RC 20305 (12/05/95)
Computer Science

IBM Research Report

Reusable Architecture for
Embedding Rule-based Intelligence
in Information Agents

Benjamin N. Grosof, David W. Levine, Hoi Y. Chan, Colin J. Parris, Joshua S. Auerbach

IBM Research Division

T.J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598

(914) 784-7100 main

Internet: {grosof,levine,hchan,cjparris,jsa}@watson.ibm.com
(alt.: grosof@cs.stanford.edu)

WWW: http://www.research.ibm.com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It
has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside
publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

esearch Division
Imaden - T.J. Watson - Tokyo - Zurich

Publication Information: This paper is a reformatted version of the paper appearing in
the Proceedings of the ACM CIKM-95 Workshop on Intelligent Information Agents, held
Dec. 1-2, 1995, Baltimore, MD. Workshop held in conjunction with the ACM Confer-
ence on Information and Knowledge Management. Co-chairs of Workshop: Tim Finin and
James Mayfield. Information and on-line proceedings are available via the World Wide Web:
http://www.cs.umbc.edu/iia/

Permission to publish for the above Proceedings is non-exclusive; copyright for the version
of this paper appearing in it has been retained by the authors.

Abstract

We identify practical software design requirements for rule-based intelligence in the next
generation of commercial information agents. Besides basic inferencing, these include em-
beddability, reusability, user-friendly authoring of rules, communicability of rules, flexibility
especially of inferencing control strategy and performance, and extensibility of representation
and reasoning.

We develop an architecture that fulfills these requirements to a substantial degree: RAISE
(Reusable Agent Intelligence Software Environment). RAISE provides building blocks for
embeddable agent smarts. It is founded upon a declarative representation and clean seman-
tics, equipped with a simple yet powerful approach to procedural attachments. This results
in highly pluggable components for inferencing, authoring, and communication, embodied in
a fine-grained object-oriented class library. We have found RAISE to enable high reusabil-
ity of both code and knowledge while embedding rule-based intelligence enhancements in
three prototyped information agent applications: personal messaging, newsgroup filtering
and handling for customer service support (the Globenet system), and collaborative news
service in Lotus Notes.

Keywords: intelligent agents, rule-based, architecture, reusable, embeddable, information
retrieval, artificial intelligence, software engineering, WAN, network newsgroups, collabora-
tion support.

Version Note: This is a preliminary report in the form of an extended abstract, quite
condensed and still somewhat rough.

Revised Versions and Follow-ons of this paper can be found via the World Wide Web:
http://www.research.ibm.com . Navigate to on-line Research Reports (“CyberJournal”) and
to Project Pages under “Computer Systems”.

1 Architectural Requirements for Commercial Set-
tings
The problem we address is practical design and architecture of rule-based intelligence in

information agents, for commercial settings in the not-too-distant future (e.g., within the
next five years or less).

Information access is currently one of the commercially most important application realms
for intelligent agents. Most industry forecasters expect it to continue to be for at least the
next five or ten years.

Another, emerging, dominant view among industry forecasters is that the main business
value of intelligent agents in the short- to medium-term time horizon will be as parts of
overall applications, rather than as stand-alones. That is, the value of an intelligent agent
will typically be as an augmentation (differential, delta) upon the value of an application
which it enhances. This is the case in today’s commercial intelligent agents scene.

1.1 Embeddability

This view about the structure of business value implies that for intelligent agent technology,
there will be a premium on embeddability.

Embeddability includes several aspects. One is the importance of the attachment of in-
ferencing on the one hand to procedural invocations on the other hand, e.g., invocations that
perform actions. Another is the ability to symmetrically interoperate with other software:
both to call, and be called by, other procedures. A third is the importance of a lightweight
option, and more generally, of flexibility with respect to performance and scaling.

1.2 The Useful Roles of Rules

We observe that rules are useful as a complement to search and retrieval techniques, in par-
ticular to conventional free-text information retrieval techniques and their underlying (rela-
tively shallow) natural language analysis (e.g., keywords and phrases). Rule-based reasoning
is especially helpful for controlling filtering and handling actions (we will list these towards
the end of section 4), based on structured (e.g., mail headers which are essentially relational
data) aspects of information items as well as unstructured (e.g., text bodies) aspects of those
items. Rules and reasoning are more accessible to users, especially non-technical users, than
scripting or macro languages, yet more powerful than menus and direct manipulation in
terms of the complexity of behavior that they can specify.

Machine learning offers the hope that the process of a user instructing her agent can
be changed from explicit to implicit. As a pragmatic first step, however, the capability for
explicit instruction is very important. It enables confirming, editing, and augmenting the
results of any available learning mechanisms. A historical engineering lesson in knowledge-
based systems and machine learning is that it is usually advisable first to work out how to
explicitly instruct a performance element before hooking up a learning element.

As a first step within explicit instruction, yes/no (as opposed to probabilistic-flavor) rules
are very important. These are well-understood in terms of both knowledge-based applica-
tions and fundamental theory. Yes/no rules enable the control of tasks with predictability.
Probabilistic-flavor knowledge will, of course, be very important in the future with the wider
use of inductive learning mechanisms, since they yield statistical-flavor knowledge as output.

1.3 Additional Requirements

Next, we discuss additional practical software design requirements for rule-based intelligence
in the next generation of commercial information agents, beyond basic inferencing plus the
requirements (notably, embeddability) that we discussed above.

A premium on embeddability implies a premium on reusability of code. From an
investment viewpoint, reusability of knowledge bases as well is vital because of the diffi-
culty of knowledge acquisition. This implies a premium on the communicability of rules
and knowledge. Communicability implies a need for clean semantics and standards.

Also, communicability of facts in particular is important for basic interoperability of
multiple agents, so that one agent can output facts (perhaps derived) as input to another
agent.

In large part, the short- to medium-term commercial vision for the value of intelligent
information agents is that they will enable non-technical end-users to personalize the behavior
of their applications. Therefore, more specifically with respect to knowledge acquisition:
user-friendly authoring of rules is crucial, so as to enable those users to specify the
behavior they desire.

While chaining as a requirement is an article of faith for many in the Al or logic pro-
gramming communities, it demands a rationale in this context. Many current rule-based
commercial intelligent information agents do not enable chaining of rules.

We observe that chaining is important for conciseness of rule sets and for reusability in
rule authoring, even in relatively small or shallow rule sets. Intermediate conditions, such as
Importance (high vs. low) or Topic (topical categorization), enable multiplicative factoring
of a set of rules. For example, consider a rule set about filtering and handling e-mail. There
are, say, b rules about which e-mail is important based on its internal attributes. That is,
these 5 rules fan in to Importance as their consequent. In addition, there are, say, 4 rules
about what actions to do with mail based on its importance. That is, these 4 rules fan out of
Importance as their antecedent. Alternatively, one might equivalently represent the mapping
from internal attributes to actions via a more “compiled-form” rule set without chaining.
This would take 20 rules. 9 rules with chaining thus serve equivalently to 20 rules without
chaining, More generally, even one level of chaining enables one to reduce the number of
rules from m x n to m + n instead.

We observe that some applications require forward inferencing, some require backward in-
ferencing, and some need the combination to achieve efficiency. Flexibility of inferencing
control strategy is thus important.

Finally, extensibility of knowledge representation and reasoning is important.
As time goes on, learning and probabilistic knowledge will become increasingly common,
community knowledge bases will evolve, and more ambitious applications will be undertaken.

Contrast with Expert Systems, Logic Programming, etc.:

The above collection of requirements contrasts with what previous rule-based intelligence
technology offers. The software previously available for expert systems, Prolog-type logic
programming, OPS5-type production rule systems, and mathematical theorem-provers each
have major weaknesses, especially with regard to meeting the conjoined requirements of:
embeddability, flexibility of inferencing control strategy, weight, combining clean declarative

treatment with powerful procedural attachments, and pluggability to interoperate or to
extend reasoning functionality.

2 The RAISE Architecture and Applications, Proto-
typed

We develop an architecture that fulfills these requirements to a substantial degree: RAISE
(Reusable Agent Intelligence Software Environment). RAISE provides building blocks for
embeddable agent smarts. At its heart, RAISE’s functionality includes:

¢ Inferencing and reasoning, including both forward and backward chaining of yes/no
rules, as well as the ability to mix forward and backward inferencing. Forward in-
ferencing is especially important for applications in which an information agent is
triggered by events such as arrival of new information items. Backward inferencing is
especially important for mediator-type functions such as intelligent directory services
and brokering. Mixing forward and backward inferencing is especially important to
enable computing or obtaining information only upon demand in the course of forward
inferencing. E.g., in newsgroup filtering and handling, it is inefficient to compute the
presence of all possible interesting keywords (i.e., those mentioned in some rule) in each
incoming newsgroup item. Rather, it is better to compute the presence of keywords
only after being constrained by already having tested some conditions in rules, in the
midst of primarily forward inferencing.

e Knowledge representation and reformulations of representations. The end-user’s rep-
resentation of knowledge is distinct from the operational form used by engines for the
inner loop computations of inferences. E.g., we find it helpful to permit an end user
to specify a “extended rule” syntactic form of belief in which there is a top-level im-
plication connective, but the antecedent may contain both logical and’s and or’s that
connect atoms, and the consequent may contain and’s that connect atoms. In our ex-
perience with users, they have found this to be relatively natural and concise. RAISE
includes the capability to reformulate such extended rules into Horn rules.

e Procedural attachments (“reflexes”) for not only actions (“effectors”) but also special
evaluations (“sensors”). A reflex is treated as a special primitive entity, akin to a
purely declarative (i.e., belief) rule in the form of a binary Horn clause. The reflex as-
sociates a logical atom (often containing free variables) with a procedure (e.g., method)
call.

— An effector reflex invokes an attached procedure for the sake of its side
effect. E.g., an effector reflex might associate the belief-status atom
should_keep_in_folder($message, AutoStuf f) with the attached procedure call
SAVE _To_Folder($message, /U serid/autos/mail) that, when invoked, actually
saves the message in the folder. Effector reflexes are “run” after rule consequences
are derived.

— A sensor reflex invokes an attached procedure for the sake of its return val-
ues. It is used to answer a query, returning either a boolean or, more gen-
erally, an answer set (binding lists). Sensor reflexes are “run” when rule an-
tecedent conditions are being tested. E.g., a sensor reflex might associate the
belief-status atom body_contains_keyword($message, $string) with the attached
procedure call KEYWORD_1S_PRESENT($message, $string) which returns
True exactly when the message’s textual body contains the string.

RAISE is founded upon a declarative knowledge representation and clean semantics,
equipped with a simple yet powerful approach to procedural attachments. This results
in highly pluggable (substitutable, recombinable, extensible) components for inferencing,
authoring, and communication. RAISE has the form of a fine-grained object-oriented class
library, of which a first phase of components have been implemented in C++. RAISE has
been designed to be object-oriented from the ground up. Its design has a deep, fine-grain
decomposition into objects, as opposed to only shallowly wrappering large “black boxes” as
objects. For example: Horn rule, predicate, term, and atom (we mean these in the first-
order logical sense) are each a class. The RAISE architecture not only enables reusability
of code among different applications, but also reusability and sharing of knowledge bases
between multiple agents, e.g., within a single application. Inter-agent knowledge sharing
and communication capabilities support the ARPA Knowledge Sharing Effort and extend
simply to other emerging communications standards such as HTML (Hyper-Text Markup
Language) and OMA (Object Management Architecture, the extension of CORBA).

RAISE includes a number of features that ease authoring:

cleanly declarative semantics that facilitates predicting rules’ behavior, as well as main-
taining, updating, and merging rule sets

e the concept of a rule set as a first-class notion; support of multiple rule sets per user
e extended rules (discussed above)

e ‘“canned” rule schemas and rule-set schemas which a user can simply select and param-
etrize in order to create his rule set, rather than having to deal with the often more
difficult mode of free-form rules or rule sets

o interfaces to graphical rule editors

The components in the RAISE library can be combined and extended to form many
different overall configurations.

We discover one particular configuration of the RAISE architecture to be useful for a
group of several different application areas within the overall arena of information agents.
In this configuration, a dynamically-supplied user rule set drives the processing of an in-
put stream or collection of mail-like information items. The processing steps include not
only search and retrieval but also other kinds of filtering and handling functions: e.g.,
categorization, attentional prioritization, personal information management, and selective
dissemination (routing, forwarding, sharing). Inferencing is primarily forward, triggered by

incoming items; however, query-answering is interleaved upon demand, e.g., to perform key-
word analysis via a sensor reflex. An application-specific adapter represents each incoming
item as a set of facts. This set of facts is asserted to the inferencing engine. A knowledge
library, fed by the user via an editor, supplies the working knowledge base, which is updated
by derived facts. The code is relatively lightweight, less than 10,000 lines of C++.

We have found this configuration to be nearly completely reusable with only minor mod-
ifications across three different intelligent information agent applications that we have pro-
totyped. Each of these applications existed in another prototype version, written by others,
before we enhanced it with embeddable rule-based agent intelligence using RAISE. The first
application is a personal messaging (mail) service. The second is a network-newsgroup filter
and handler. This extends a system, Globenet, that has been deployed for customer service
support within IBM. The third is a collaborative news service for Lotus Notes.

The appended Figure 1 illustrates this configuration as used in Globenet.

3 Future Directions

Future directions we are exploring for applications include collaborative information sharing
and workflow in Lotus Notes, matchmaking consumers and suppliers of computational or
economic services, and network systems management.

Our major current effort to augment RAISE itself is in the area of rule authoring. We
are pursuing several avenues in combination: graphical and forms-based representations and
interfaces, simple natural language processing for textual representations and interfaces, and
conflict management.

Fact-Packet Inference & Action Engine Rul
Formation uie
Editor
/ run rules)

| Working Lib
N\ m Knowledge / orary
news @ Base
7 ore
\./ AN ruIes/
/ N facts

Action ng
Foraging Launcher]
over Browser
WAN
sensor \
Specal effector Personal
Database
Condition\ Other &
Analysis Software Viewer
Components

Forward Free-text info o C_ommunication
retrieval with other agents

Figure 1: RAISE Architecture — First Configuration

Acknowledgements

Thanks to all the other people in our past or present group who have contributed to RAISE,
especially Stephen Brady, Colin G. Harrison, and Yannis Labrou. Thanks also to our collab-
orators, especially Davis Foulger and Terry Heath, as well as Manny Aparicio, Tad Davis,

and Rick Spagna.

