Contents

1 Introduction 1
2 Subject Area: Purchasing 1
3 Knowledge Engineering 2
4 Example Formalization 3
5 Representational Challenges and Limitations of Logicism 7
6 Uses and Executability 10
7 Conclusions and Future Work 10

To appear in: Proceedings of the AAAI-92 Workshop on Enterprise Integra-
tion, held San Jose, California, July 13, 1992.

Applications of
Logicist Knowledge Representation
to Enterprise Modelling

Benjamin N. Grosof Leora Morgenstern

IBM T. J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598
(914) 784-7100 ;
Internet: grosof@watson.ibm.com leora@watson.ibm.com

April 17, 1992

Abstract

The goal of the enterprise modelling efforts at IBM is to develop methods
to model an organizational unit’s knowledge and activities. Ultimately, enter-
prise modelling should support an ongoing, incremental automation process.
The problem we address here is the applicability of declarative Al knowledge
representation (KR) to enterprise modelling. Does KR have a useful role to
play? What is it? What are its limitations?

In an initial case study in the area of purchasing, we find that much of cur-
rently non-automated guidelines information can be represented successfully
using standard logicist methods. We show how to create very-high-level spec-
ifications with well-understood semantics. These specifications are useful as
descriptive information in non-executable form; they help identify ambiguities,
inconsistencies, and omissions in less formal guidelines information. We also
show that these very-high-level specifications are partially executable using
standard logicist inference methods such as rule-based programming and/or
logic programming. This is useful for development of prototype software and
simulations.

Our logicist approach provides a rich language and set of methods for
describing and propagating constraints, especially when compared to other
less formal approaches such as the Entity-Relationship model. However, we
discover that most guidelines information relies heavily on common sense,
and raises difficult knowledge representation challenges in temporal, default,
decision-theoretic, and multiple-level reasoning that expose the limits of state-
of-the-art logicist methods.

1 Introduction

The overall goal of the enterprise modelling efforts at IBM (involving collabora-
tion between several different IBM units) is to develop methods to model an or-
ganizational unit’s knowledge and activities. Ultimately, enterprise modelling
will support an ongoing, incremental automation process. Once developed, a
formal enterprise model can be used in two ways. First, in non-executable
form, it enables rigorous reasoning about the enterprise, and facilitates com-
munication among members and re-designers of the enterprise. Second, an
executable specification can be used for experimentation and simulation.

Declarative / logicist AI knowledge representation offers the prospect of
a lingua franca with strong semantics. Formal logic remains unsurpassed as
a language for rigorous reasoning. It provides a very-high-level specification
language that can unify such diverse areas as data typing, database semantics,
rule-based programming languages, object-oriented inheritance mechanisms,
KIF (DARPA Knowledge Interchange Format), conceptual graphs, and se-
mantic networks. The specification is “very-high-level” in the sense of high-
level programming languages: it is abstracted from considerations of computa-
tional implementation, such as procedural ordering. Yet the close connection
between formal logic and logic programming languages means that it is rela-
tively straightforward to make many logicist specifications executable. On the
other hand, logicist representation has some drawbacks: it is often hard, or
impossible, to implement inference based on expressively richer logicist repre-
sentations, and the level of high-level rigor required may be too burdensome
to be practical.

The problem we address here is the applicability of declarative / logicist
knowledge representation (KR) methods to enterprise modelling. Do they have
a useful role to play? What is it? What are their limitations?

2 Subject Area: Purchasing

We chose a purchasing department as the subject for an initial case study for
the following reasons. First, it is a process that is relatively well-understood
and easy to articulate. (By contrast, say, the hiring or sales functions involve,
in their most crucial aspects, highly subjective, idiosyncratic, and implicit
processes of judgments and personal bonding.) Second, it is relatively small
in scope (compared to an enterprise in its entirety). Third, purchasing is a

sub-enterprise which occurs in virtually all business enterprises. Fourth, we
note that many of the concepts that arise within the context of purchasing,
such as contracts, leasing, confidentiality, authorization, and co-ordination of
discussion and decision-making, occur in many other departments as well.
Thus, much of the work that we do for this project should carry over into
other endeavors as well. Fifth, this is a serious, non-toy problem, involving
many subtle, complex issues.

We chose to use enterprise information that is currently not automated.
This choice separates the issue of the descriptive use of logicist methods from
the more complex and less direct issue of their use for implemented automa-
tion. The most formal part of the enterprise information consists of a guide-
lines manual in the Purchasing department of a part of a major Fortune 500
company; much implicit and less formal information resides in the employees
and managers of the department.

3 Knowledge Engineering

The first step of any effort in enterprise modelling is knowledge engineering.
To formalize the purchasing department, we needed to understand what it is
that the employees actually did, how they learned the ropes, what the written
and unwritten rules were, and what the chain of command was. We began
by speaking with several managers of the department, and then studied the
department manual.

Manuals tend to be dry, soporific reading, but from the knowledge engi-
neering point of view, they are often fascinating. There is so much that is
not in the manual, that is assumed to be common sense knowledge that is
possessed by all who will use the manual. For example, much of the work
of employees in the Purchasing department involves the telephone (getting
bids, contacting suppliers, etc.), but the telephone is never mentioned in the
manual. In the next two sections, we will give more details of implicit and
commonsense knowledge involved in formalizing the manual.

We began working with first order logic. However, it soon became appar-
ent that first-order logic was not sufficiently expressive or powerful for our
needs. To fully model even a small piece of the purchasing department, it
becomes necessary to model plausible reasoning, vagueness, reasoning about
plans, multiple agents, and communication. We discuss these in more detail
in section 5.

4 Example Formalization

The kind of information we modelled in our case study is illustrated by the
following sample page from the Purchasing guidelines manual for a Fortune
500 company unit, here called LuckyUnit. The overall manual has approxi-
mately 25 sections, on subjects such as authorization levels, bid analysis, im-
port /export procedures, insurance, and requests for quotation. ! This sample
page deals with Supplier Qualification.

1. A1l suppliers requested to supply quotes, products, or
services must be qualified by LuckyUnit.

2. Normal financial qualification for suppliers for
anticipated annual purchases by LuckyUnit of
$100,000 to $30 Million shall be a satisfactory
London-Rater report OR other nationally accepted rating
(e.g., Paris-Rater).

3. Technical qualification will be determined jointly by the
Buyer and division area after discussion and review of
supplier proposals and capabilities.

4. Proposed sources for anticipated annual purchases of
$30 Million or more must be reviewed with Lucky
Corporate Finance and the appropriate technical area.

5. It is the Buyer’s responsibility to ensure that all
suppliers asked to quote on or supply products or services
are qualified. This may require participation of other
functions such as Project areas, Engineering, Finance,
etc..

Next, we give a formalization of this page, in first-order logic. We assume

familiarity with basic logic; a good introduction can be found in (Mates, 1972).

Ontology: Actions and Time, Agents and Events:
First-order logic consists of three parts: a language determined by rules which

1Details of these guidelines are slightly altered (i.e., fictionalized) in this paper to protect
confidentiality. These alterations do not affect this paper in any substantive way.

specify how sentences may be constructed; a semantics, telling us how to deter-
mine the truth values of sentences in the language, and inference rules which
tell us how we can infer new sentences from old. Declarative knowledge rep-
resentation, however, consists of more than just the random use of first-order
logic. Rather, it is a method of using first-order logic. It includes standard
theories and styles of axiomatization. A key concept in Al knowledge repre-
sentation is the use of ontology: the basic predicates, functions, and associated
definitions and axioms.

In our case study, it was immediately apparent that actions, events, and
agents are central to the process of supplier qualification: they must be part of
the ontology. Accordingly, it was necessary to incorporate a theory of action
and time into our first order language. We chose McDermott’s (1982) logic, (as
extended by (Morgenstern, 1988). Time is isomorphic to the real numbers; the
central concept is that of an interval of time. Actions are considered to be sets
of intervals; intuitively, the set of intervals in which the action occurs. An event
is an action restricted to a particular agent; thus, we have the action of riding
a bicycle ride(bicycle) but the event of Debbie riding a bicycle, Do(Debbie,
ride(bicycle)).

There are several event types of particular interest here, including requests
(cf. rule 1) and decisions, discussions, and reviews (cf. rule 3). Also of interest
are events such as verifying, establishing, and evaluating.

Events have a number of important properties. An event such as a dis-
cussion or a review can have one or more subjects. It also has an outcome.
A useful function on events is a-party, which gives the set of agents involved
in the particular event. from and to are useful functions for such obviously
directed events as requests. We represent these functions with the functional
binary predicates a_party, from, and to.

Commonly occurring agents include: LuckyUnit, Buyer, Finance, Engi-
neering (these last two are departments), and the project area and technical
areas of a potential supply situation.

The term “qualification” is used quite frequently in the guidelines text,
though not always uniformly. In fact, a careful reading of this part of the
purchasing manual reveals several different sorts of qualification. First and
foremost, there is the overall qualification of a company co in a potential supply
situation pss: we represent this with the binary predicate qual. But this overall
concept of qualification rests upon more basic concepts of qualification. One
checks for financial qualification, and for technical qualification as well: we

represent these as fin_qual(co,pss) and tech_qual(c,pss). We need to include
a preliminary axiom relating these: (All variables in the axioms below are
assumed to be universally quantified unless otherwise indicated.)
Axiom 0.1

qual(co,pss) D (fin_qual(co,pss) A tech_qual(co, pss)
Note that this axiom, which gives necessary conditions for qualification has a
definitional flavor; many of our axioms will have this characteristic.
We then have such miscellaneous predicates, functions, and concepts as
anticipated_annual _purchases(LuckyUnit, co, year),
satis factory(rating), dollar amounts, and responsibility.

Using these concepts, we began to work our way through this section of
the manual.

Formalizing the Rules in First-Order Logic:

The first rule tells us that only suppliers qualified by LuckyUnit can be re-
quested to supply quotes, products, or services to LuckyUnit. We immediately
see that some information important to the formalization is left implicit in the
text. Implicit in the concept of qualification is that it is relative to the con-
text of a particular potential supply situation. We use the binary predicate
belongs(e, pss) to indicate that an event e belongs to a potential supply situ-
ation pss.

We thus have the rule:

Axiom 1.1:
request(e) A belongs(e,pss) A
from(e, LuckyUnit) A to(e, co) A
subject(e, s) A (quote(s) V product(s) V service(s))
D qual(co,pss)

Rule 2 raises several interesting issues. First, the word “normal” with
which rule 2 begins indicates that this rule is best treated as a default. Since
at this point we are working within standard monotonic logic, we choose in-
stead to regard our formalization as an approximation. Second, it should be
noted that anticipated_annual_purchases can hardly be considered a primi-
tive predicate. To fully axiomatize this predicate, we would need to formalize
the concept of anticipation, which in turn rests on concepts such as predic-
tion, approximation, and expectations. Third, we note the vagueness inherent
in such predicates such as satisfactory and nationally_accepted. Modulo these
caveats, our formalization of rule 2 looks as follows:

Axiom 2.1:
(anticipated_annual_purchases(LuckyUnit, co, z) A
(100,000 < z < 30Million)) O
[(rating(co, rating_service) = value) A satis factory(value) A
nationally_accepted(rating_service)
= fin_qual(c, pss)]
We also have:
Axiom 2.2:
nationally_accepted(London_rater) A
nationally_accepted(Paris_rater)

Rule 3 illustrates the need for the formalizers to use a hefty dose of common
sense reasoning. It is clear that technical qualification of a company can come
only after the Buyer and project area discuss and review supplier proposals
and capabilities. Left implicit in the rule, however, is that the discussion and
review must end in a positive outcome. Thus, we formalize rule 3 as:
Axiom 3.1:
tech_qual(co,pss) =

de. outcome(e, yes) A decision(e) A consensus(e) A belongs(e,pss) A

subject(e, “tech_qual(Qco@, QpssQ)")
a_party(e, Buyer(pss)) A a_party(e, technical _area(pss)) N
after(e,el) A after(e,e2) A
discussion(el) N review(e2) A
subject(el, “proposals(Qco@, Qpss@)") A
subject(el, “capabilities(Qco@, QpssQ@)") A
subject(e2, “proposals(Qco@, Qpss@)") A
subject(e2, “capabilities(Qco@, Qpss@)") A
a_party(el, Buyer(pss)) A
a_party(el,technical_area(pss)) A
a_party(e2, Buyer(pss)) A
a_party(e2, technical_area(pss))
after can be easily defined in a standard interval-based temporal logic; see,
e.g. (Davis, 1990). Note here that we used quotation to allow one predi-
cate, subject, to refer to a sentence (e.g., tech_qual(co.pss)) or term (e.g.,
proposals(co, pss)) in the same language. We discuss the quotation construct
further in Section 5.

Zsee (Davis, 1990), Chapter 8 for a complete discussion of the @ quasi-quote operator,
used for quantifying into quoted contexts.

Rule 4 is formalized in a similar manner. We have:
Axiom 4.1:
(anticipated_annual_purchases(LuckyUnit, co, z) A (z > 30Million)) D
de. belongs(e, pss) A review(e) A
a_party(e, Finance) A a_party(e, technical_area(pss))) A
subject(e, “qual(Qco@, QpssQ@)"))

Since both the Finance department and the relevant technical area are
involved in the review, the subject of the review seems to be general qualifi-
cation.

Note that the natural language text for this rule merely specified that
there be a review for any proposed source of purchasing. There is no implicit
assumption here that the review must end in a positive outcome. Indeed, it will
sometimes be the case that reviews end negatively. (In that case, presumably,
the proposed source would not become an actual source. We did not formalize
statements of this level of conjecture.)

Rule 5 is unique in this section of the manual in that it seems primarily
concerned with control-level information. Certainly, a first step would be to
define a predicate Responsible and to write down:

Axiom 5.1:
Responsible(Buyer(pss), “qual(Qco, Qpss)")

Reducing the predicate Responsible to more primitive predicates is a com-
plex task. Rule 5 can be read in at least two ways: the rule might be saying
that the buyer is responsible - i.e. if anything goes wrong, the buyer will suffer
the consequences in some way - or, the rule might just be a comment on the
preceding rules: i.e., the buyer is the person who will have to enforce rules 1
through 4. This rule would then be interpreted as giving information about
the control structure of the organization. While such information is useful in
the modelling of an enterprise, it is beyond the scope of this study.

5 Representational Challenges and Limitations
of Logicism

In the course of our case study, we discovered that even simple guidelines in-
formation raises difficult knowledge representation challenges in temporal, de-
fault, decision-theoretic, and meta-level reasoning. These difficulties exposed
the limits of current logicist methods. In the last section, we mentioned some

of these difficulties in passing. In this section, we give some more examples to
give the flavor of these problems.

Common Sense is Critical-Path: Some in (and out of) AI think that
logicists are a bit prissy or overly fussy in worrying about the semantics of
common sense reasoning. But common sense reasoning turns out to be essen-
tial for capturing in complete and precise form the guidelines information we
studied. We find that the difficulties posed by common sense knowledge and
reasoning for AI knowledge representation turn out to be “critical path” in
this application.

Temporal: Consider the following sample guidelines sentence information:
A1l bids will be analyzed at the same time. Clearly, this is not meant
literally. Instead, it means something like: there exists a bounded time period,
in which the analyses for each bid are sequentially interleaved, and no decision
is taken on any until the end of the period, which only comes after each analysis
is complete. This is rather complex to represent; some temporal formalisms
cannot do it at all; others may require resorting to second-order logic or set
theory.

In addition, the guidelines information is pervaded by implicit persistence
and/or frame assumptions; it is assumed that most features about the world
remain the same when actions are performed (McDermott, 1982). This is a
default assumption; thus, temporal reasoning is injected with a non-monotonic
aspect.

Default: Many concepts employed in the guidelines information, both ex-
plicit and implicit, involve logical non-monotonicity and a need for default
reasoning. For example, the concept of a contract being in force is a default
presumption. It may be overridden by a violation or emergency. “Normal”
procedures are really defaults; there may be exceptions, such as direct inter-
vention by higher management. And, as discussed in the previous paragraph,
the pervasive concept of temporal persistence requires non-monotonicity for
proper representation. In addition, rules are usually modifiable; the guidelines
may be augmented or revised. Again, this is best represented within a default
logic (Reiter, McCarthy, McDermott and Doyle, 1980).

Decision-Theoretic: The guidelines information often explicitly uses ex-
pressions such as “sufficient justification” or “give consideration”. Descrip-
tions of planning processes implicitly rely on criteria of satisficing rather than
perfect optimality.

To adequately represent these descriptional fragments we need to include

concepts such as partially-constrained weights of probabilistic evidence, util-
ity, and cost-benefit analysis. In addition, there is a need to represent the
vagueness and open-ended ambiguity inherent in the ideas of “sufficient” and
of satisficing. There is likewise a need to formalize such decision processes.

Multiple Levels of Representation: A key concept in logic is that
of denotation. Denotation is a formal referring relationship. Quotation is
a common formal syntactic device for representing such denotation. E.g.,
tech_qual(Acme, pss103) stands for a truth value, either true or false, but its
quoted version, “tech_qual(Acme, pss103)" stands for the (unquoted) sentence
itself.

Denotation is important for representing multiple levels of abstraction. For
example, we find that it is useful sometimes to treat the description of the re-
sult of a decision process, e.g., in rule 3, that a supplier is technically qualified,
as on a different semantic level than the description of the corresponding de-
cision process. There, it was useful to represent the decision procedure as an
object that has a subject attribute, whose value is the description of the result,
not the result itself.

Multiple levels of representation and quotation are important for repre-
senting communication between agents, as well.

The limited use of quotation present in this paper, is fairly simple to imple-
ment and poses no fundamental logical difficulties. Unlimited use of quotation,
however, which is needed for greater expressivity can result in paradox. There
are techniques for dealing with such problems, but they are not trivial (cf.
(Morgenstern, 1988)).

Current Limitations of Logicist KR: Current logicist methods for deal-
ing with these difficult representational issues (temporal, default, decision-
theoretic, multiple-level) are still immature and unstandardized. Solutions
often exist at only the theoretical level, and are not practical to implement.
Moreover, logicist methods for integrating solutions to different knowledge rep-
resentation problems do not yet exist. For example, there are techniques for
doing non-monotonic reasoning, and techniques for doing multiple-agent rea-
soning. However, research in multiple-agent non-monotonic reasoning is still
in its infancy.

6 Uses and Executability

Our logicist method yields a very-high-level specification (cf. Section 1). In its
non-executable form, this specification is useful for supporting communication,
revision, and rationalization of enterprise procedures and activities. Its rigor
helps to identify ambiguities, inconsistencies, and omissions in current natu-
ral language guidelines information. Its conciseness and semantics facilitate
readability, verifiability, and knowledge acquisition by humans. Its ontology
(situations, events, agents) provides a basis for the ontology of lower-level
specifications closer to implementation.

Much of our specification is executable almost directly, via logic program-
ming and other logic-based Al inference techniques (such as rule-based expert
system technology). For example, rule 1 is easily massaged into Horn-clause
form, as three rules, one per disjunct (quote, product, or service). These rules
are executable either in backward or forward directions of inference.

In addition, one can use the executable form to develop prototype software
to automate enterprise activities, or to develop simulations to understand and
support revision of existing activities. Note that for simulation purposes, the
fact that our methods may achieve only partial coverage is acceptable, since
one can interface with human users (or other programs) for the uncovered
remainder.

7 Conclusions and Future Work

We have demonstrated that first-order logic can be used to formalize a small
but significant chunk of an enterprise.

We plan to extend this work in several directions. First, we plan to do
more exploratory case studies, expanding both the depth and breadth of this
research. Our agenda includes looking at the purchasing department in more
depth, as well as examining different enterprises.

Second, we plan to go beyond first order logic. In particular, we plan to use
a non-monotonic formalism such as Circumscription (McCarthy, 1980) in our
formalization. Moreover, we intend to define some standardized logical con-
structs (“syntactic sugar”) to ease the syntactic awkwardness of raw predicate
calculus.

Finally, we believe that the the formal representation of enterprises will be a
useful tool for the development of applications programs. In particular, formal

10

specifications can be used as a basis for a program that generates plans and
interactively steps a user through them (e.g., through the supplier qualification
process). Much work needs to be done in creating the bridge between the
formal specification and the applications program.

References

Davis, Ernest. (1990) Representations of Knowledge for Commonsense Rea-
soning, Morgan Kaufmann, San Mateo, 1990

Mates, Benson. (1972) Elementary Logic, 2nd ed. Oxford University Press,
Oxford, 1972

McCarthy, John. (1980) “Circumscription - A Form of Non-monotonic Rea-
soning,” Artificial Intelligence 13, 1980

McDermott, Drew and Jon Doyle. (1980) “Non-monotonic Logic I,” Artificial
Intelligence 13, 1980

McDermott, Drew. (1982) A temporal logic for reasoning about processes
and plans. Cognitive Science, 6:101-155, 1982.

Morgenstern, Leora. (1988) Foundations of a Logic of Knowledge, Action, and
Communication. PhD thesis, Computer Science Dept., New York University,
1988.

Reiter, Raymond. (1980) “A Logic for Default Reasoning,” Artificial Intelli-
gence 13, 1980

11

