
Automated Negotiation from Declarative Contract Descriptions

Daniel M. Reeves and Michael P. Wellman and Benjamin N. Grosof and Hoi Y. Chan

University of Michigan Artificial Intelligence Laboratory
1101 Beal Avenue, Ann Arbor, MI 48109-2110 USA�

dreeves, wellman � @umich.edu
http://ai.eecs.umich.edu/people/

�
dreeves, wellman � /

IBM T.J. Watson Research Center
30 Saw Mill River Road

Hawthorne, NY 10532 USA�
grosof, hychan � @us.ibm.com

http://www.research.ibm.com/people/g/grosof/

Abstract

We present and implement an infrastructure
for automating the negotiation of business
contracts. Underlying our system is a declara-
tive language for both (1) fully-specified, ex-
ecutable contracts and (2) partially-specified
contracts that are in the midst of being negoti-
ated, specifically via automated auctions. The
language is based on Courteous Logic Pro-
grams, a form of logic-based knowledge rep-
resentation. In our current prototype, we use
this language to specify (1) high-level knowl-
edge about alternative negotiation structures,
(2) general-case rules about auction param-
eters, (3) rules to map the auction parame-
ters to a specific auction platform (the Michi-
gan Internet AuctionBot), and (4) special-
case rules for specific domains, including
rules from potential buyers and sellers about
capabilities, constraints, and preferences. By
performing inferencing on the rule sets and
interfacing to our auction server, our proto-
type is able to automatically configure a set
of auctions, the results of which will “fill in
the blanks” of a partial contract. We use an
upcoming Trading Agent Competition as an
example domain and are able to automatically
generate all the auctions used in the competi-
tion (and other possible configurations) start-
ing from a formal description of the competi-
tion domain.

Introduction
One form of commerce that can benefit substan-
tially from automation is contracting, where agents
form binding, agreeable terms, and then execute
these terms. The overall contracting process com-
prises several stages, including broadly:

Copyright c
�

2000, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

1. Discovery. Agents find potential contracting
partners.

2. Negotiation. Contract terms are determined
through a communication process.

3. Execution. Transactions and other contract pro-
visions are executed.

In this work we are concerned primarily with
negotiation, and specifically with the process by
which an automated negotiation mechanism can
be configured to support a particular contracting
episode. We present a shared language with which
agents can define the scope and content of a nego-
tiation, and reach a common understanding of the
negotiation rules and the contract implications of
negotiation actions. Note that we make a sharp dis-
tinction between the definition of the negotiation
mechanism, and the actual negotiation strategies to
be employed by participating agents. Our concern
here is with the former, though of course in de-
signing a mechanism one must consider the private
evaluation and decision making performed by each
of the negotiating parties.

The contribution in this work is a system which
bridges the gaps between the discovery and negoti-
ation phases above, and between negotiation and
execution. We call the current prototype of this
system ContractBot. By starting from a formal de-
scription of a partial contract—describing the space
of possible negotiation outcomes—ContractBot
automatically generates configuration parameters
for a negotiation mechanism. Then, by monitor-
ing the individual auction results, it generates the
final, executable contract.

Overview of Problem and Approach
The central question in configuring a contract ne-
gotiation is, “What is to be negotiated?” In any
contracting context, some features of the potential



contract must be regarded as fixed, with others to
be determined through the contracting process. At
one extreme, the contract is fully specified, except
for a single issue, such as price. In that case, the
negotiation can be implemented using simple auc-
tion mechanisms of the sort one sees for specified
goods on the Internet. The other extreme, where
nothing is fixed, is too ill-structured to consider au-
tomating to a useful degree in the current state of
the art.

Most contracting contexts lie somewhere in be-
tween, where an identifiable set of issues are to be
determined through negotiation. Naturally, there
is a tradeoff between flexibility in considering is-
sues negotiable and complexity of the negotiation
process. But regardless of how this tradeoff is re-
solved, we require a means to specify these issues
so that we can automatically configure the negoti-
ation mechanisms that will resolve them. That is,
we require a contracting language—a medium for
expressing the contract terms resulting from a ne-
gotiation.

In this paper, we focus on the automatic con-
figuration of negotiations based on a contract and
discuss how the negotiation results can be used
to construct a final, “filled-in” contract. Sec-
tions “Auction-Based Negotiation” and “Courte-
ous Logic Programs as KR” provide background
on auction-based negotiation and the rule language
we use to express contracts. Section “Contract-
ing Framework” frames the overall process of au-
tomated contract negotiation and shows how rules
generated during the negotiation process can be
combined with the partial contract to form an exe-
cutable final contract. In Section “Courteous Logic
Programs for Configuring Auctions” we discuss in
detail how the language is used to infer parameters
for configuring the negotiation—that is, parameters
for a set of auctions—focusing on the upcoming
Trading Agent Competition (Wellman & Wurman
1999) as an example domain (Section “Domain
Specific Rules: Trading Agent Competition” ). Fi-
nally, in Section “Prototype Implementation,” we
discuss the details of our ContractBot prototype.
It processes the contract description (rules for de-
scribing possible components and their attributes)
along with meta-level rules about the negotiation
and about individual auctions. It combines all this
with rules from buyers and sellers about their con-
straints and preferences over the possible negoti-
ation structures. Based on inferencing by a rule
engine, it generates the appropriate auctions and
determines the auction parameters. When transac-
tions happen in the auctions, it generates the corre-
sponding rules and produces a final contract.

Contracting Language
In developing a shared contracting language, we
are concerned with the three stages of contracting:

discovery, negotiation, and execution. This breadth
of scope is one argument for adopting a declarative
approach, with a relatively expressive knowledge
representation (KR). “Declarative” here means that
the semantics say which conclusions are entailed
by a given set of premises, without dependence
on procedural or control aspects of inference algo-
rithms. In addition to flexibility, such an approach
promotes standardization and human understand-
ability.

Traditionally, of course, contracts are specified
in legally enforceable natural language (“legal-
ese”), as in a typical mortgage agreement. This
has great expressive power—but often, correspond-
ingly great ambiguity, and is thus very difficult to
automate.1 At the other extreme are automated lan-
guages for restricted domains; in these, most of the
meaning is implicit in the automated representa-
tion. This is the current state of Electronic Data
Interchange (EDI). We are in the sparsely occupied
middle ground, aiming for considerable expressive
power but also considerable automatability.

Our point of departure for our KR is pure logic
programs (in the knowledge-representation-theory
sense, not Prolog). (Baral & Gelfond (Baral &
Gelfond 1994) provide a helpful review.) Logic
programs are not only declarative and relatively
powerful expressively, but also practical, relatively
computationally efficient, and widely deployed.

Our KR builds on prior work (Reeves et al.
1999) representing business rules in Courteous
Logic Programs (CLPs) (Grosof 1997; Grosof,
Labrou, & Chan 1999), described in more detail in
Section “Courteous Logic Programs as KR.” To ex-
press executable contracts, these rules must specify
the goods and services to be provided, along with
applicable terms and conditions. Such terms in-
clude customer service agreements, delivery sched-
ules, conditions for returns, usage restrictions, and
other issues relevant to the good or service pro-
vided.

As part of our approach, we extend this KR with
features specific to negotiation. Foremost among
these is the ability to specify partial agreements,
with associated negotiable parameters. A partial
agreement can be viewed as a contract template.
Some of its parameters may be bound to particular
values while others may be left open. In our current
prototype, we focus on rules that express aspects
of how these parameters are actually negotiated—
i.e., rules for configuring the negotiation mecha-
nism (set of auctions)—but also generate rules for
the final contract based on the negotiation results.

1Even if a natural language contract is completely
unambiguous, it would require a vast amount of back-
ground and domain knowledge to automate.



Negotiable Parameters

Once we have this contracting language, our next
step will be to use it to establish the automated ne-
gotiation process. As noted above, a key element
of this is to identify the negotiable parameters. The
contract template effectively defines these parame-
ters by specifying what the contract will be for any
instantiation of parameter values.

The problem then, is to enable the contract lan-
guage to allow descriptions of contract templates.
In addition, we require auxiliary specification of
possible values for parameters, and dependencies
and constraints among them. Given this specifica-
tion of what can be negotiated, we require a policy
to determine what is actually to be included in the
given negotiation episode (rather than assigned a
default value, or left open for subsequent resolu-
tion).

This answers the question of what is to be nego-
tiated; the remaining question is how. In general,
there are many ways to structure a negotiation pro-
cess to resolve multiple parameters. We focus on
processes mediated by auctions. As we describe
below, the problem then becomes one of configur-
ing appropriate auctions to manage the negotiation.

Auction Configuration

To support the configuration of auctions based on
rules about the contract and about the negotia-
tion, we have created three general-purpose sets
of rules, Auction-Configuration, Auction-Space,
and AuctionBot-Mapping (see subsections under
“Courteous Logic Programs for Configuring Auc-
tions” and corresponding appendices) which pro-
vide background knowledge about the configura-
tion of auctions. Auction-Configuration encodes
control-level knowledge about the process of gen-
erating a suite of auctions to support negotiation of
multiple parameters. It also encodes knowledge for
aggregating agent preferences in determining the
set of auctions to create. Auction-Space is modeled
on our current parameterization of auction design
space (Wurman, Walsh, & Wellman 1998) (dis-
cussed in Section “Auction-Space”). It lays out the
set of auction parameters, specifying their domains,
and default values, as well as constraints and other
rules about how they influence each other. Ad-
ditionally, it clusters sets of parameters based on
well-known auction types such as ContinuousDou-
ble Auctions (CDA)2 or English.3 The AuctionBot-
Mapping ruleset maps the auction-space param-
eterization to the AuctionBot. The mapping is

2Stock markets are examples of CDAs. See Friedman
and Rusts’s book on double auctions (Friedman & Rust
1993).

3Consumer auctions on the Internet (like eBay) are
mostly variants of English auctions.

not at all straightforward since we have signifi-
cantly changed our view of the parameterization of
auction-space but our implementation on Auction-
Bot has not kept up due to backward compatibility
constraints and has become rather convoluted.

To configure a set of auctions for a particular do-
main, we incorporate additional rules from the con-
tract template and from potential buyers and sell-
ers. These rules, combined with the background
knowledge about auction configuration described
above, are used to infer the actual auction parame-
ters for a suite of auctions that will implement the
chosen negotiation structure. We discuss an ex-
ample in Section “Domain-specific Rules: Trad-
ing Agent Competition” which implements the cre-
ation of the auctions for the ICMAS Trading Agent
Competition (Wellman & Wurman 1999) as well as
choosing between multiple possible configurations
for the competition.

Composing Final Contracts
Once ContractBot configures and generates the
suite of auctions, it monitors the auctions, wait-
ing for transactions. Each transaction generates
a fact specifying what component was transacted,
what the values were for each of its attributes, who
the buyer and seller were, and the price and quan-
tity. The partial contract contains rules that make
use of such transaction facts once they are filled
in. The portion of the contract template that com-
bines with the transaction facts we call the proto-
contract. A typical rule in the proto-contract might
be to say that the amount paid by agent X to agent
Y is the sum of the prices in all transactions in
which X bought from Y minus the sum of transac-
tions in which Y bought from X. More about the
proto-contract and forming executable final con-
tracts is discussed in Section “Contracting Frame-
work.” Section “Domain-specific Rules: Trading
Agent Competition” discusses an example of gen-
erating final contracts in the Trading Agent Com-
petition domain.

Auction-Based Negotiation
Mechanisms for determining price and other terms
of an exchange are called auctions. Although the
most familiar auction types resolve only price, it is
possible to define multidimensionalgeneralizations
and variants that resolve multiple issues at once.
This can range from the simple approach of run-
ning independent one-dimensional auctions for all
of the parameters of interest, to more complicated
approaches that directly manage higher-order inter-
actions among the parameters.

Auctions are rapidly proliferating on the Inter-
net.4 Although typical online auctions support sim-

4As of this writing, eBay alone has over 4 million
currently running auctions.



ple negotiation services, researchers have begun to
deploy mechanisms with advanced features. For
example, our own Michigan Internet AuctionBot
supports a high degree of configurability (Wur-
man, Wellman, & Walsh 1998) (http://auction.eecs.
umich.edu/), and IBM’s auction system supports
one-sided sales auctions integrated with other com-
merce facilities (Kumar & Feldman 1998).

Although multidimensional mechanisms are
more complicated, and not yet widely available,
we expect that they will eventually provide an im-
portant medium for automated negotiation. For ex-
ample, combinatorial auctions allow bidders to ex-
press offers for combinations of goods, and deter-
mines an allocation that attempts to maximize over-
all revenue. We are aware of one prototype system
currently supporting combinatorial auctions over
the Internet (Sandholm to appear). Multiattribute
auctions, typically employed in procurement, al-
low specification of offers referring to multiple at-
tributes of a single good (Branco 1997).

Whether a multiattribute auction, a combinato-
rial auction, or an array of one- or zero-dimensional
auctions5 is appropriate depends on several factors.
Although a full discussion is beyond the scope of
this paper, we observe that these factors can bear
on any of:
� The coherence of auction configurations. For ex-

ample, if some attributes are inseparable (say, ar-
rival and departure times), then it makes no sense
to treat them as separate goods in a combinato-
rial auction.
� The expected performance of auction configura-

tions. For example, if parameters represent dis-
tinct and separable contract options, then they
could be handled either by separate or combined
auctions. Whether they should be combined de-
pends on how complementary the negotiating
agents perceive them to be.
� The complexity of auction configurations, for

both the mechanism infrastructure and partici-
pating agents. Dimensionality plays a large role
in complexity tradeoffs.

In Sections “Auction-Configuration” and
“Domain-specific Rules: Trading Agent Compe-
tition” we discuss and give examples of some of
the limited support that the current ContractBot
provides for reasoning about some of the above
criteria.

Courteous Logic Programs as KR
The KR we are using to represent contracts is
Courteous Logic Programs. Courteous LPs ex-
pressively generalize ordinary LPs by adding the

5A zero-dimensional auction is one which determines
only price. A one-dimensional auction determines price
and quantity.

capability to conveniently express prioritized con-
flict handling, i.e., where some rules are subject to
override by higher-priority conflicting rules. For
example, some rules may be overridden by other
rules that are special-case exceptions, more-recent
updates, or from higher-authority sources. Cour-
teous LPs facilitate specifying sets of rules by
merging and updating and accumulation, in a style
closer (than ordinary LPs) to natural language de-
scriptions. Priorities are represented via a fact com-
paring rule labels: �����
	�	��
���
����	�����������	���������� means
that 	����
��� has higher priority than 	������
� . If 	����
���
and 	����
�
� conflict, then 	�������� will win the conflict.
See Section “Courteous Logic Programs for Con-
figuring Auctions” for examples of labeled rules
and prioritizations.

Courteous LPs have several virtues semantically
and computationally. A Courteous LP is guaran-
teed to have a consistent, as well as unique, set of
conclusions. Priorities and merging behave intu-
itively. Execution (inferencing) of courteous LPs is
fast: only relatively low computational overhead is
imposed by the conflict handling.

Our work on representing contracts via Courte-
ous LPs builds on prior work at IBM representing
business rules. The implementation we are using is
a Java library called CommonRules available from
IBM (com ).

Contracting Framework
We now describe the process of automatically turn-
ing a partially specified contract into a fully spec-
ified, executable one. The partial contract, or con-
tract template, is a declarative description of the
space of possible negotiation outcomes with addi-
tional rules for influencing the structure of the ne-
gotiation and how it will be configured. Our previ-
ous work (Reeves et al. 1999) presents a language
based on Courteous Logic Programs for represent-
ing contract templates and shows that this language
is sufficiently general to support the negotiation of
any aspect of an executable contract. As shown in
Figure 1, the contract template consists partially
of rules that will implement the final agreement
(called the “proto-contract”), as well as rules that
describe the components of the contract left to be
determined. The proto-contract refers to facts and
conditions regarding, for example, mechanics of
the deal (payment and delivery) or ancillary agree-
ments such as return policies (see Section “Cour-
teous Logic Programs as KR”). It is the part of the
contract that carries over unchanged into to the final
contract, and which combines with the facts output
by the negotiation mechanism to result in an exe-
cutable ruleset that implements the agreement. We
point out, however, that this distinction need not be
sharp. In fact, an important advantage of our rule-
based representation language is the ability to re-
use rules and reason about them on different levels.



Contract Template

Rules 
Implementing
Agreement
("proto-contract")

Component 
Description and 
other
Negotiation-level
Rules

Executable Contract

Transaction
Facts (buyer,
seller, price, qty,
other attributes)

Rules 
Implementing
Agreement
("proto-contract")

Negotiation
Mechanism

Figure 1: Overall contracting process, partial to complete contract.

Rules in the proto-contract that implement some
aspect of the final deal may also be used as part of
the inferencing to establish an appropriate negotia-
tion mechanism. For example, time constraints on
delivery may dictate final clearing times for auc-
tions. Figure 2, shows in more detail how a partial
contract, including its proto-contract, is mapped to
a final contract using general rules about auction
configuration (see Section “Courteous Logic Pro-
grams for Configuring Auctions”).

The rules in the partial contract that describe the
negotiable aspects have two purposes. The first is
to describe the hierarchy of components and at-
tributes of a contract. In our previous work we
present a richer component description ontology
which allows reasoning about orthogonality and
separability of pieces of a contract, as well as ar-
bitrarily nested hierarchies of components and at-
tributes. This is aimed at more sophisticated multi-
dimensional negotiation mechanisms that we plan
to support in AuctionBot in the future. For the
purposes of our current prototype, we only sup-
port partitioning the contract into separable compo-
nents, each of which may have a set of attributes.
However, we also allow the contract template to
express reasoning about various ways to split up
a component into separable components. The final
partitioningof the contract into a set of components
may be influenced by potential buyers and sell-
ers who submit rules that specify their constraints
and preferences among the alternative negotiation
structures.

The second purpose for rules about the compo-
nents of a contract is to specify high-level knowl-
edge about how the individual components should
be negotiated. The rule engine can then infer the
necessary parameters for configuring the negotia-
tion mechanism. This is currently a set of single-
dimensional auctions for each included component,

but could also by a multidimensional mechanism
that would determine attributes of a component si-
multaneously, or allow bidders to directly express
preferences of subsets of components.

The key step in this process—interfacing the dis-
covery phase (the partial contract) with the negoti-
ation phase (set of auctions)—is then the configu-
ration of the negotiation mechanism based on the
inferencing done from the contract template and
rules submitted by buyers and sellers. After the
set of auctions are configured and run and the ne-
gotiation phase is complete, we can automatically
enter the execution phase by generating the the fi-
nal contract as a function of the proto-contract and
the auction results. (and the focus of the prototype
discussed in Section “Prototype Implementation”)
is then the configuration of the negotiation mecha-
nism based on the inferencing done from the con-
tract template. After the set of auctions are config-
ured and run and the negotiation phase is complete,
high-priority facts are added to the contract, yield-
ing a set of rules that fully implements the negoti-
ated agreement.

In the next two sections we describe our im-
plementation of the overall contracting process.
Namely, (1) the configuration of the negotiation
mechanism based on rules describing possible par-
titionings of the contract into components, rules
from buyers and sellers influencing the choice of
negotiation structure, and rules about how indi-
vidual components should be negotiated; (2) the
generation of an executable contract by combining
rules generated for each auction transaction with
the proto-contract from the contract template.

Courteous Logic Programs for
Configuring Auctions

In this section we discuss the logic programming
aspects of inferring the parameters for the ne-



gotiation mechanism. The primary set of rules
for this inferencing comes from the contract tem-
plate (see Section “Domain-specific Rules: Trad-
ing Agent Competition” for a detailed example
of a contract template) but we also have three
sets of rules that serve as background knowledge
about the space of possible negotiation mecha-
nisms. The first is Auction-Configuration (Section
“Auction-Configuration”) which is used for deter-
mining which set of auctions to create based on
agent preferences and constraints. It implements
the method of setting up a multidimensional nego-
tiation by creating an array of single-dimensional
auctions—one for each combination of attribute
values. Additionally, it contains miscellaneous,
low-level rules used in the configuration of auc-
tions. The next ruleset is Auction-Space (Section
“Auction-Space”) which provides basic knowledge
about our parameterization of the space of possi-
ble auction mechanisms, as well as defaults for
auction parameters and constraints among them.
It also contains various heuristics for setting auc-
tion parameters and aggregation of sets of parame-
ters into “auction types”. The last ruleset (Section
“AuctionBot-Mapping”) maps this general auction
knowledge to a specific auction server—the Michi-
gan Internet AuctionBot.

Together, the rules from the contract template
(and rules from buyers and sellers) and the auction
mechanism background knowledge enable the in-
ferencing engine to reach a set of conclusions that
is sufficient to configure the negotiation.

Auction-Configuration
The Auction-Configuration ruleset (see Appendix
“Auction Configuration Ruleset” implements the
technique of simulating a multiattribute auction by
holding an array of single-dimensional auctions—
one for every point in attribute-space. It generates
valueTuple predicates for every combination of
attribute values, noting which component each be-
longs to. It then creates an auction for each of the
value tuples, and the parameters for those auctions
inherit from the parameters for the parent compo-
nent. In addition to determining the set of auctions
for a particular component, Auction-Configuration
helps determine how to partition the negotiation
into components. For example, it infers a score for
each of several possible components6 by counting
the total number of buyers and sellers interested in
them, unless there are no buyers or no sellers, in
which case the score is zero:

<m> score(?Component, ?N) <-
numBuyers(?Component, ?NB) AND
numSellers(?Component, ?NS) AND

6See Section “Domain-specific Rules: Trading Agent
Competition” for examples of alternative components for
a contract.

is(?N, plus(?NB, ?NS)).
<high> score(?Component, 0) <-

numSellers(?Component, 0).
<high> score(?Component, 0) <-

numBuyers(?Component, 0).

The numBuyers and numSellers rules are
determined based on buyers and sellers who submit
rules specifying their interest in buying or selling
certain components of the contract.

Also included in Auction-Configuration are
rules governing the priorities of other rules, as in
the example above. There are currently several lev-
els of rule priorities: lowest, verylow, low, medium
(abbreviated as “m”), high, veryhigh, and highest.
The “lowest” labels are only used in Auction-Space
to catch any unassigned parameters from other rule
sets. The higher priority labels are used any time an
exception is needed to a standard rule. An exam-
ple of this occurs in the Hotel section of the Trad-
ing Agent Competition rules, included in Appendix
“Trading Agent Competition Contract Template.”
“Highest” rules are used for constraints.7 It is from
these priority rules that we know, for example that
the rule labels in the example above have priority
such that setting a score to zero when there are no
buyers or sellers overrides setting the score to the
sum of the number of buyers and number of sell-
ers.

The last section in Auction-Configuration sim-
ply specifies that only one value may be inferred
for each auction parameter. Which value to infer
(when there are multiple possible) is determined by
the conflict resolution rules (see Section “Courte-
ous Logic Programs as KR”).

Auction-Space
The first thing that Auction-Space (see Appendix
“Auction-Space Ruleset”) specifies are the domains
of each of the auction parameters, as well as de-
faults for each of them. The parameterization is
based initially on AuctionBot but extended and im-
proved in more recent work (Wurman, Walsh, &
Wellman 1998). The default values for parameters
are labeled as lowest priority rules so that parame-
ters inferred based on specific aspects of a negotia-
tion will take precedence. For example, the follow-
ing rules specify that by default, any auction should
have multiple buyers and one seller, and that ties for
winning bids should be broken by first-in/first-out.

<lowest>
auction(multipleBuyers, 1).

<lowest>
auction(multipleSellers, 0).

7They may also be used outside of any particular
rule set—for example, when creating a batch of auctions
based on the same rule set but for which one or two pa-
rameters should change for each auction.



<lowest>
auction(tiebreaking, fifo).

In the next section of Auction-Space, we specify
conditional default parameters—that is, what cer-
tain parameters should default to, given that certain
other parameters have already been inferred. For
example, if we know that an auction has a single
seller then, by default, it should have multiple buy-
ers, and vice versa.

<verylow>
auction(?ID, multipleBuyers, 1)
<-
auction(?ID, multipleSellers, 0).

<verylow>
auction(?ID, multipleSellers, 1)
<-
auction(?ID, multipleBuyers, 0).

Next are hard constraints between parameters.
For example, if there is bidding rule that says one
must meet the current quote, then this implies that
one need not beat the quote.

<highest>
auction(?ID, beatQuote, 0) <-

auction(?ID, meetQuote, 1).

Notice that constraints are similar to conditional
defaults except that constraints have overriding pri-
ority, while conditional defaults are just that—
defaults that will be overridden by values inferred
elsewhere.

The remaining rules rules all involve negoti-
ationType/2 predicates in the body. Negotia-
tionType is used in a contract to specify meta-level
information for the negotiation mechanism.
Auction-Space maps such knowledge to specific
auction parameters, which correspond loosely to
the parameters in AuctionBot, but that mapping
is completed in AuctionBot-Mapping (Section
“AuctionBot-Mapping”). Note that negotiation-
Types can infer other negotiationTypes but that the
inferencing must trickle down to auction predi-
cates eventually. For example, negotiation-
Type(continuous) implies, among others,
negotiationType(continuousClears)
which in turn implies auction(quoteMode,
bid). Following are the rules for inferring
continuous quotes and clears:

negotiationType(?ID,
continuousQuotes)

AND
negotiationType(?ID,

continuousClears)
<-
negotiationType(?ID,

continuous).

auction(?ID, quoteMode, bid)
<-
negotiationType(?ID,

continuousClears).

auction(?ID, intClearMode, bid)
<-
negotiationType(?ID,

continuousQuotes).

One particularly useful feature of Auctionbot-
Space is that it encodes several well-known auction
types. For example, specifying a negotiation type
of “CDA” is all that is necessary to infer all the
characteristics that define an auction as a CDA—
chronological matching, continuous quotes (bid-
ask) and clears, double-sided, and discrete goods.

<m>
auction(?ID, matchingFunction,

earliestTime)
AND
negotiationType(?ID, continuous)
AND
negotiationType(?ID, double)
AND
auction(?ID, divisible, 0)
AND
auction(?ID, quoteMode,

bidAndAsk)
<-
negotiationType(?ID, cda).

The conflict resolution that CLP provides is also
useful here. For example, it allows specifying that
an “Amazon-style” auction is just like “eBay-style”
except that Amazon auctions don’t close until ten
minutes of inactivity have passed.

<ebay>
auction(?ID, matchingFunction,

mthPrice)
AND
auction(?ID, multipleBuyers, 1)
AND
auction(?ID, multipleSellers, 0)
AND
auction(?ID, divisible, 0)
AND
negotiationType(?ID, revealAll)
AND
auction(?ID, bidRules,

[bidQty1, bidWithdrawr,
bidQuoteb, bidPrev2,
bidPrev5])

AND
negotiationType(?ID,

allNotifications)
AND
negotiationType(?ID,

continuousQuotes)



AND
auction(?ID, quotePolicy,

askOnly)
AND
auction(?ID, quoteIncrement, 1)
AND
auction(?ID, intClearMode, none)
AND
auction(?ID, finalClearMode,

fixed)
AND
auction(?ID, matchingFunction,

mthPrice)
<-
negotiationType(?ID, ebay).

negotiationType(?ID, ebay)
<-
negotiationType(?ID, amazon).

<amazon>
auction(?ID, finalClearMode,

inactivity)
AND
auction(?ID,

finalClearInactivityInterval,
600)

/* 10 minutes inactivity */
<-
negotiationType(?ID, amazon).

/* Amazon rule is an exception */
overrides(amazon, ebay).

This hierarchy could be extended further by
making an eBay auction a special case of a stan-
dard English auction.

Auctionbot-Mapping

The Auctionbot-Mapping (see Appendix “Auction-
Bot Ruleset”) is a set of rules for inferring Auction-
Bot parameters from the improved and generalized
parameterization given in Auction-Space.

The reason this is necessary is that we have con-
tinued to improve, clean up, and generalize our pa-
rameterization of auction design space (Wurman,
Wellman, & Walsh to appear) but the Auction-
Bot has not kept up, due to backward-compatibility
constraints. For example, in the Auction-Space
rule set, we have added to the auction parameteri-
zation by introducing an additional auction param-
eter, matchingFunction (either price-based—
Mth, ��� � st—or based on time of bid). Auc-
tionBot does not recognize this parameter but it
is used in AuctionBot-Mapping to derive the su-
perfluous “auction type” parameter which the Auc-
tionBot does currently need. In this way, all other
rule sets can ignore “auction type” and instead use

the interface provided in Auction-Space—one that
uses such existing parameters as quote and clear
mode, along with the added parameter match-
ingFunction. When the AuctionBot parame-
ters are changed to reflect this new parameteriza-
tion, Auction-Space will already support it, and the
rules to infer the old “auction type” can (optionally)
be deleted.

Following is a rule that maps the fundamental
parameters defining a Vickrey auction to the dep-
recated AuctionBot “type” parameter value corre-
sponding to Vickrey auctions.

<m> /* Vickrey, sealed-bid */
auctionbot(?ID, type, 3)
<-
auction(?ID, matchingFunction,

mPlusFirstPrice)
AND
auction(?ID, finalClearMode,

synchronized)
AND
auction(?ID, multipleSellers, 0)
AND
auction(?ID, quoteMode, 0)
AND
auction(?ID, intClearMode, 0).

Other auction types such as CDA and Chrono-
logical Match can be inferred similarly. Note that
CDA is a special case of Chronological Match.
This is elegantly captured in CLP.

<chronmatch>
auctionbot(type, 4)
<-
auction(matchingFunction,

earliestTime).

<cda>
auctionbot(type, 5)
<-
auction(matchingFunction,

earliestTime)
AND
auction(intClearMode, bid).

/* special case */
overrides(cda, chronmatch).

Domain-specific Rules: Widget Example
In this section we present a simple example of a
subset of a contract from which our prototype is
able to automatically configure the appropriate auc-
tions. Section “Domain-specific Rules: Trading
Agent Competition” describes a more elaborate do-
main. In this example, there is only one component
of the contract (a widget) and it has only one at-
tribute (quality) with two possible values (regular
and deluxe). (There are no alternative negotiation



structures.) This information is represented with
the following rules:

/* Possible Values: */

value(quality, regular).
value(quality, deluxe).

/* Specify the components and
their attributes: */

component(widget).
attribute(widget, quality).

The possible values were not tied to the widget
component because in general they might have ap-
plied to more than one component. The following
general rule creates value/3 rules for each com-
ponent based on the general value/2 rules and
the components that have been declared:

value(?Component, quality, ?Q) <-
component(?Component)
AND value(quality, ?Q).

A widget is a multiattribute negotiable but the
current AuctionBot only supports single-dimen-
sional auctions (negotiating price and quantity).
A brute-force method for implementing a multi-
attribute auction is to simply create an array of
single-dimensional auctions, one for each point
in attribute-value space. The following rule enu-
merates all the points in attribute-value space for
all components—in this simple example, only two
points will be enumerated, one for each possible
value of the single attribute of the single compo-
nent, a widget: (This rule is actually unnecessary in
ContractBot because inferring valueTuples is done
automatically as part of Auction-Configuration.)

valueTuple(?Component,
dotOp(?Quality,nil))

<-
value(?Component, quality,

?Quality).

Note that the dotOp/2 predicate is used to rep-
resent a list (dotted pair) since the current imple-
mentation of CLP does not support lists explicitly.
The above rule creates a valueTuple/2 fact for
every possible way to assign values to the attributes
of a component.

Next, we provide general information about the
negotiation of widgets. These facts are used by
Auctionbot-Mapping and Auction-Space to gener-
ate the full set of auction parameters for widget
auctions. (In this case, most of the parameters will
be default values specified in Auction-Space.)

negotiationType(widget,
continuous).

negotiationType(widget,
double).

negotiationType(widget,
revealAll).

At this point, we have inferred all of the auc-
tion parameters for widgets and we have enumer-
ated the valueTuples for all the auctions we need to
create. We now combine those steps to explicitly
create the auctions and have each of the auctions
created get its parameters from the parameters we
derived for widgets in general.

For every valueTuple, we infer a makeAuc-
tion/1 fact which takes a list (thought of as an
ID) and tells our prototype to create an actual auc-
tion. We also infer a parent/2 fact for every val-
ueTuple. This tells us the component that each auc-
tion belongs to. (Inferring the set of auctions from
the valueTuples is also done automatically in the
Auction-Configuration rule-set, as well as inheri-
tance of parameters from parent components.)

makeAuction(dotOp(?Component,
?Values))

AND
parent(dotOp(?Component,?Values),

?Component)
<-
valueTuple(?Component, ?Values).

Finally, we specify the auction parameters for
each created auction—simply the parameters that
we derived in general for the component that the
auction belongs to (its parent).

auction(?ID, ?Attr, ?Val) <-
parent(?ID, ?Component)

AND
auction(?Component, ?Attr, ?Val).

Domain-specific Rules: Trading Agent
Competition

In July 2000 in Boston at the International Con-
ference on Multiagent Systems, the University of
Michigan is hosting a trading agent competition
in which participants will write agents to do auto-
mated trading in a set of auctions on the Auction-
Bot. The auctions will simulate the domain of a
travel agent assembling trips for its customers. The
goods that agents will be shopping for are flights
(defined by day and destination—out or back), ho-
tels (defined by day and quality), and entertainment
tickets (defined by day and type of event). Each of
the types of goods are sold in a different kind of
auction. Flights are sold at randomly fluctuating
fixed prices. Hotels are sold in an ascending En-
glish auction. Agents buy and sell entertainment
tickets in a continuous double auction much like
trading securities in a stock exchange.

The design of the Trading Agent Competition
(TAC) game describes in detail how the goods are
partitioned into a set of auctions and exactly what
the parameters of those auctions are. Appendix



“Trading Agent Competition Contract Template” is
a rule set that generates that partitioning (among a
space of possible partitionings) and auction config-
urations based on a higher-level description of the
TAC game. It also includes rules from buyers and
sellers, indicating how they would like the contract
to be partitioned into components. As given, the
TAC contract template and buyer/sellers rules will
infer the same components described above—the
partitioning used in the actual TAC competition—
but simple changes to buyer or seller rules will infer
alternative structures for hypothetical TAC negoti-
ation mechanisms. For example, we currently have
rules from multiple buyers expressing willingness
to buy bundled travel packages (flight, hotel, and
entertainment bundled into one good). Adding a
rule from a single seller expressing willingness to
sell such a good would result in a repartitioning of
the set of auctions to include complete travel pack-
ages.

The first thing the TAC contract template spec-
ifies is a proto-contract. As described in Section
“Contracting Framework,” the proto-contract is the
subset of the contract template that, when com-
bined with the rules coming out of the negotia-
tion mechanism, form the final, executable con-
tract. As mentioned in Section “Composing Fi-
nal Contracts,” we show a typical rule for a proto-
contract that we have included in the TAC exam-
ple, namely, inferring the total amount that a given
agent owes another agent after the negotiation:

pay(?Agent1, ?Agent2, ?Amt) <-
setof(?Pay12,

transact(?Agent1,
?Agent2,
?Component,
?AVList,
?Pay12, ?Qty),

?Pay12List) AND
setof(?Pay21,

transact(?Agent2,
?Agent1,
?Component,
?AVList,
?Pay21, ?Qty),

?Pay21List) AND
sum(?Pay12List, ?Pay12Total)
AND
sum(?Pay21List, ?Pay21Total)
AND
is(?Amt, minusOp(?Pay12Total,

?Pay21Total)).

More specific to TAC, we include rules in the
proto-contract to infer the utility that a travel agent
receives from its transactions, according to the def-
inition of the TAC game.8 Following is a part of the

8A utility calculation would probably not make sense

utility calculation which says that a client’s utility
is a function of whether they were able to procure
a trip, how many days deviation from their ideal
travel dates they were, and their bonuses for stay-
ing in the nice hotel and seeing the entertainment
they wanted:

<high> clientUtility(?Client, 0)
<- feasibleTrip(?Client, 0).

<m>
clientUtility(?Client, ?U) <-

feasibleTrip(?Client, 1) AND
travelPenalty(?Client, ?TP) AND
hotelBonus(?Client, ?HB) AND
funBonus(?Client, ?FB) AND
is(?U, 1000 - 100 * ?TP

+ ?HB + ?FB).

Note that although the complete ruleset for util-
ity calculation is not given, all of the above predi-
cates can be inferred by transaction facts generated
by the ContractBot as it monitors the auction re-
sults. We can now infer a travel agent’s utility in the
competition by summing the utilities of its clients
and subtracting its expenses:

utility(?TravelAgent, ?U) <-
setof(?Client,

clientOf(?Client,
?TravelAgent),

?ClientList) AND
map(clientUtility, ?ClientList,

?ClientUtilities) AND
sum(?ClientUtilities,

?Profit) AND
expenses(?TravelAgent,

?Expenses) AND
is(?U, ?Profit - ?Expenses).

Note that determining the expenses for an agent
is a variation on the pay predicate given above.
(See Appendix “Trading Agent Competition Con-
tract Template” for details.)

The first thing the TAC contract template spec-
ifies after the proto-contract is the possible values
for the attributes of the goods. For example, the fol-
lowing facts set the possible types of entertainment
events:

value(entertainment,
type, baseball).

value(entertainment,
type, symphony).

value(entertainment,
type, theatre).

After specifying the domains for the attributes
of the goods, there are several sections of rules
corresponding to possible components of the TAC

in a proto-contract in the real world, but in the TAC
game, the utility is used externally—i.e., to determine
the winner of the competition.



domain, and giving the attributes of each of the
components, as well as specifying negotiation-level
rules for the components. For example, the follow-
ing rules specify that flights have two attributes—
type (out or back) and day.

attribute(flight, type).
attribute(flight, day).

value(flight, day, ?Val)
<- value(day, ?Val).

Note that the possible values for flight types were
enumerated in separate rules. The possible values
for flight days are inferred from the globally de-
fined day values, declared with value/2 predi-
cates.

By using the description of the possible compo-
nents of the contract, along with other rules about
how to split the components into a set of auctions,
the procedure determines the groups of auctions to
create. There are also rules that help infer what the
parameters of those auctions should be. For exam-
ple, the following rules specify that hotels should
be auctioned “eBay style,” with the exception that
buyers can bid for multiple quantities, and in fact
submit entire discrete demand schedules—a list of
quantities demanded for each of a set of prices.

<m> negotiationType(hotel, ebay).
<high> auction(hotel, bidRules,

[pqPoints, noWithdraw,
beatQuote, beatPreviousBid]).

The TAC contract template has sections for sev-
eral components besides flights, hotels, and enter-
tainment. It also has round trip flights (parameter-
ized by arrival day and departure day), hotel blocks
(which have a type as before, plus first and last
night for a contiguous range of rooms), flight/hotel
bundles (with attributes for day in, day out, and ho-
tel type), entertainment packages (which bundle a
set of entertainment tickets for a trip), and finally,
complete travel packages (parameterized by ar-
rival, departure, type of hotel, and when each type
of entertainment is to be seen, including never).

By stating relationships between these compo-
nents and incorporating rules from buyers and sell-
ers, we can reason about alternative negotiation
structures for TAC. The relationships we encode
in the current example are mutual exclusivity rules
about which components an agent would never be
interested in simultaneously. For example, indi-
vidual one-way flights and flight/hotel bundles are
considered mutually exclusive:

mutex_head <- component(flight)
AND component(flighthotel).

And the travel package component subsumes all
other possible components:

mutex_head <-
component(travelpackage) AND

component(?X)
mutex_given
notEquals(?X, travelpackage).

Prototype Implementation
In this section we discuss our implementation of
the overall contracting process described in Sec-
tion “Contracting Framework.” Figure 2 depicts
the overall process of turning a contract template
along with rules from buyers and sellers into a final
contract, and thus an executed deal. At the heart
of this process are the three sets of background
knowledge discussed in Section “Courteous Logic
Programs for Configuring Auctions”—Auction-
Configuration, Auction-Space, and AuctionBot-
Mapping. ContractBot.clp wraps these rulebases
together along with a file of miscellaneous utilities
(util.clp) and the Prolog (XSB) queries that drive
the inferencing.

The inferencing engine itself is actually a series a
Perl scripts that guide the input to ContractBot and
the background knowledge through the inferencing
engines. The main ContractBot executable accepts
arbitrary CLP rules (generally the contract template
and buyer/seller rules) on standard input and com-
bines these rules with the background knowledge
specified in contractBot.clp. This conglomeration
of CLP input is fed into the “Courteous Compiler”,
a component of IBM CommonRules which com-
piles CLP into ordinary Prolog. This Prolog code
is then combined by another script with the queries
specified in contractBot.clp and fed into the XSB
Prolog engine.

It is these queries that generate the output that the
following modules need to interact with the Auc-
tionBot. For example, to generate the list of auc-
tions to be created, contractBot.clp makes the fol-
lowing query:

:- setof(ID, makeAuction(ID), L),
writelist(L), nl.

This simply writes a list to standard output
containing all the auction IDs for which there
is a makeAuction fact entailed by the knowl-
edge base. These facts are generated by Auction-
Configuration for point in attribute space for every
component inferred. Components, in turn, are in-
ferred from the contract template and from buyer
and seller rules.

The output of the Prolog queries amounts to a
list of auctions and parameter values for each auc-
tion. The list of auctions and parameter settings
are fed to the create-auctions module which con-
nects to the AuctionBot via the Mathematica im-
plementation of the AuctionBot’s API9 and cre-
ates the auctions. The list of auctions is also sent

9Mathematica was chosen for its clean implementa-
tion of the API and its convenient LISP-like handling of
the auction and parameter lists.



Figure 2: How ContractBot uses its auction knowledge to turn a partial contract into a complete, executable
contract.

to the auction-watcher module which monitors the
specified auctions and composes the corresponding
transaction facts (see Sections “Contracting Frame-
work” and “Domain-specific Rules: Trading Agent
Competition”) whenever a transaction occurs on
AuctionBot in an auction relevant to the contract.
Finally, the transaction facts are concatenated with
the proto-contract from the original contract tem-
plate to form an executable contract which can it-
self be fed through an inferencing engine to execute
the terms of the deal.

Section “Domain-specific Rules: Widget Exam-
ple” presents a simple example of a partial con-
tract that can be used as input to our prototype.
In Appendix “Trading Agent Competition Contract
Template” we provide a more elaborate example
which generates the set of auctions used in an up-
coming Trading Agent Competition. The domain
for the competition involves three components—
flights, hotels, and entertainment—each of which
has two attributes, type and day. Our prototype is
able to reproduce the same set of auctions actually
used in the competition, but using only a high-level
description of the goods to be negotiated and the
nature of the negotiations.

Related Work
This work builds on a project at IBM T. J. Wat-
son Research called Business Rules for Elec-
tronic Commerce (BREC). (http://www.research.
ibm.com/rules/) Its goal is to support the encod-
ing of business rules using Courteous Logic Pro-
grams (Grosof 1997). This is the basis for the rep-

resentation of business contracts that we are us-
ing here. Note that this work differs from existing
work under similar names. Notably, Tuomas Sand-
holm’s Contract Net and other work in distributed
AI and industrial engineering describe mechanisms
for subcontracting among agents in order to di-
vide work in accomplishing a task. By contrast,
our approach is to support an automated negotia-
tion mechanism for agents to decide upon agree-
able terms of a contract, which can then be exe-
cuted electronically.

Multidimensional negotiation is the other aspect
of this work which has an existing literature. As
discussed in Section “Auction-Based Negotiation,”
combinatorial auctions allow bidders to make of-
fers for combinations (bundles) of goods. We are
aware of one prototype that supports combinato-
rial auctions on the Internet (Sandholm to appear).
Multiattributeauctions have typically been used for
procurement (one buyer, many sellers). They allow
bidders to express willingness to buy over an entire
space of attributes of a single good (Branco 1997).

Conclusion and Future Work
This paper builds on our framework for the overall
contracting process (Reeves et al. 1999) by imple-
menting a system for automatically configuring a
negotiation mechanism based on a formal descrip-
tion of a partial contract and interpreting the re-
sults of the negotiation to form a complete and exe-
cutable contract. We present an infrastructure for
configuring negotiations and carrying out the re-
sulting contracts. The background knowledge sup-



porting this infrastructure is embodied in three CLP
rule sets: Auction-Configuration, Auction-Space,
and Auctionbot-Mapping. Auction-Configuration
supports reasoning about alternative negotiation
structures and how to split contract into an array
of auctions. Auction-Space implements a cleaner,
more general parameterization of the auction de-
sign space, imposes constraints and conditional de-
faults on the parameters, and infers auction param-
eters from higher-level knowledge about a nego-
tiation. AuctionBot-Mapping maps the Auction-
Space parameterization to the existing set of Auc-
tionBot parameters.

Our prototype can generate sets of auctions cor-
responding to a multicomponent, multiattribute ne-
gotiation, and supports reasoning about alternative
ways to decompose a contract into components and
attributes. A simple example of this is discussed
and we also use the prototype to generate the auc-
tions for the upcoming Trading Agent Competition.
We also discuss additional uses for this prototype
as a general way to programmatically create sets of
auctions, not just in the contracting context.

One piece of future work on ContractBot will in-
volve writing agents that participate in the infras-
tructure we’ve developed. This is an extremely rich
area for analyzing complex agent strategies since
an agent using ContractBot must not only know
how to bid intelligently in a vast space of negoti-
ation mechanisms, but also intelligently contribute
rules to influence which negotiation mechanism is
chosen. This will also entail further work on the
contracting infrastructure, such as richer mecha-
nisms for aggregating agent preferences in config-
uring negotiations.

We would also like to extend AuctionBot and
thus our ontology in ContractBot to support richer
negotiation mechanisms than the current naive
approach to handling multiple attributes of a
component—creating an array of auctions, one for
every combination of attribute values. This is not
tractable and needs to be augmented with multiat-
tribute and/or combinatorial auctions.

Finally, we would like to use the knowledge
bases we are developing to drive the back end of
human interfaces for auction creation—such as the
CGI interface to AuctionBot. For this we need to
add rules to infer an order for asking the user auc-
tion parameters, and the CLP engine will need to be
run after each input so that constraints and defaults
can be propagated.

References
Baral, C., and Gelfond, M. 1994. Logic program-
ming and knowledge representation. Journal of
Logic Programming 19,20:73–148.

Branco, F. 1997. The design of multidimensional
auctions. RAND Journal of Economics 28:63–81.

IBM CommonRules.
http://www.research.ibm.com/rules/
commonrules-overview.html.
Friedman, D., and Rust, J., eds. 1993. The Double
Auction Market. Addison-Wesley.
Grosof, B. N.; Labrou, Y.; and Chan, H. Y.
1999. A declarative approach to business rules
in contracts: Courteous logic programs in XML.
In ACM Special Interest Group on E-Commerce
(EC99), 68–77.
Grosof, B. N. 1997. Building Com-
mercial Agents: An IBM Research Perspec-
tive. In Proceedings of the Second Inter-
national Conference and Exhibition on Prac-
tical Applications of Intelligent Agents and
Multi-Agent Technology (PAAM97). P.O. Box
137, Blackpool, Lancashire, FY2 9UN, UK.
http://www.demon.co.uk/ar/PAAM97: Practical
Application Company Ltd.
Kumar, M., and Feldman, S. I. 1998. Internet auc-
tions. In Third USENIX Workshop on Electronic
Commerce, 49–60.
Reeves, D. M.; Grosof, B. N.; Wellman, M. P.;
and Chan, H. Y. 1999. Toward a declarative
language for negotiating executable contracts. In
AAAI-99 Workshop on Artificial Intelligence in
Electronic Commerce (AIEC-99).
Sandholm, T. to appear. Approaches to winner
determination in combinatorial auctions. Decision
Support Systems.
Wellman, M. P., and Wurman, P. R. 1999.
A trading agent competition for the re-
search community. In IJCAI-99 Workshop
on Agent-Mediated Electronic Trading. See also,
http://tac.eecs.umich.edu/.
Wurman, P. R.; Walsh, W. E.; and Wellman, M. P.
1998. Flexible double auctions for electronic
commerce: Theory and implementation. Decision
Support Systems 24:17–27.
Wurman, P. R.; Wellman, M. P.; and Walsh, W. E.
1998. The Michigan Internet AuctionBot: A con-
figurable auction server for human and software
agents. In Second International Conference on
Autonomous Agents, 301–308.
Wurman, P. R.; Wellman, M. P.; and Walsh, W. E.
to appear. A parameterization of the auction de-
sign space. Games and Economic Behavior.

Auction Configuration Ruleset
See http://ai.eecs.umich.edu/
people/dreeves/autonego/
auction-config.clp

Auction-Space Ruleset
See http://ai.eecs.umich.edu/
people/dreeves/autonego/
auction-space.clp



AuctionBot Ruleset
See http://ai.eecs.umich.edu/
people/dreeves/autonego/
auctionbot.clp

Trading Agent Competition Contract
Template

See http://ai.eecs.umich.edu/
people/dreeves/autonego/tac.clp


