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Abstract. Our overall goal is to characterize and understand the dy-
namic behavior of information economies: very large open economies of
automated information agents that are likely to come into existence on
the Internet. Here we model a simple information-filtering economy in
which broker agents sell selected articles to a subscribed set of consumers.
Analysis and simulation of this model reveal the existence of both desir-
able and undesirable phenomena, and give some insight into their nature
and the conditions under which they occur. In particular, efficient self-
organization of the broker population into specialized niches can occur
when communication and processing costs are neither too high nor too
low, but endless price wars can undermine this desirable state of affairs.

1 Introduction

Today, we are witnessing the first steps in the evolution of the Internet towards an
open, free-market information economy of automated agents buying and selling a
rich variety of information goods and services[2, 4, 6, 16, 19, 22]. We envision the
Internet some years hence as a seething milieu in which billions of economically-
motivated agents find and process information and disseminate it to humans
and, increasingly, to other agents. Over time, agents will progress naturally from
being mere facilitators of electronic commerce transactions to being financial
decision-makers, at first directly controlled by humans and later with increasing
autonomy and responsibility. Ultimately, inter-agent economic transactions may
become an inseparable and perhaps dominant portion of the world economy.

The evolution of the Internet into an information economy seems as desirable
as it does inevitable. After all, economic mechanisms are arguably the best known
way to adjudicate and satisfy the conflicting needs of billions of Auman agents.
It 1s tempting to wave the Invisible Hand and assume that the same mechanisms
will automatically carry over to software agents. However, automated agents are
not people! They make decisions and act on them at a vastly greater speed,
they are immeasurably less sophisticated, less flexible, less able to learn, and
notoriously lacking in “common sense”. How might these differences affect the
efficiency and stability of future information economies?

Previous research in automated economies is equivocal. Under certain as-
sumptions, large systems of interacting self-motivated software agents can be sus-
ceptible to the emergence of wild, unpredictable, disastrous collective behavior[13,



14]. On the other hand, a large body of work on market mechanisms in dis-
tributed multi-agent environments suggests that efficient resource allocation or
other desirable global properties may emerge from the collective interactions of
individual agents[1, 3, 5, 8, 10, 11, 15, 17, 21].

Our goal is to understand the dynamic, emergent behaviors — both good and
bad — of information economies from an agent’s-eye view, and from this to for-
mulate basic design principles that will foster efficient electronic commerce. We
pursue this goal by combining analysis and simulation of information economies
with concurrent development of an information economy prototype.

In this paper, we focus on a simple model of an information filtering econ-
omy, such as might be embedded in a larger information economy. The model is
inspired by information dissemination services that can be found on the Internet
today, and sets them in an economic context. After introducing the model in
section 2, we analyze and simulate its dynamical behavior in section 3, illustrat-
ing as we go the promise and the pitfalls inherent in this and similar economies.
We conclude with a brief summary of our findings in section 4.

2 Model of the news filtering economy

Fig. 1 represents our information filtering model economy, consisting of a source
agent that publishes news articles, C' consumer agents that want to buy arti-
cles they are interested in, B broker agents that buy selected articles from the
source and resell them to consumers, and a market infrastructure that provides
communication and computation services to all agents. Each agent’s internal pa-
rameters (defined below) are printed inside its ellipse. Solid lines represent the
propagation of a sample article through broker 1. Broken lines indicate payment,
and are labeled with symbols (explained below) for the amount paid.
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Fig. 1. Part of an idealized news filtering economy. Only a subset of agents is shown.
See text for interpretation of symbols.



The source agent publishes one article at each time step ¢. It classifies articles
according to its own internal categorization scheme, assigning each a category
indez j. The nature of the categories, and the number J of them, do not change.
We represent this (hidden) classification scheme by a random process in which
an article is assigned category j with fixed probability o;. The set of all a; is the
source’s category prevalence vector . Each article is labeled with its category
index and offered for sale to all brokers at a fixed price Pg. For each article sold
to each broker, the source pays a fixed transport cost Pr.

Upon receiving an offer, each broker b decides whether or not to buy the
article using its own evaluation method, which may be uncorrelated with the
source’s categorization scheme. For each evaluation that it makes, the broker
pays the system a fixed computation cost Po. The broker’s evaluation method
i1s approximated by a random process parametrized by its interest vector Gp: it
buys an article labeled (by the source) with category j with probability Gs;.
When broker b purchases an article, it immediately sends it to a set of subscrib-
ing consumers, paying tranportation cost Pr for each. Subscribers examine the
article, and pay the broker P, if they want the right to use (“consume”) it. The
broker’s internal parameters 5, and P, are under its direct control.

Subscriptions are represented by a subscription matriz S, where Sp. = 1
if consumer c subscribes to broker b, and Sy, = 0 if not. Subscriptions are
maintained only with the consent of both parties, and may be cancelled by
either. For example, a broker b might reject a consumer c if the cost of sending
articles exceeds the expected payment from c, or ¢ might reject b if the cost of
sifting through lots of junk outweighs the benefit of receiving the rare interesting
article. The bilateral nature of the agreement is represented by setting Sp. =
Ug?ogz), where Ug? =
not; analogously, agz) represents consumer c’s wishes.

When a consumer receives one or more copies of an article from brokers to
which it subscribes, it pays the computation cost P to determine whether it is
interested in the article, then decides whether (and from whom) to buy it. Like
the brokers, the consumers’ evaluation function is approximated by a stochastic
process parametrized by an interest vector 7.: consumer ¢ will be interested
in an article labeled with category j with fixed probability ;. The consumer
then determines whether the anticipated value V for interesting articles warrants
paying the price P,» demanded by the chosen broker 4*, and if so purchases the
usage rights to the article.

An alternative formulation replaces the consumer’s computational cost Pgo
with a negative value or cost P; incurred when “junk” is received. The trans-
formation V. — V + Py, Pc — Pj renders these two views equivalent.

if broker b wants consumer ¢ as a subscriber and 0 if

3 Behavior of the news filtering economy

In this section we illustrate desirable and undesirable phenomena that can occur
in our news filtering economy. First, we define the state of the system, from which
any desired aspect of behavior can be derived. Then, we derive the state and



behavior of simple systems with a few well-informed brokers and an infinite num-
ber of consumers. Finally, we simulate a system of many brokers and consumers
with limited knowledge of the system state, and show that it can self-organize
into a configuration that is beneficial to brokers and consumers alike.

We define the state of the system at time ¢, Z(t), as the collection of broker
prices Py, broker interest vectors J,, and the subscription topology matrix S.
Our goal is to understand the evolution of Z(t), given (i) an initial configuration
Z(0); (i1) the values of the various extrinsic (possibly time-varying) variables:
the category prevalences o, the costs Ps, Pr, and Pg, the consumer value
V', and the consumer interest vectors v.; and (iii) the algorithms used by each
agent to dynamically modify those variables over which it has control, including
specification of a) the state information accessible to the agent and b) the times
at which the modifications are made.

Any desired individual or aggregate aspect of behavior can be extracted
from the history of Z(t) and the extrinsic variables. Two particularly important
quantities are the expected utility per article for consumers and brokers. It can
be shown that the expected utility per article U, for consumer c¢ is given by:
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where O(z) is the step function: ©(z) = 1 for z > 0, and 0 otherwise. The
product term in large parentheses is the probability that an article in category j
1s not offered by any broker for a price less than P,. The term in square brackets
1s the expected value of an article in category j: it always costs the consumer
P¢ to process it, regardless of its worth, and with probability 4. consumer ¢ will
pay P, to receive information worth V.

The appropriate utility function for the broker is its expected profit per
article, given by:
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3.1 Single broker case

Given that effective monopolies can occur even in multi-broker systems, it is
useful and instructive to establish a few simple results for systems with a single
broker. First, suppose the broker offers a single category, and that the number
of consumers is arbitrarily large, i.e. B = 1, J = 1, and C — oo. The broker
tries to maximize its utility by choosing a set of preferred consumers (those ¢ for



which Ugb) = 1), setting a price P, and setting its interest level 8. The consumers
try to maximize their utility simply by declaring whether they wish to subscribe

to the broker (in which case Ugc) =1).

Analysis of Egs. 1 and 2 shows that, for a wide range of parameters, the
equilibrium state is {# = 1, P = P*, S. = O(P*y. — Pr)O((V — P*)y. — P¢).
The subscription matrix element S., which defines whether or not consumer ¢
has subscribed to the broker, is the product of two step functions, which can be
understood intuitively as follows. The first step function, @(P*y. — Pr), repre-
sents the veto power of the broker: it only wishes to serve consumers that are
interested enough (and the price is high enough) so that the expected revenue
from an article will exceed the cost of sending it. The second step function,
O((V — P*)y. — P¢), represents the consumer’s veto power: it only wishes to
subscribe to the broker if it is interested enough (and the price is low enough) so
that the expected net benefit of receiving an article exceeds the cost of processing
1t. The monopolistic equilibrium price P* is constrained by the step functions
and the restriction 4. < 1 to be in the range Pr < P* < V — P¢; its exact
value depends in detail upon P¢, Pr, V, and the distribution of consumer in-
terest probabilities I'(y.) in the population. For example, when I' is a uniform
distribution, P* is the solution to a cubic equation involving Pg, Pr, and V.

Now suppose that the number of categories J offered by the broker is arbi-
trary [7]. Assuming that the category prevalences are all equal (a; = 1/J) and
the distribution of consumer interests within a given category is given by I',
one can derive analytic expressions for the monopolistic equilibrium price as a
function of the number of categories. Substituting this function P*(J) back into
Eq. 2, one can derive the broker’s optimal utility as a function of the number
of categories, and then from this the optimal number of categories. Illustrative
results for two very different distributions I' are shown in Fig. 2.
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Fig. 2. The optimal number of categories J* for the broker to offer as a function of P¢
and Pr (with V = 1). a) I" is a uniform distribution in the interval (0,1), so v = 0.5.
b) I' is an all-or-nothing distribution: vy; = 1 with probability v = 0.03, else v; = 0.



For a wide class of distributions, three behavioral regimes are observed. When
the combined cost of transport and processing is sufficiently high (Pc+ Pr > V),
the optimal number of categories J* is 0. In this “dead” regime, an article costs
more to send and process than it is worth, even if the consumer i1s guaranteed
to be interested in it, and so no articles will be bought or sold. At the other
extreme, when the costs are sufficiently low (Pc + Pr < vV, where v is the
mean of the distribution I'), the broker is motivated to offer all categories that
exist (J* — o0). In real information filtering applications, one expects v to be
quite small, since each consumer regards most information as junk. It is useful to
think of J* — oo as a (presumably tiny) spam regime, in which it costs so little
to send information, and the financial impact on a consumer of receiving junk is
so minimal, that it makes economic sense to send all articles to all consumers.
In between these two regimes, the optimal number of categories is finite.!

3.2 Two broker case: price competition and warfare

To explore some effects of price competition, we begin by considering a simple
two-broker system with a single information category. We assume that brokers
and consumers are fully knowledgeable about the state of the system (in particu-
lar, they know the prices and interest vectors of all of the brokers). Furthermore,
they instantly adjust their desired subscription vectors O'Z(fc))
their utility given the current set of prices and interest vectors. This last assump-
tion removes the degrees of freedom associated with the subscription matrix by
expressing it in terms of the other state parameters (prices and interest vectors)
— a tremendous simplification.

We assume that the brokers update their prices asynchronously. One plausible
strategy 1s for a broker to set its price to the value that maximizes its profit,
assuming all other prices remain fixed. Such an update strategy is guaranteed to
produce the optimal profit up until the moment when the next broker updates
its parameters. We call such a strategy “myopically optimal”, or myoptimal.

A useful construct for understanding the resulting dynamics is the profit
landscape. We define a broker’s profit landscape as its utility (given in Eq. 2) as
a function of the prices offered by all brokers in the system, itself included. A
contour map of the profit landscape for broker 1 in a system with Po = Py = 0.3,
V =1, and a uniform distribution of consumer interests is shown in Fig. 3a.

The landscape shown in Fig. 3a has two distinct humps. The “cheap” hump
on the right corresponds to the case where broker 1 is cheaper (p1 < p2). Here,
its profit is completely independent of ps, and it can charge the monopolistic
price derived previously. The “expensive” hump on the left corresponds to the
case in which broker 1 is more expensive than broker 2, but still able to find
customers. This comes about when broker 2 is charging so little that it cannot
afford to keep marginal customers — i.e., customers with low interest levels y. —
as subscribers. (Recall from the discussion of the single-broker case that a broker

c . .
and O'ZSC) to maximize

! Closed-form expressions for the finite J* > 1 contours appear impossible; these
contours have been computed numerically in Fig. 2.
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Fig. 3. a) Contour map of profit landscape for broker 1 for Py = Pc = 0.3,V = 1, with
overlaid optimal price function pj(pz). Profit is higher in dark regions. b) Graphical
construction of price-war time series, using functions pi(p2) and p3(p1).

will veto a subscription from an insufficiently interested prospective customer.)
For these marginal customers, the only alternative is to subscribe to broker 1.
In other words, broker 2’s rejects constitute broker 1’s market.

If broker 1 is myoptimal, it can derive from its profit landscape a function
p3(p2) that gives the value of p; that maximizes the profit when broker 2 charges
price py. This function is represented as a heavy solid line in Fig. 3a. For 0.3 <
p2 < 0.389, pi(p2) is given by the solution to a cubic equation involving cube
roots of square roots of py; in this region it looks fairly linear. The “vertical”
segment at p, = 0.389 is a discontinuity as the optimal price jumps from the
“expensive” hump to the “cheap” hump. When 0.389 < py < 0.590, p; = p2 — ¢,
where ¢ is a price quantum — the minimal amount by which one price can exceed
another. For 0.590 < p2 < 0.7, p7 = 0.590, the monopolistic price.

If broker 2 also uses a myoptimal strategy, then by symmetry its landscape
and price-setting function p3(p1) are identical under an interchange of p; and
p2. Then the evolution of both p; and ps can be obtained simply by alternate
application of the two price optimization functions: broker 1 sets its price p1 (¢ +
1) = p}(p2(t)), then broker 2 sets its price pa(t + 2) = pi(p1(t + 1)), and so
forth. The time series may be traced graphically on a plot of both p}(p2) and
p5(p1) together, as shown in Fig. 3b. Assume any initial price vector (p1, p2), and
suppose broker 1 is the first to move. Then the graphical construction starts by
holding p, constant while moving horizontally to the curve for p}(p2). Then, p;
is held constant while moving vertically to the curve p}(p1). Alternate horizontal
moves to p}(p2) and vertical moves to p3(p1) always lead to a price war during
which the brokers successively undercut each other, corresponding to zig-zagging
between the diagonal segments of the curves. Eventually, the price gets driven
down to 0.389, at which point the undercut broker (say broker 1) opts out of



the price war, switching to the expensive hump in its profit landscape by setting
p3(0.389) = 0.543. This breaks the price war, but unfortunately it triggers a new
one. The brokers are caught in a never-ending, disastrous limit cycle of price
wars punctuated by abrupt resets, during which their time-averaged utility is
half what they expected, and less than half of the monopolistic value.

3.3 General myoptimal case; discussion

Generalizing to an arbitrary number of brokers and categories, and permitting
each broker to myoptimally update both its price and its interest vector, we
observe more complex analogs of price wars, in which both prices and interest
vectors are drawn into limit cycles. In the spam regime, the system tends to
behave very wildly. When J* is finite, the interest vectors can display some
metastability, but price wars can develop even among brokers with different
interest vectors (if they overlap sufficiently).

Price wars are even a problem when J* = 1. Consider a system in this
regime with n brokers and n categories. Such a system can accommodate each
broker’s wish to be a monopolist in a single category. If all categories are preferred
equally by the users, each broker will ultimately specialize in a single unique
category (even when J* is somewhat more than 1) [7]. However, if the consumer
population slightly favors one category, a system of niche monopolists is unstable,
because each broker will cut its price in an effort to own the favored category.
Simulations reveal that slightly less favored categories tend to be available much
less often than the consumer population would like. Consequently, the total
consumer utility is often reduced during a price war, despite the low prices [12].

Intuitively, any sort of economy consisting of myoptimal agents is likely to be
plagued with price-war limit cycles. Geometrically, this behavior can be traced
to the multi-peaked, discontinuous topology of the profit landscape, which in
turn arises from the consumers’ preference for the cheapest brokers. Of course,
this does not imply that agent economies are doomed to failure. The assumption
of myoptimality is unrealistic in several respects, and the fact that price wars
occur relatively infrequently in human economies offers some hope.

The economics literature describes several possible mitigating effects that
may explain why price wars are not rampant in human economies [18]. Expressed
in terms of our model, these include explicit collusion among brokers, or tacit
collusion — using foresight to avoid triggering price wars. Other factors thought
to hinder price wars include frictional effects (consumers may find it too costly
or bothersome to shop around, and brokers may find it costly to update prices
or change products too often) or spatial or informational differentiation (i.e.
different consumers might value the same good differently, depending on their
physical location or knowledge).

These mitigating factors are likely to be weaker in agent-based economies
than they are in human economies. Explicit collusion might require fairly so-
phisticated languages and protocols (and might be declared illegal!) In large
decentralized systems, efforts to employ foresight may be hampered by imper-
fect knowledge of the system state and the strategies of the other agents. Even



if these are known perfectly, it may be computationally infeasible to predict
the future. 2 Consumer inertia may be greatly reduced when agents rather than
people are doing the shopping, and price updates may be cheaper to compute
and advertise. Localization effects are likely to be much smaller for information
goods and services than they are for carrots and carwashes. Given these consid-
erations, it 1s very possible that real agent economies will experience price wars
much more frequently than do human economies.

3.4 Limited competitive knowledge; niches and prices

In order to understand the behavior of more realistic economies in which brokers
and consumers are less informed about the system state, and less immediately
responsive to environmental changes, we have built an agent simulation envi-
ronment that allows us to experiment with a wide range of utility maximization
strategies for consumers and brokers. In particular, we do not assume that bro-
kers know each other’s prices (or interest vectors), nor that the brokers know
the consumers’ interest vectors. Instead, they must make do with historical data
based on their own parameters (e.g. prices and interest vectors) and experience
(e.g. consumer demand and profits).

Here we describe a simulation run involving 10,000 consumers, 500 brokers,
and 100 categories. In this run, a typical consumer was completely interested
(7e; = 1) in roughly 3 out of the 100 categories and completely uninterested
(7e; = 0) in all other categories. The computation and transport costs were
P = 30 and Pr = 30; the information value was V' = 150. Under these cir-
cumstances, J* = 1. To set prices, the brokers use an extremely simple-minded
strategy: they randomly shift their price by a small amount up or down. If
(after a suitable period of time), the broker finds that its profit per unit time
has increased, it keeps moving the price in the same direction; otherwise it re-
verses direction. We call this a deriwative-following algorithm. Brokers adjust
their interest vectors in a similar way, increasing or decreasing 3; by an amount
depending upon the profit or loss recently experienced when selling an arti-
cle in category j. The brokers and consumers estimate the utility of adding or
cancelling subscriptions using a matchmaker that periodically gauges agents’
interests by issuing questionnaires about a given set of articles.

Each consumer initially establishes a subscription with a single randomly
chosen broker. From time to time, agents make asynchronous, independent de-
cisions about adjusting prices, interest vectors, or subscriptions. Figure 4 shows
the distribution of consumers’ utilities at three different moments in their evolu-
tion. Starting from a state in which virtually all of the consumers have negative
utilities, the economy adapts itself such that most consumers have positive util-
ities, and at worst a few have zero.

2 In a simulation of just 4 brokers, 4 categories, and 10,000 consumers, computing
a single myoptimal decision requires a few hours on a high-end workstation. Other
researchers have shown that agents can learn to predict one another’s actions, but
the experiments have involved societies of fewer than ten agents [9, 20].



Of the original 500 brokers, only 122 remain active at time ¢ = 200, 000
(i.e., after 200,000 articles have flowed through the system). The others have
either gone broke or are not participating in the market because they are buying
no articles from the news source. Many brokers die out within the first few
thousand time steps, while others thrive at first but then suddenly start losing to
competition. All of the 122 that remain at ¢ = 200, 000 have chosen just a single
category in which to specialize, and among them cover 86 distinct categories.

At t = 0, almost all of the consumers have negative utility because the
random 1nitial conditions typically do not give them a large enough ratio of
interesting articles to junk. Rapid improvements are soon made as the agents
mutually sort out the subscription topology. During this phase, many consumers
temporarily drop out of the economy, while the remaining ones eke some positive
utility out of the brokers. Once a broker has a semi-coherent following, positive
feedback sets in: the broker is encouraged by its clientele to provide articles
that they will find interesting. Once the broker specializes to a small number of
categories, other consumers are now attracted. By ¢ = 100, 000, all of the brokers
have specialized into a single category, and no consumers receive any junk.
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Fig. 4. Evolution of the consumer utility distribution.

In this run, dramatic cyclical price wars were not observed, although more
benign short-lived price wars played a role in driving superfluous brokers out
of the market. Because the derivative-following price-setting algorithm forbids
large discontinuous changes in prices, it appears unlikely to support dramatic
cyclical price wars of the sort we found in the myoptimal case. Unfortunately,
since the profit landscape typically contains several distinct humps separated by
discontinuities, the derivative-following algorithm can often cause the economy
to become stuck in highly suboptimal states. In other simulation runs in which
the brokers initially offered an excessive number of categories, the system consis-
tently evolved to a state in which no articles were sold. Making the system more
robust to unfavorable initial conditions (or more responsive to environmental
changes) requires permitting discontinuous jumps in price or interest vectors,
but these capabilities also put the system at greater risk for cyclical price wars.
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4 Conclusion

Our investigation of the dynamic behavior of an information filtering economy
revealed at least two important effects: spontaneous specialization, which is gen-
erally desirable, and cyclical price wars, which are by and large undesirable even
to consumers that may on the surface seem to benefit from lowered prices.

We found that specialization is driven by two distinct mechanisms work-
ing together. First, if the extrinsic transport and processing costs Pr and Pg
are intermediate between the low-cost “spam” regime and the high-cost “dead”
regime, a monopolist broker prefers to offer a small number of categories. Second,
competition among multiple brokers encourages them to become monopolists in
largely non-overlapping sets of one or a few categories. Niche specialization is
typically desirable from the perspective of both the brokers and the consumers.

Standard models of price wars [18] typically lead to a stable point at which
no one makes a profit. The news filtering economy is extremely prone to un-
stable limit-cycle price wars, behavior that can be traced to the multi-humped,
discontinuous topography of the profit landscape. Price wars undermine the ten-
dency of the system to efficiently self-organize itself. We found that cyclic price
wars could be eliminated in a system of brokers and consumers that had lit-
tle knowledge of the system state and very simplistic algorithms for updating
prices and interests, permitting useful specialization to occur. However, one can-
not conclude that individual ignorance leads to societal bliss. The conservative
price-setting strategy makes the system less nimble, and more susceptible to
failure. Furthermore, even if ignorance led to good collective behavior, it would
hardly be a stable strategy: there would be a strong incentive to use a better
informed or more intelligent agent that could outperform its weaker opponents.
Other effects that may hinder price wars in human economies, such as explicit
and tacit collusion, frictional effects, and spatial or informational differentiation
are likely to be weaker in agent economies. Price wars may indeed prove to be a
serious problem to contend with in large agent economies of any sort, and merit
our continued attempts to understand and control them.
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