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Abstract

We define a generalized form of courteous logic programs (GCLP), and how to transform (i.e., com-
pile) GCLP into ordinary logic programs (OLP). This builds upon the transformational approach
in [5]. We detail the syntax of GCLP, and briefly discuss the intended semantics of GCLP in an
informal fashion. Its precise semantics are defined in terms of the semantics of the OLP outputted
by the transform, in a manner similar to that in [5]. We briefly discuss the computational com-
plexity of GCLP; it retains the attractive tractability of the previous less general form of courteous
logic programs. In a future version of this paper, we will give formal well-behavior results about
GCLP.

The GCLP form of courteous LP’s, and of the courteous compiler that transforms a GCLP into
an OLP, described here corresponds to the version currently implemented in the IBM CommonRules
prototype system, an alpha release of which will be publicly available free on the Web in summer
of 1999.
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1 Introduction and Overview

In this paper, we define generalized courteous logic programs (GCLP), as implemented in
the IBM CommonRules prototype system. This prototype is a Java class library. An alpha version
of this prototype is scheduled for public release on the Web, at IBM’s AlphaWorks in July or August
of 1999, with a free trial license: see http://alphaworks.ibm.com , or see the pointer to there from
http://www.research.ibm.com/rules/ .

GCLP is further expressively generalized relative to the form of courteous logic programs
(BCLP) previously defined in [5], which was itself expressively generalized from the basic form
in [4] [3]. Relative to the basic form of courteous LP’s in [4], the generalization in this paper has
four aspects.

1) Mutual exclusion constraints (mutez’s), each between a pair of classical literals, are permitted.
The mutual exclusion between p and —p is a special case of such a mutex. Consistency with respect
to such mutex’s is then enforced.

2) Recursive dependence among the predicates is permitted without restriction.

3) The appearance of the prioritization predicate is unrestricted.

4) Reasoning about the prioritization ordering is permitted. IL.e., inferring conclusions about the
overrides predicate, derived from rules possibly via chaining, is permitted.

Semantic guarantees are stronger, however, under additional expressive restrictions.

Only aspects (2)—(4), but not aspect (1), were contained in [5].

As part of defining GCLP, we describe a “Conflict-Resolving” (“CR”) transformer from gen-
eralized courteous logic programs (GCLP’s) to ordinary logic programs (OLP’s): for each input
GCLP, the transformer outputs a corresponding OLP. This transformer is also known as a “cour-
teous compiler”. The CR transformation provides an indirect semantics for GCLP in terms of
OLP. Relative to OLP, GCLP provides additional expressive features and functional capabilities,
which include classical negation and mutual exclusion constraints, as well as prioritized conflict
handling. The CR transformer provides a means to achieve this higher level of functionality, by
composing the transformer (embodied as a software component) with (software) components that
can manipulate OLP’s, e.g., with OLP inference engines or OLP rule editors. Multiple such OLP
inference engines and OLP rule editors previously exist commercially. The CR transformer is thus
suitable for commercial application as a pre-processor for rule-based systems.

This paper is an update follow-on to [5].

2 Preliminary Definitions

Background: We assume the reader is familiar with: the previous published version of courteous
logic programs [4] [3], extended logic programs [2], the concept of ordinary, non-extended logic
programs, the semantics of stratified (ordinary, non-extended) logic programs with negation as
failure (e.g., [7]), and the standard concepts in the logic programming literature (e.g., as reviewed
in [1]), including predicate / atom dependency graph and its acyclicity / non-recursiveness; and
instantiation. Appendix A contains some review of these concepts.

In this section, we introduce some preliminary definitions, notation, and terminology. This
includes reviewing extended logic programs (ELP’s) cf. [2].

Each rule r in an extended logic program £ has the form:
Ly < LiA ... /\Lm/\NLm+1 AN ... AN~y



where n > m > 0, and each L; is a literal.

We will define courteous LP’s’ rule syntax to be similar but not identical to that of extended
LP’s.

Notation and Terminology: A literal (which we will also call a classical literal) is a formula of
the form A or —A, where A is an atom. - stands for the classical negation operator symbol, and
~ for the negation-as-failure operator symbol. In English, we read the former as “not” and the
latter as “fail”. We say that an unnegated literal (i.e., an atom) is positive. A ground rule with
empty body is called a fact. Syntactically, an “ordinary” logic program (OLP) (also known as
a “general” logic program) is one in which each literal L; above is an atom, i.e., where no classical
negation is permitted.

3 Definition: Generalized Courteous LP’s

Next, we define an expressively-generalized form of courteous logic programs, concentrating on
its syntax. We call these Generalized Courteous Logic Programs (GCLP) The theory of GCLP’s
semantics is the subject of other papers rather than of this paper.

Our point of departure is the previous published version of courteous LP’s, which we will call
here “Basic Courteous Logic Programs” (BCLP).

3.1 Overview

The generalization of GCLP (relative to BCLP) has three aspects.

¢ Mutual exclusion constraints (“mutex”’s) are permitted. Each such constraint specifies

mutual exclusion between a pair of (classical) literals.

Intuitively, the mutual exclusion specifies that at most one of the literals, rather than both,
should be inferrable from the GCLP.

Intuitively, the set of mutual exclusion constraints in a GCLP taken together specify the
scope of conflict, and thereby the scope of conflict handling.

Implicitly, A and —A are treated as mutually exclusive, for each atom A. This is essentially
similar to BCLP.

e Recursive dependence among the predicates is permitted without restriction. This relaxes
the restriction in BCLP; there, such recursive dependence was prohibited.

e The appearance of the prioritization predicate (Overrides, which has a special role semanti-
cally) is unrestricted.

This relaxes two restrictions in BCLP; there, Overrides was required to appear only in rules
having the form of facts, and the prioritization relation specified by the set of rules about
Owverrides as required to be a strict partial order.

Note that BCLP is a special case of GCLP, syntactically.

Semantic guarantees will be stronger under additional expressive restrictions. However, that
theory about the semantics is the subject of other papers rather than of this document.

Relative to ordinary logic programs (OLP), GCLP is expressively-generalized in the following
ways:

e Each rule is permitted to have a (rule) label. These labels are used as handles for specification
of prioritization between rules. (This is as in BCLP.)



e (lassical negation is permitted to appear in any rule literal. If it appears, it must be inside
the scope of negation-as-failure. (This is as in BCLP.)

e Mutual exclusion constraints (as described above) are permitted.
Note that OLP is a special case of GCLP as well as of BCLP, syntactically.

3.2 Syntax
Next, we define GCLP’s syntax in detail.

Syntactically, a GCLP is defined as a class of extended logic programs in which, additionally,
rules have (optional) labels and mutual exclusion constraints may appear. These labels are used as
handles for specification of prioritization between rules.

Definition 1 (Labelled Rule)

A labelled rule has the form:
(lab) Ly < LiAN ... NLyAN~Lppi A ..o AN~Ly.

where lab is the rule’s label (and, as before, n > m > 0, and each L; is a literal). The label is
optional. If omitted, the label is said to be empty. The label is not required to be unique within
the scope of the overall logic program; i.e., two rules may have the same label. The label is treated
as a 0-ary function symbol. The label is preserved during instantiation; all the ground instances of
the rule above have label [ab. O

Terminology: henceforth, when the context is clear, “rule” will be used to mean “labelled rule”,
unless the distinction is made explicitly.

In the newly generalized version of CLP, the CLP also optionally includes a set of pairwise
mutual exclusion (mutez) statements, along with the rules. These mutex’s specify the scope of
conflict.

Definition 2 (Mutual Exclusion Constraint, i.e., Mutex)

A mutual exclusion constraint (mutex for short) has one of the two syntactic forms below; it is
either unconditional or conditional.

An unconditional mutex has the syntactic form:
1l <« Li A Ls.
where each L; is a classical literal.

Intuitively, the mutex specifies that at most one of the literals, rather than both, should be
inferrable from the GCLP. More precisely, the mutex specifies this for any instantiation of the
logical variables appearing in the mutex.

Intuitively, the set of mutual exclusion constraints in a GCLP taken together specify the scope
of conflict, and thereby the scope of conflict handling.

As we will discuss more later when defining the transform from GCLP to OLP: implicitly, A
and —A are treated as mutually exclusive, for each atom A. This is essentially similar to BCLP.

These mutex’s are particularly useful for specifying that at most one of a set of alternatives is
to be permitted. E.g., it is straightforward to specify via 3 mutex’s that the lead time must be
at most one of the values {2 days, 14 days, 30 days}. E.g., it is straightforward to specify via 3
mutex’s that the discount percentage must be at most one of the values {0%, 5%, 10%}.

It is expressively more convenient sometimes to use a more general form of mutex: a conditional
mutex, which has the syntactic form:

L « LiANLy | GiA ... N Gy.



Here, g > 0, each L; is a classical literal, and each G, is a literal (in which ~, as well as -, may
appear). If g=0, then the “ | ” is omitted. The conjunctive formula G A ... A Gy is called the
“given” part of the mutex. Intuitively, the given part of the mutex specifies conditions under which
L1 and Lo oppose each other. More precisely, it specifies that L; and Lo should not both be
inferrable if the given is true (i.e., if the given is inferrable).

At this point in the evolution of the courteous LP formalism, the main motivation for permitting
conditional (rather than simply unconditional) mutex’s is to permit conditional mutex’s that have
the syntactic form:

1L « Ly ALy | (7Y #12).
where 7Y and 7Z are logical variables that appear respectively in Ly and Lo. E.g.,
1« giveDiscount(?Cust,?Y Percent) A\ giveDiscount(?Cust,?Z Percent)
| (?Y Percent #?Z Percent).
This conditional mutex enables one to specify with a single mutex statement (rather than with
three or more unconditional mutex’s) that for a given customer ?Cust there must be at most one
value concluded for the discount percentage.

Beyond this restricted form of conditional mutex’s, we are treating the usefulness of conditional
mutex’s as an issue to investigate both theoretically and empirically. The full expressive generality
of conditional mutex’s as defined above may be unnecessary or even undesirable. In short, the full
expressive generality of conditional mutex’s is experimental in this sense.

The enforcement of classical negation can be viewed as set of implicit unconditional mutex’s,
one for each predicate (), that each have the form

1« Q(CX1,...,7Xm) A -Q(?X1,...,7Xm).
where Q’s arity is m. This is called a classical mutex. O

Definition 3 (Prioritization Predicate)

A special binary predicate Overrides is used to specify prioritization. Overrides(i, j) specifies that
the label 7 has (strictly) higher priority than the label j. O

Intuitively, prioritization is used as part of handling conflicts that arise when two rules (whose
bodies are satisfied) have mutually exclusive heads; prioritization influences which rule’s head will
be inferred as a conclusion.

Definition 4 (Generalized Courteous LP: Syntax; PCNMLP)

A generalized courteous logic program C is defined as a collection of labelled rules and mutex’s,
i.e., as the union of a set of (labelled) rules and a set of mutex’s:
c = Crule U Crutex

Both Cpyje and Cpyter may be empty.

We also call this GCLP syntax: PCNMLP syntax. “P” stands for “with Priorities”, “CN”
stands for “with Classical Negation”, and “M” stands for “with Mutex’s”. O

Note that the prioritization predicate Overrides and the labels are treated as part of the
language of the logic program, similarly to other predicate and function symbols appearing in C.

Terminology and Notation: We call Cpyje the rule set or rules of C. We call Cpyter the mutex
set or mutez’s of C. We write Coyerrides for the subset of C,y. in which Overrides appears, and
call this the prioritization rules subset of C.

3.3 Semantics Overview

In this paper, we formally do not define semantics directly for GCLP, but rather describe how
to transform a GCLP into an OLP (in section 4). This continues the overall transformational
approach described in [5].



In [3], by contrast, semantics for BCLP are defined directly in an abstract, model-theoretic
fashion.

For now, our intention for usage of GCLP is summarized in the following overview of its in-
tended semantics and behavior, not yet proven as results, which probably require some expressive
restrictions to ensure that they hold. Elsewhere, we will give more detailed theory about GCLP,
including theorems about its semantics and behavior.

3.3.1 Intended Semantics and Behavior; not yet proven as results, probably needs
additional expressive restrictions

Semantically, the prioritized conflict handling in CLP is defined by a process of prioritized argu-
mentation among opposing candidates. Opposition is specified by the set of mutex’s. Each
rule 7 whose body is satisfied, i.e., which “fires”, generates a candidate ¢ for r’s (appropriately
instantiated) head p. This candidate has an associated label, which is simply that rule r’s label. In
general, there may be multiple candidates for a given p, i.e., a team for p. Iff there is an opposing
candidate d (i.e., a candidate for an opposing literal ¢) that has higher priority than candidate c,
then c is refuted. Suppose there is an unrefuted candidate for p. If there are no unrefuted candi-
dates for any opposer of p, then p wins, i.e., p is concluded. However, it may be that there is an
unrefuted candidate for an opposer of p; in this case, the opposing unrefuted candidates skeptically
defeat each other. The conflict cannot be resolved by the specified priority; neither p nor its opposer
is concluded.

Another way to view this is as follows. An opposition-locale is a set of A > 2 ground classical
literals that oppose each other, such that at most one of those literals is permitted (by the specified
mutex’s) to be concluded. In each opposition-locale, if the maximal-priority candidates are all for
the same literal, then that literal wins.

4 Transforming GCLP to OLP

In this section, we describe how to transform any given GCLP C into an OLP . We write this
transform CR(C).

Relative to OLP, GCLP contains additional expressive features, e.g., mutex’s, classical negation,
rule labels. These together with a special role of the prioritization predicate Overrides are used to
specify prioritized conflict handling. In this sense, GCLP has a higher level of expressiveness than
OLP.

The transform thus specifies how this higher level of expressiveness can be supported in OLP,
albeit indirectly.

4.1 Overview
In this subsection, we give an overview of the transform’s steps.
Step 1: Eliminate classical negation.
For each predicate P, each appearance of =P is replaced by an appearance of the new predicate
n_P; and a new (explicit) mutex between P and n_P is introduced.
Step 2: Analyze which pairs of rules are in opposition.
Opposition between two rules means that there is a mutex relating their rule heads.
Step 3: For each predicate @), create an associated output set of OLP rules.
This is done by modifying the GCLP rules whose heads mention @, plus adding some more rules.
Step 4: Union the results of step 3 to form the overall output OLP.



4.2 Definitions
Definition 5 (Transform to Eliminate Classical Negation (ECN))

We define the ECN transform, which eliminates (the appearance of) classical negation, as follows.
It takes an input GCLP C and produces an output GCLP which we write as ECN(C). This is done
by a simple rewriting operation, similar to that in [2]. This rewriting has two aspects. The first
aspect is that each appearance of =P (in the mutex’s as well as in the rules) is replaced by n_P,
where n_P is a newly introduced predicate symbol (with the same arity as P). We call n_P: P’s
negation predicate. n_P is only introduced if there is actually an appearance of —P in the input
PCNMLP. Note that if the input PCNMLP does not contain any appearances of classical negation,
then the output PCNMLP is simply the same as the input PCNMLP.

We say that n_P is the complement of P, and vice versa. Given a predicate @} in ECN(C), we
write Q7' to stand for Q’s complement.

n_P is only introduced if there is actually an appearance of =P in the input GCLP.

The second aspect of the rewriting (which is not present in [2]) is the following. If n_P is
introduced, then a new (explicit) mutex between P and n_P is also introduced (i.e., added to the
output GCLP); we call this a classical mutez. This mutex has the form:

1 « P(z) An_P(x). (classicalMutexP)

where z is a tuple of logical variables, of arity appropriate for P.

Note that if the input GCLP does not contain any appearances of classical negation, then the
output GCLP is simply the same as the input GCLP.

We further define the inverse ECN transform: ECN~!, which maps ECN(C) back into C. This
just rewrites n_P back to be —P. O

Intuitively, the classical mutex between P and n_P corresponds to there being an implicit mutex
between P and —P before the ECN transform.

Definition 6 (A Predicate’s Rule Locale)

Relative to a GCLP C: the rule locale for a predicate P, written RuleLocale(P), is defined as the
(possibly empty) subset of rules in C in which P appears in the rule head (positively or negatively).
O

Roughly speaking, opposition between two rules means that there is a mutex relating their
heads. The following makes this more precise.

Definition 7 (Opposition between Rules, Predicates, Literals)

Relative to a GCLP C in which classical negation does not appear:
Let rule r1 have head P1(¢1) and rule r2 have head P2(¢2), where P1 and P2 are predicates, and
t1 and t2 are term tuples. The rules r1 and 72 are in opposition, i.e., are opposers of each other, if
and only if (iff) there is some mutex m having the form

1 « PI(ul) A P2(u2) | Ei[zi].
, where 41 and u2 are term tuples, such that {1 = ul and {2 = u2 are simultaneously unifiable in
the sense that there is a substitution 8 that both unifies {1 with u1 and unifies {2 with u2.

(Note that the above concept of opposition can be straightforwardly generalized to the case
where classical negation does appear: simply match literals’ classical signs, and include considera-
tion of classical mutex’s.)

If such an m exists, we say that:

m is a relating mutex for the pair (rl,r2);
m is a relevant mutex for r1 and for r2;



(r1,6,r2) is a relevant opposition triple, with associated relating mutex m, where 6 is the maximum
general unifier that simultaneously both unifies ¢1 with 1 and ¢2 with 42 (as described above).
Also, if such an m exists, we say that:
the predicates P1 and P2 are in opposition, i.e., are opposers of each other;
m is a relating mutex for the pair (P1, P2); and
m is a relevant mutex for P1 and for P2.
Furthermore, if such an m exists, we say that:
the literals P1(t1) and P2(t2) are in opposition, i.e., are opposers of each other;
m is a relating mutex for the pair (P1(¢1), P2(¢2)); and
m is a relevant mutex for P1(¢1) and for P2(¢2).

Note that 6 above is equivalent to the maximum general unifier of:

(t1,12) = (ul, u2)

where (t1,¢2) stands for the tuple formed by concatenating the tuples ¢1 and t2; and, likewise,
(ul,u2) stands for the tuple formed by concatenating the tuples ul and u2.

We also write 6 as mgu(rl,m,r2). Note that @ is required above to be non-empty (i.e., a
non-empty unifier / substitution).

We write RelOppTriples(rule;) to stand for the set of all relevant opposition triples in which
rule; appears as the first member of the triple.

We write Rel Muts(q) to stand for the set of all mutex’s that are relevant to q.

We write HasRelOppTriples(q) to stand for whether: there is a rule rule; in RuleLocale(q)
such that RelOppTriples(rule;) is non-empty. (This is a boolean; iff true, it indicates there are
indeed such triples). O

Definition 8 (Conflict Resolution Transform Per Locale)

Relative to a GCLP C in which classical negation does not appear: for each predicate ¢, we define
the per-locale transform CR(C, q) as follows.

Below, we will leave C implicit notationally.

If HasRelOppTriples(q) is false, then CR(q) is RuleLocale(q). I.e., in this case, the per-locale
transform simply passes through the input’s rule locale for predicate ¢, unchanged. A special case
is when RuleLocale(q) is empty: then HasRelOppTriples(q) is false, and CR(q) is empty.

Otherwise, i.e., if HasRelOppTriples(q) is true, then CR(q) is defined (more complexly) as
follows.

“Include” below means “include in the output of the transform”.

Let RuleLocale(q) stand for the set of all rules that are in the rule locale for predicate g. For
each rule rule; in RuleLocale(q), include the rule:

q(tj) <+ qu(tj) A ~gs(tj). (1j)

Here, g, and g5 are newly introduced predicates, each with the same arity as ¢. Intuitively, g, (t)
stands for “q has an unrefuted candidate for instance t”, and g¢,(t) stands for “q is skeptically
defeated for instance t”.

For each rule rule; in RuleLocale(q), include the rule:

qcj(tj) <« Bijlyjl. (2j)
where rule; has the form:

q(tj) <« Bijlyj]- (rule;)



Here, Bj[yj] stands for the body of rule;. yj is the tuple of logical variables that appear in Bj. tj

is the term tuple appearing (as argument tuple to ¢) in the head of rule;. g.; is a newly introduced

predicate. Intuitively, g.;(t) stands for “q has a candidate for instance ¢, generated by rule rule;”
For each rule rule; in RuleLocale(q), include the rule:

QU(tj) « qu(tj) ANQ’rj(tj)' (3.])

Here, g,; is a newly introduced predicate. Intuitively, g,;(¢) stands for “the candidate for ¢ for
instance ¢, generated by rule;, is refuted”. Intuitively, “refuted” means “refuted by some higher-
priority conflicting rule’s candidate”.

Recall from Definition 7 that RelOppTriples(rule;) stands for the set of all relevant opposition
triples in which rule; appears as the first member of the triple.
For each rule rule; in RuleLocale(q) and each relevant opposition triple jikTriple in
RelOppTriples(rulej), include the rule:

4rj(t3-0jik) < qej(t5-0jir) A Pl (wk-0jir)
A Overrides(laby,labj) N Ei[(2i-0)). (4jik)

where jikTriple has the form:

(rulej, Ojik, Tuley) (jikTriple)
with associated relating mutex mut; having the form:

1« q(ui) Ap'(vi) | Eilzi). (mut;)
Here, rule; has the form:

p'(wk) < Bk[yk]. (ruleg)

p' is a predicate, which may possibly be q. wk is the term tuple appearing (as argument tuple to p*)
in the head of ruley. Bk[yk| stands for the body of rulei. yk is the tuple of logical variables that
appear in Bk. ui and vi are term tuples of arity appropriate to g and p’ respectively. - stands for the
operation of applying a substitution, as usual with unifiers. 6}, stands for mgu(rule;, mut;, ruley),
i.e., the maximum general unifier that simultaneously unifies both ¢ with ui, and vi with wk (recall
Definition 7). p%, bears the same relationship to (p’,ruley) as g.; bears to (g,rule;). Overrides
stands, as usual, for the prioritization predicate. lab; is the rule label of rule;. laby is the rule
label of ruley. If the rule label of rule; is empty, then lab; is assigned to be empty Label. Likewise,
if the rule label of rule is empty, then laby is assigned to be emptyLabel. emptyLabel is a newly
introduced 0-ary function (i.e., logical function symbol with 0 arity); intuitively, it stands for the
empty rule label. Recall that Ei is a formula (conjunction of literals) whose logical variables are
zi. Ei[(2i-0;)] stands for the result of applying the substitution 6;;;, to zi, and then substituting
that result into Ei.

For each rule rule; in RuleLocale(q) and each relevant opposition triple jikTriple in
RelOppT'riples(rule;), include the rule:

as(ti-0jik) < qu(ti-Ojik) A pl(wk-Oji) A Eil(2i-0j)). (5jik)

Here, p’, is a newly introduced predicate that bears the same relationship to p’ as g, bears to g;
i.e., intuitively, pi,, stands for “pi has an unrefuted candidate”.
O

We are now ready to define the entire output of transforming a whole GCLP.



Definition 9 (Overall Conflict Resolution Transform For GCLP)

Let C be a GCLP. The conflict resolution transform’s output CR(C) is defined as follows. Let Cnyon
stand for ECN(C), i.e., for the result of applying the ECN transform to C. “NCN” here is mnemonic
for “No Classical Negation”. Let Predicates(Cnyon) stand for the set of all predicates that appear
in Cyeon (in the mutex’s as well as in the rules).

CR(C) = U CR(CneN,»q)
gePredicates(CNON)

In other words, the output of the CR transform for the overall GCLP is the result of first eliminating
classical negation, via the ECN transform, then collecting (i.e., union’ing) all the per-locale CR
transforms’ outputs.

Recall from Definition 8 that intuitively, empty Label represents the empty rule label. Note that
emptyLabel is introduced only if needed, i.e., iff the set of relevant opposition triples is non-empty.
Note also that emptyLabel is introduced at most once, i.e., the same emptyLabel is shared by all
the per-locale CR transforms.

We write this version of the overall conflict resolution transform as CR_Cour2, to distinguish it
from the previous version (called CR_Cour1) in [5]; we write the OLP outputted by this version of
the overall as CR_Cour2(C). O

5 Semantics of GCLP; Inferencing; C3LP and CU2LP

Recall: the semantics overview in section 3.3.1.

PCNMLP syntax, i.e., GCLP syntax, has many possible semantics as a knowledge representa-
tion. Among these possible choices, we next define one particular choice.

Semantically, we treat a PCNMLP or OLP rule with variables as shorthand for the set of all
its ground instances. This is as usual in the logic programming literature (including C1LP, i.e., the
basic form of courteous LP’s in [4]). We write Cnstd to stand for the LP that results when each
rule in C is replaced by the set of all its possible ground instantiations.

In the spirit of the well-founded semantics (WFS) [8], we define the model, (which we also
call the set of conclusions) of a PCNMLP most generally to be a truth value assignment that
maps each each ground classical literal (rather than atom as in OLP WFS) to exactly one of
(true, false,undefined), i.e., a model (T, F) for the ground classical literals. This generaliza-
tion from atoms to classical literals is as usual in the logic programming literature when defining
semantics for classical negation.

Our semantics for PCNMLP syntax, i.e., for GCLP syntax, is defined by compiling GCLP
(syntax) to OLP via CR_Cour2, and adopting the well-founded semantics (WFS) for the resulting
OLP. We call this formalism: version 2 of unrestricted courteous-flavor PCNMLP, abbreviated
CU2LP.

Let C be a given PCNMLP. It has an original set of predicate and function symbols, i.e., on-
tology. CR_Cour2(C) typically has extra (i.e., newly introduced by the transform) predicate and
function symbols. In general, these may include: the original negation predicates that represent
classical negation of the original predicates (e.g., n_Urgent where Urgent was an original predicate);
the adornment predicate symbols that represent the intermediate stages of the process of priori-
tized argumentation (e.g., Urgent,, Urgent.s, Urgent,4,n_Urgent,); and the adornment function
symbol empty Label.



We define the OLP conclusion set of C to be the WFS conclusion set of CR_Cour2(C). We
also call this the adorned OLP conclusion set of C, because it contains conclusions mentioning the
adornment symbols. We define the unadorned OLP conclusion set to be the subset that does not
mention any of the adornment symbols.

Corresponding to the OLP conclusion set is the PCNMLP version of that conclusion set. The
PCNMLP-version conclusion set contains classical negation rather than negation predicates. We
define the (unadorned) PCNMLP-version conclusion set to be the result of applying the inverse
ECN transform ECN~! to the unadorned OLP conclusion set, e.g., the negation predicate n_Urgent
is rewritten instead as =Urgent.

When the context is clear, we will leave implicit the distinction between these different versions
(adorned vs. unadorned, OLP versus PCNMLP) of the conclusion set.

We summarize all this as follows.

Definition 10 (Compile PCNMLP Via CR_Cour2)

Let C be a PCNMLP. The CU2LP semantics for C is defined as the tuple
(C,0,{To, Fo),(Tpcnm, Frenm))

Here, the post-transform (adorned) OLP O is CR_Courl(C). (Tp, Fo) is the (WFS OLP) model for
O. (Tpenm, Fponm) is the unadorned PCNMLP version of (Tp, Fp). O

Next, we use the CR_Cour2 transform and the compilation approach to define a generalized
version of courteous LP’s. To keep to the spirit of “courteous”-ness cf. C1LP (i.e., cf. the basic
version of courteous LP’s in [4]), we wish to have some strong semantic guarantees about well-
behavior that are similar to those in C1LP. Accordingly, we thus restrict CU2LP somewhat so as
to ensure such well-behavior.

Definition 11 (Courteous LP’s, Version 3)

Let C be a CU2LP. We say that C is a generalized, i.e., version-8, courteous LP, abbreviated as
C3LP, when the following three restrictions are satisfied:

(1.) CR_Cour2(C) is locally stratified.

(2.) The mutex’s (including any implicit classical mutex’s) specify a collection of disjoint opposition-
locales. We call this the “one-of” restriction on the mutex’s/opposition.

(3.) Prioritization is a strict partial order “within” every opposition-locale.

By (2.), we mean that after ground-instantiating the mutex’s (including any implicit classi-
cal mutex’s), the opposition specified by those mutex’s is equivalent to: a collection of ground
opposition-locales that are disjoint. (Recall the definition of “opposition-locale” in section 3.3.1.)
Here, by “disjoint”-ness of two opposition-locales A and B, we mean that the set of ground classical
literals in A does not intersect with the set of ground classical literals in B. Here, the opposition
within each ground opposition-locales is unconditional. In summary, the one-of restriction says that
the mutex’s specify opposition that is equivalent to a disjoint collection of opposition-locales, where
each opposition-locale specifies that at most one of a set of ground classical literals is permitted to
be concluded.

An important useful form of conditional mutex that obeys the one-of restriction, is:

1 « P(?X1,....7XK?Y)ANP(?X1,...,7XE,?Z) | (7Y #7Z). This specifies that the
predicate P is partial-function-al, i.e., that for a given value (instance) of P’s first k arguments,
one is permitted to conclude at most one value for P’s last argument. After instantiating it, this
mutex is equivalent to a set of unconditional mutex’s, one for each instance of the first k¥ arguments
and disjoint pair of instances for the last argument. E.g.,

1 <« giveDiscount(?Cust,?Y Percent) N\ giveDiscount(?Cust,?Z Percent)
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| (?Y Percent #?Z Percent).
is equivalent, after instantiation, to a set of unconditional mutex’s:
giveDiscount(Joe,23%) A giveDiscount(Joe, 31%).
giveDiscount(Joe,31%) A giveDiscount(Joe, 42%).
giveDiscount(Joe,23%) N giveDiscount(Joe,42%).
giveDiscount(Ann, 23%) A giveDiscount(Ann, 31%).
giveDiscount(Ann, 31%) A giveDiscount(Ann,42%).

R
TTTTT

By (3.) we mean the following. For every opposition locale, the set of Overrides tuples in
To is a strict partial order when restricted to the set of rule labels appearing in RuleLocale(p) U
RuleLocale(p™), where p is the locale predicate. O

6 Examples

For examples of GCLP’s, including the output of the transform and the results of inferencing, see
the many examples included in the alpha release of the IBM CommonRules prototype, available
at http://www.research.ibm.com/rules/ in summer 1999. Also, a long example of a GCLP (with
unconditional mutex’s) is given in [6]: its domain is personalized discounting and promotions in
a Web bookstore storefront. In addition, a number of examples of BCLP’s (i.e., less-general-form
GCLP’s, where mutex’s are classical only) are given in [3] (extending [4]) and [5].

7 Well-Behavior

In a future version of this paper, we will give formal well-behavior results for GCLP, i.e., for C3LP
and CU2LP. The well-behavior properties of C3LP and CU2LP are similar to those given in [5]
(for C2LP and CU1LP there, respectively).

CLP always produces a consistent set of conclusions, enforcing all the mutex’s. A number
of other well-behavior properties also hold for CLP, including about merging and about natural
behavior of prioritization; however, we defer detailing those until a future version of this paper.

The courteous compiler in effect represents the prioritized argumentation process in OLP. It
introduces some extra “adorning” predicates to represent the intermediate stages of argumentation:
candidates, unrefuted candidates, etc..

The courteous compiler can be “instrumented” to raise an alarm when unresolved
conflict occurs, via introducing further adorning predicates that represent skeptical defeat.

The computational time and space complexity of the CR_Cour2 transform is worst-case cubic,
i.e., O(n®) where n is the size of the input GCLP, i.e., of the input PCNMLP. From the tractability of
courteous compilation, it follows directly that Courteous LP inferencing under the VBD restriction
is tractable: for CU2LP and thus for its special case CU2LP. Here, we say that an LP is “VBD?”
when either (1.) it is ground, or (2.) it has no logical functions of non-zero arity (a.k.a. the Datalog
restriction), and it has a bounded number of logical variables appearing in each rule. The VBD
restriction is commonly met in practice.! Under the VBD restriction, Courteous LP inferencing
has the same worst-case time and space complexity as: OLP inferencing where the bound v on the
number of variables per rule has been increased to v + 2.

Tt is usually straightforward to representationally reformulate a rule-set so as to replace a logical function f
having arity k > 0 by a predicate fp having arity k + 1, where intuitively the (k + 1)** argument corresponds to the
result of applying the function.
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