB +J))) H +
k=0 j=1

izl:i(Vf(wét);a(t)(kBJrj)) vEE) |+ eFe)])

k=0 j=1

H w® — w0

[a—y

iB

®) 3207 A (. (¢ : ().
<= ZHW OKB + /)~ VA 0O (kB + )| +
Jj=1

In(2/5)N(®HVF(W(t)
(iB)?

+ 02)

2
+ 322 +[|vFe)|

_|_3 23(% )H ( M))

+ HVF(

(c) 3/ nt ZZLzHW(t) W (t)

(iB)? (iB)?
zu e e R (R )
<&/£H<>H<i/£>>

The above holds because of the following:
1. (a)(a+b+c)* < 3|all” + 3[1b]1* + 3|c|?

2. (b) This is due to [106] and 20|

3. (¢)
|vrw?: 0O kB +1)) = V(g 0O (kB + )] < L w? — wg?

4. (d)
y1
e

N
= Vi<
'>B

o 7 2
S -t
-1

We can now finish of in the following way:

-1

z((é@)uu\uéé))))

3n?L2IN? 1212 In(2/6)N?0? t) N3 4In(2/5)N2@
o, (- e
383 2B3

- 2B? B3

Wiz

IA

Now choosing 7 such that:
3772L2/N2 / B

- <
552 2 — 17 < NL (109)

o



The above becomes

N2
/<o <1z| (2/8)0? + HVF(W(;”)H (N + 6In(2/5)@)>
1 N +6In(2/8)©
— 2 (2121n(2/6)02 + HVF(Wg“)H N +6In(2/0)0
B B
O
Lemma 23. We have that ifn < &, & < N, then with probability 1 — 2e~¢/
2 C

F(VT/H_]_) < F( nHVF (t) H + N?’]3L20'2 (110)

Proof. Here we assume that w; = w, (9 We have:

2

- - Ly - - L. -
F(Wt+1) S F(Wt) — <VF(Wt), Wiyl — Wt) + EHWt_H_ — Wt

e il il 2
gF(Wt)—< = ;;w o(iB+)) > 252 > 1;%‘ /B+J))H
—F(Wt)—i—QLg; ZZVf(W G(IB-H))H ——‘VF(Wt)

neN |1 e 2 N 1 ile 2
~ 2|5 v oiB 4 )|+ T [V - 5 DD VW oiB + )
i=1 j=1 =1 j=1

) L2 me || e ®. g ml?
= F(Wy) + (252 - QBN) H ;;Vf(w, ;o(iB +J))H
neN 128
+ NG F ) — = F(w'D o(iB+J)) VF(W)
2B H YN & ; ‘ ’ '

wa—[livf<wff»aw+»>\r
= o 12128
. HNZZW( 0 (iB +1)) Z 2 VF(w® ’B“))H
. Sy (Vf( 0 0(iB +J)) — VF(w" G(iBJrj))) H2
i=1 j=1
< /’VV2 Bzsz(W“) 0(iB +)) = V(w008 +)|
BL? :
< T/

20



)> - % ’VF(v“vt)

2

This gives with probability 1 — 2e~</®, where we have n; = ¥
B
. . neN L2 meN NI
F(Wt_;,_l) § F(Wt) + ;?? - QtiB ‘VF(WL»)
- n:L? 2/\/2 1 5 \|I2 (N+6In(2/6)©
< = (= N OMe/0)=
< F(i) + i g5 ( 512n(2/6)0 +HVF(WO )H .
N 2 ON R n .
= F() + o (12In(2/6)a +HVF(WO )H (N+6In(2/6)@)> —§HVF(Wt)
. n>L? 61n(2/6) n OGN 3,2 2
< i S/ I el
_F(Wt)—‘r( : (1+ = 2)HVF(WO )H + 5 In/8)rL 20

(@)

Where for (a) we used § = 2e~/%, for which means that for n < &, C <

T (14 S2/0)

2

N

2 ¢
< F(We) — gHVF(Wét))H + Lol

olz

n 3,0 N n
Taep3z_ T 1
2 =7 2> 72

Proof of Theorem[4 We have from With probability 1 — 2e~¢/6

F(¥enn) < F() — 7| V()

Rearranging gives:

|V F ()

Summing up the above for t =0,1, ..., T

.
> |[vFem)
=0

2

4

2 C
+ Nn3L202

> 4 ) 4
< n (F(We) — F(Wey1)) + NCTIQL202

N . 4
< H(F(WO) = F(Wr41)) + NCTﬂ2L202

Since F(Wry1) > F*, we get that with probability 1 — ?75/6:

1 3
T;HW(W

2
<

A
nT

4
(F(Wp) — F*) + NC’I’]QLQO'Q

21

2

(111)

(112)
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