Approaches to Authoring of Rules
for Intelligent Agents

(extended abstract, submission version 11/21/95)

Benjamin N. Grosof
IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598
(914) 784-7100
grosof@watson.ibm.com
WWW: http://www.research.ibm.com

Introduction

The problem we address is practical design of methods
for users, especially relatively non-technical end users,
to author rules that drive rule-based intelligent agents.
We are concerned especially with networked applica-
tions of intelligent agents in the realm of information
access, e.g., news, mail, Web pages, and the like. For
these applications, an important value of intelligent
agents is their ability to customize or personalize the
behavior of an application.

A key challenge is how to enable an end-user to
specify the behavior that is desired of that applica-
tion agent. In other words, how shall the user instruct
the agent? Generally, one can imagine a spectrum
of approaches, ranging in complexity from full-blown
programming languages, such as C++, at one end of
the spectrum, to menus and direct manipulation at the
other end. Scripting and macro languages, which re-
cently have been receiving a great deal of attention
and excitement in both industry and academe, oc-
cupy a place in this spectrum intermediate between
full-blown programming languages and menus. This
spectrum can be viewed as a trade-off frontier: lower
skill and effort required vs. greater complexity and
power of specified procedures/processing.

Rules and inferential reasoning occupy another place
in this spectrum. We place them intermediate between
scripting and menus: lower skill and effort required
than scripting, but more than menus; greater com-
plexity and power of processing than menus, but less
than scripting.

A dream of many (we share it) is to warp out of
the above trade-off frontier of explicit instruction: by
relying on machine learning to perform powerful im-
plicit instruction. Pragmatically, however, we believe
it is important as an incremental first step to facil-
itate explicit instruction, for several reasons. First,
explicit instruction is important as a target for learn-
ing by induction or advice. Experience in the field
of knowledge-based systems teaches us that it is usu-
ally important to first build the performance element
and understand how it would exploit knowledge sup-

plied by a learning element, before actually hooking
up a learning element. Second, explicit instruction is
important to augment learning: to edit the results of
learning, and to complement it when only some areas
of knowledge can be learned. Third, explicit instruc-
tion is important to trust learning: e.g., to confirm or
inspect suggestions made by a learning element.
Within explicit instruction, we believe that yes/no
rules are an important first step. By yes/no rules,
we mean rules that have a truth value of either true
or false, as opposed to probabilistic-flavored rules (we
would include fuzzy rules as in this category) that
may have intermediate degrees of truth, e.g., 0.7.
Yes/no rules have two advantages over probabilistic-
flavored rules. First, their fundamentals are well un-
derstood, notably in terms of practical experience with
knowledge-based systems over especially the last fif-
teen years. Second, yes/no rules enable the control of
tasks with predictability. (Software today is mostly
written using non-randomized control constructs.)

The RAISE Project and Experience at
IBM

IBM has built a number of intelligent agents in dif-
ferent application areas, including information access,
support of collaborative work, system management,
workflow, adaptive user interfaces, customer service
support, e-mail, desktop applications integration, and
more. [1] gives an overview of these. The goal of
our RAISE project at IBM Research is to create em-
beddable technology to support a variety of intelli-
gent agent applications, including ultimately as many
as possible of those within IBM. RAISE stands for
Reusable Agent Intelligence Software Environment. A
major part of RAISE is devoted to facilitating user
authoring of rules. [2] gives an overview of RAISE.
RAISE has been used to embed rule-based intelligent
agents within two applications to date: the Globenet
system for networked newsgroup-like information and
customer service support using such newsgroups, and
Lotus Notes collaborative work using newsgroup-like
information. [3] describes the Globenet application of

RAISE. More generally, RAISE’s design is informed
by IBM’s overall experiences in the area of intelligent
agents, including rule authoring in particular.

Open Questions

In our RAISE design work, we grapple with a number
of open questions, in the area of rule authoring, that
are immediately and practically important in near-
term commercial settings. Next, we list them.

Overall: What does it take to make creating rule
bases accessible to end users that lack skills in Al
knowledge engineering, and also lack deep understand-
ing of rule-based inferencing techniques?

What kinds of graphical representations of rules,
and graphical interfaces for creating one rule, are use-
ful? Which are appropriate for different kinds of users?
What is a helpful set of categories for users in this re-
gard?

What kinds of textual representations of rules, and
textual interfaces for creating one rule, are useful?
How should these complement or substitute for graph-
ical representations, e.g., perhaps as a summary in re-
viewing a whole set of rules?

For quite non-technical users, what technical con-
cepts in inferencing is it possible, necessary, and/or
helpful for them to grasp? E.g., chaining, forwards vs.
backwards direction of inferencing, unification, quan-
tification, logical connectives. What fundamental ex-
pressiveness, in the sense of logical knowledge repre-
sentation, is possible, necessary, and/or helpful?

How application-specific vs. generic should the end
users interface be for rule authoring?

How to integrate with scripting and macro lan-
guages?

What kinds of mechanisms are needed for testing
and debugging rules, including to deal with conflicts
between rules?

How to reduce the burden of creating, understand-
ing, and reconciling ontologies?

Solutions and Lessons

For the questions above, we have some partial answers.
These are based on our earlier-described experience,
but have yet to be fully validated in widely deployed
applications. Next, we list these approaches, observa-
tions, and ideas.

Visual Wiring: One approach to graphical inter-
faces is what we will call here: visual wiring. In this
approach, a rule is created by “wiring” together an-
tecedent conditions and consequent conditions (e.g.,
actions) that are pulled down from a menu of available
conditions. This approach was taken, for example, by
IBM’s first intelligent agent product, IntelliAgent, an
office desktop applications integrator. Wiring means
indicating the logical connectives (and, or, implica-
tion) between the multiple conditions. E.g., left-to-
right sequencing is used to indicate and " ing within the
antecedent; branching within the antecedent is used to
indicate or’ing. Some users like visual wiring. How-
ever, many do not; they find it too unstructured and
too difficult to map to the application in which the
agent is embedded.

Canned Rules, Forms, Schemas: We have found
that many of the less technical users find it helpful
to be able to select and parametrize from a collec-
tion of “canned” (i.e., predefined, schema) rules and
canned rule sets. Forms (in the sense of forms that
one fills out) are then an appropriate mode of graphi-
cal interface for authoring rules. This approach is be-
ing taken in IBM"s work on the Alter Ego intelligent
agent for e-mail and personal messaging, for example.
The first version of Globenet also takes this approach,
but makes various conditions optional to include. This
obviates the need for the user to specify logical con-
nectives, but enables a rich number of combinations of
conditions: in effect, a large number of rule schemas.

Textual Summarization: Many users find a tex-
tual summary of each rule to be a helpful accompani-
ment to graphical interfaces (e.g., forms). It is more
concise, and is closer to natural language; these help
especially when reviewing an entire set of rules.

Rule Set (not just individual rule) as a Pri-
mary Concept: A set of rules is employed together.
This view is important and helpful for users to un-
derstand, especially when rules chain or when rules
conflict. It is useful to manifest the concept of a rule
set in a graphical interface, e.g., by a metaphor of a
“book” of rules (e.g., in IntelliAgent or Alter Ego), or
in a textual interface, e.g., with a summary title such
as “Handling E-Mail While on Vacation”.

Keep the Interface Close to the Application
or Tool: Users, especially when non-technical, find
it helpful when the authoring interface is close to the
overall application in terms of concepts and look- and-
feel. This principle applies not just at the level of
whole rules, but also at the level of individual condi-
tions. E.g., when specifying a free-text condition such
as a keyword combination, it is helpful to bring up the
interface of an underlying free-text search tool. Intel-
liAgent takes this approach, for example. The RAISE
architecture has been designed to enable this pattern
of interfacing.

Non-Horn Connective Structure: in several
applications, including IntelliAgent and Globenet, a
helpful form of rule is more complex than Horn form.
In this form, there may be at least one level of nesting
of and’s and or’s in the antecedent; in addition, there
may be and’ing within the consequent. To date, we
have found users not to have much trouble grasping
this logical complexity; rather, they find its concise-
ness to be an aid.

Chaining: We have found nontechnical users in-
deed to be able to exploit at least a small degree of
chaining, e.g., to chain through “Importance” (high
or low) as an intermediate condition in the Alter Ego
agent for e-mail handling.

Declarativeness, Merging, Porting: In RAISE,
we have developed an approach to representing rules
that is highly declarative (in the AI Knowledge Rep-
resentation sense of declarative vs. procedural). Rules
that are logically monotonic are distinguished from
rules that are logically non-monotonic. Moreover,
rules purely about belief are distinguished from pro-
cedural attachments, which are called “reflexes”. A

reflex associates a logical atom (typically having free
variables) with an attached procedure call. One kind
of reflex is an “effector”: the attached procedure is
invoked to perform some action, e.g., to forward a
piece of mail. A second kind of reflex is a “sensor”:
the attached procedure is invoked to perform a special
test (e.g., an analysis or query). A highly declarative
underlying rule representation has several advantages.
One is that it makes it simpler for the user to anticipate
and understand the results of adding or deleting rules
to a set of rules. Another is that it makes it simpler to
separate the meaning of a set of rules from the partic-
ular (e.g., local to a PC) set of available procedures:
this aids portability and platform-independence.
Sharing, Advice, Communication: RAISE aims to
capitalize on the idea that the easiest way to obtain
rules is to “copy” them from some other user or user’s
agent. That is, we believe that reusability of knowl-
edge, i.e.., rules, is at least as important as reusability
of code. RAISE supports emerging standards in the
area of knowledge interchange, e.g., the ARPA Knowl-
edge Sharing Effort. But more than that, RAISE facil-
itates some of the deeper aspects of knowledge sharing,
via its high degree of declarativeness. For example,
it facilitates the assimilation of advice (rules received
from another user or agent) by simplifying the seman-
tics of merging two rule sets into one new rule set.

Acknowledgements

Thanks to Manny Aparicio, Joshua S. Auerbach,
Stephen Brady, Hoi Y. Chan, Tad Davis, Davis Foul-
ger, Colin G. Harrison, Terry Heath, Ed Kunzinger,
David W. Levine, Henry Lieberman, Frank McKiel,
Colin J. Parris, Ted Selker, and Rick Spagna for use-

ful discussions.

References

[1] “IBM Applications of Intelligent Agents”. Manny
Aparicio et al. http://activist.gpl.ibm.com:81. Soon
available as an IBM Research Report:
http://www.research.ibm.com, click on Cyberjournal.
[2] “Reusable Architecture for Embedding Rule-
based Intelligence in Information Agents”. Benjamin
N. Grosof, David W. Levine, Hoi Y. Chan, Colin J.
Parris, Joshua A. Auerbach. In Proceedings of the
ACM CIKM-95 Workshop on Intelligent Information
Agents. Held in conjunction with the Conference on
Information and Knowledge Management, Baltimore,
MD, Dec. 1-2, 1995. Workshop Editors: Tim Finin
and James Mayfield. http://www.cs.umbc.edu/iia/ .
Soon available as an IBM Research Report RC 20305:
http://www.research.ibm.com, click on Cyberjournal.
[3] “Globenet and RAISE: Intelligent Agents for
Networked Newsgroups and Customer Service Sup-
port”. Benjamin N. Grosof and Davis A. Foul-
ger. In Proceedings of the 1995 AAAI Fall Sym-
posium on AI Applications in Knowledge Navigation
and Retrieval, held Cambridge, MA, Nov. 10°12,
1995. Editor: Robin Burke. http://www.aaai.org
Available as IBM Research Report RC 20226:

http://www.research.ibm.com, click on Cyberjournal.

