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Abstract

We define courteous logic programs, an expressive superclass of general logic
programs, for the acyclic case. Courteous LP’s feature not only classical
negation as in extended LP’s (Gelfond & Lifschitz), but also prioritized con-
flict handling. We show courteous LP’s always have a consistent and unique
answer set, which can be computed in O(m?) time, where m is the size of the
ground-instantiated program, as compared to O(m) time for general LP’s.
Courteous LP’s provide a method to resolve conflicts that arise in authoring
(specifying), updating, and merging. This is especially useful for creation of
rule-based intelligent agents by non-technical authors, e.g., for commercial
applications such as personalized information filtering and workflow. Cur-
rent work includes: implementing courteous LP’s for such applications, in
IBM’s RAISE system; generalizing expressively, e.g., to permit recursion;
and developing methods for interactive acquisition of rules, e.g., conflict
analysis and inter-agent communication.

Summaries of this paper: This paper includes various lengths of sum-
maries of itself. In ascending order of size, see: this Abstract, the Long
Abstract, the Introduction and Overview (Section 1), and the Talk Slides
(Appendix B).



Intended Audience: This paper has been written so as to direct it towards
an audience familiar with logic programming. However, Appendix A
includes review of background logic programming concepts.

Publication Information: This paper is a considerably extended version
of our earlier paper entitled “Prioritized Conflict Handling for Logic Pro-
grams” which appeared in the Proceedings of the 1997 International Logic
Programming Symposium (i.e., of [21]). (That earlier paper does not in-
clude proofs.) This paper’s fundamental technical content also essentially
supersumes that of our previous paper entitled “Practical Prioritized De-
faults Via Logic Programs”, IBM Research Report RC 20464, which in turn
is an extended version of the paper that appeared at the International Work-
shop on Non-Monotonic Reasoning, held in July 1996. That previous paper
is directed towards an audience familiar with non-monotonic reasoning and
artificial intelligence.

Related Papers and Material: can be found via the author’s Web address
and as IBM Research Reports at http://www.research.ibm.com .
Appendix B contains talk slides.

Keywords: logic programming, default reasoning, priorities, non-
monotonic reasoning, intelligent agents, rules. More keywords: applications,
knowledge acquisition, usability, locality, modularity, tractability, negation-
as-failure, Prolog, updating, belief revision, advice-taking, artificial intelli-
gence, machine learning, deductive databases.
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Long Abstract

We define acyclic (non-recursive) courteous logic programs, an expressive
superclass of acyclic ordinary (“general”) logic programs. Courteous logic
programs are equipped with classical negation and prioritized conflict han-
dling. We show courteous inferencing is computationally tractable for the
(acyclic) propositional case, e.g., under the Datalog restriction.

As in extended logic programs [11], classical negation is permitted in rule
heads and bodies (in addition to negation-as-failure in the bodies). Rules
having head p may thus conflict with rules having head —p. In extended
logic programs, such conflict results in global inconsistency; every literal is
a conclusion.

Courteous logic programs feature a disciplined form of conflict han-
dling that guarantees a consistent and unique set of conclusions (answer
set). Partially-ordered prioritization among rules is optionally specified ex-
plicitly via a prioritization sub-program: a (possibly empty) set of facts
about a reserved predicate Qverrides. Each rule has an optional label;
Overrides(labell,label2) specifies that a rule with labell has higher priority
than a rule with label2.

The courteous approach hybridizes ideas from the field of general
non-monotonic reasoning with those of logic programming. Each rule
head <« bodyl is treated as a default: if bodyl succeeds, then head will
succeed unless there is an unrefuted conflicting rule —head <« body2 whose
body2 succeeds. Refutation is based on strict priority. Conflict unresolved
by strict priority is treated skeptically: neither head nor —head is concluded.

Prioritized conflict handling is useful to represent updating and merging,
as well as specificity and inheritance with exceptions, as we illustrate with
several examples. Classical negation plus consistency offers the convenient
capability to infer —p from rules (as well as p from rules), while still enforcing
mutual exclusion between p and —p.

We show that the entire courteous answer set can be computed in O(m?)
time, where m is the size of the ground-instantiated program (i.e., the propo-
sitional representation), as compared to O(m) time for ordinary logic pro-
grams. This is a relatively low overhead to pay for adding the features of
prioritized conflict handling and classical negation.

By contrast, conflict handling in most expressively powerful formalisms
for prioritized default reasoning is an additional source of NP-hard complex-
ity beyond the base reasoning. Key to courteous programs’ computational
and conceptual simplicity is that conflicts are resolved locally: by refutation
and skepticism among rules that mention (positively or negatively) the same
head atom.

Courteous LP’s provide a method to resolve conflicts that arise in author-
ing (specifying), updating, and merging. This is especially useful for creation
of rule-based intelligent agents by non-technical authors, e.g., for commercial
applications such as personalized information filtering and workflow.
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Current work includes: implementing courteous LP’s for such applica-
tions, in IBM’s RAISE agent-builder system; generalizing expressively, e.g.,
to permit recursion; and developing methods for interactive acquisition of
rules, e.g., conflict analysis and inter-agent communication.

For yet longer summaries of this paper, see the Overview (i.e., Section 1)

and the Talk Slides (Appendix B).



1 Introduction and Overview

Our aim in developing courteous logic programs is to improve the expressive
convenience of logic programs, especially for applications in intelligent infor-
mation agents. We call the formalism “courteous” for two reasons. First,
it respects precedence, i.e., priority relationships between rules. Second,
even in the presence of conflict between rules, it is “well-behaved” in the
sense of there being a consistent, tractably computable, and unique set of
conclusions.

An interesting application area for logic programming that motivates our
work is “information-flow” applications enhanced by rule-based intelligent
agents. In these applications, agents control the flow of information items.
Their tasks include not only finding and filtering, but also categorizing,
prioritizing for attention, storing and managing, monitoring and notifying,
and selectively forwarding, disseminating and sharing.

IBM has released Agent Building Environment (ABE) as a toolkit prod-
uct alpha, for building such applications. It is currently available free on
the World Wide Web (see http://www.raleigh.ibm.com/iag/iaghome.html).
ABE is based on our group’s research system RAISE (Reusable Agent Intel-
ligence Software Environment) [22] [23] [20] (also see author’s Web address
for more). ABE/RAISE’s approach revolves around a logic program. In
the currently released version of ABE, this logic program is acyclic (non-
recursive), Datalog, and positive (without negation-as-failure). Inferencing
is in the forward direction, and is exhaustive; i.e., all conclusions are gener-
ated. An innovative feature in ABE/RAISE is its patent-pending approach
to “situating” the logic program’s reasoning by augmenting it with clean and
dynamic procedural attachments for perception and action. IBM has already
built several practical intelligent agents applications based on ABE/RAISE:
in e-commerce shopping, customer service, e-mail, and netnews. Several oth-
ers are underway, mostly in cooperation with IBM’s customers and business
partners.

In this application area, it is valuable to facilitate authoring (i.e., speci-
fying) of logic programs by relatively non-technical users, e.g., as part of per-
sonalizing rule-based intelligent agents. Rule sets are not “shrink-wrapped”
with the application. Rather, a user is the “domain expert” for her own
“workflow”, e.g., for specifying her mail handling or shopping interests.
These users specify their rule sets via forms and templates that are often
application-specific. “Under the covers”, the rules are then re-formatted as
a more standard logic program.

We are attracted by the expressive power of classical negation as in ex-
tended logic programs [11]. There, classical negation is permitted in rule
heads and bodies (in addition to negation-as-failure in the bodies). This of-
fers the convenient capability to reason in a first-class way about both sides
of a proposition p (say, “Highly Important” for e-mail): i.e., about —p as



well as about p, in particular to infer —p from rules (as well as p from rules).
However, arule p «— Bodyl may conflict with a rule =p «— Body2. l.e.,
informally, both Bodyl and Body2 may succeed (fire), creating a conflict
about whether p or —p should succeed. In extended logic programs, such
conflict results in global inconsistency (“blow-up”); every literal is a conclu-
sion. This is similar to the situation in classical logic, in which an inconsistent
theory implies any sentence as a conclusion.

A difficulty with employing extended logic programs is thus that it is
relatively easy to get conflicts in the rule sets, especially when authored by
relatively non-technical end-users as in our intelligent information agents
applications scenarios.

Also, it is desirable in our applications scenarios to facilitate modularity
and merging of rule sets (including advice-taking, i.e., automatic merging
based on inter-agent knowledge-level communication). This is important
because it is relatively expensive in human effort to specify and debug rule
sets. Re-use and sharing are highly advantageous; it’s nice if a user (or his
agent) can swap rule sets with his “friends”, e.g., co-workers. The catch,
though, is that conflicts can arise relatively easily as a result of merging.

Another difficulty is that the presence of two forms of negation, i.e.,
having negation-as-failure in addition to classical negation, is potentially
quite conceptually confusing, again especially for relatively non-technical
end-users.

For inspiration in grappling with these challenges, we have drawn on
the idea of prioritized defaults (e.g., [30] [27] [14] [17] [15] (ch. 2 includes a
literature review), and [3] (also includes a literature review)) from the field
of general non-monotonic reasoning. As has been explored there (and in the
related knowledge representation and common-sense reasoning literatures),
it is often easier and more natural, especially for non-technical end-users, to
specify rules in the manner of prioritized defaults. “Default” roughly means
that a rule antecedent can succeed without the rule consequent succeeding:
it may be that the rule consequent is blocked by another conflicting rule.
“Prioritized” roughly means that in case of conflict between two rules, the
rule with (strictly) higher priority has its consequent succeed, and the rule
with lower priority does not.

We are attracted to partially-ordered prioritization in that it is relatively
weak, qualitative information, yet it suffices to resolve conflicts. It can be
specified by pairwise comparison of rules.

Prioritized defaults suffice as a representational approach for many in-
teresting cases of conflictful reasoning, including: updating in (deductive-
)database-flavor fashion, where more recent premises override previous
premises; specificity dominance and inheritance with exceptions in which
a more specific rule overrides a less specific rule; and legalistic regulations in
which a rule whose source has greater authority (e.g., jurisdictional) over-
rides a rule whose source has less authority.

Taking all this together, we are motivated to provide a mechanism that



can not only represent classical negation, but also handle conflicts and pri-
orities in fashion akin to prioritized defaults. Speaking philosophically and
slangily, we might say that extended logic programs “give up” in the face of
conflicts, whereas we want in developing courteous logic programs to “deal
with” conflicts, take them in stride, even “munch on” them.

The courteous logic program formalism meets our desiderata to a con-
siderable extent. First, it preserves overall consistency in the presence of
conflict. Conclusions not affected by the conflict are still inferred. (It “does
something reasonable” until the the rule set is “totally debugged”.)

Second, it provides a simple way to specify override: an optional label for
each rule, plus a reserved binary predicate Querrides that takes rule labels
as arguments. An Querrides fact as part of the overall logic program then
specifies a pairwise priority comparison.

Third, inferencing in the formalism is tractable, under the Datalog re-
striction. By contrast, conflict handling in most expressively powerful for-
malisms for prioritized default reasoning (e.g., based in Default Logic [34] or
circumscription [29]) is an additional source of NP-hard complexity beyond
the base reasoning [13] [7]. Tractability makes applications practical beyond
small scale.

Fourth, there is a unique answer set (i.e., set of conclusions). This helps
provide a conceptually simple semantics, which facilitates understandabil-
ity, especially by non-technical end-users. By contrast, many expressively
powerful non-monotonic reasoning formalisms have multiple extensions (e.g.,
Prioritized Default Logic variants; see [3] for review).

Fifth, reassuringly, the (acyclic) courteous logic programs class includes
(acyclic) consistent extended logic programs as a sub-class, both syntacti-
cally and semantically. (Acyclic) general logic programs ' are essentially
a sub-class of consistent extended logic programs (the only difference is
that in the usual definition, LP 1/ atom in general LP’s is treated also
as LP - —atom, i.e., the closed world assumption is applied to all atoms).

Sixth, the courteous formalism enables one to avoid many typical uses
of negation-as-failure, e.g., closed world assumption, blocking a less specific
rule when a more specific rule applies, or blocking a less recent rule when
updating with a more recent rule. The expressive mechanisms of classical
negation, defaults, and priorities provide a more disciplined and modular way
to achieve the same effect, in many cases. Obviating the need for negation-
as-failure helps reduce the potential confusion, especially for non-technical
end-users, caused by the presence of two forms of negation.

We have found in our previous work on ABE/RAISE that the acyclic
Datalog restriction suffices for many interesting applications. Motivated by
that work, we are especially interested in exhaustive forward inferencing,
i.e., in computing the entire answer set. This can be viewed as a kind of

Lunder the usual, e.g., stratified, semantics; see Theorem 15 for details



deductive database.

Key to the courteous formalism’s computational and conceptual simplic-
ity is that conflicts are resolved locally: by refutation and skepticism among
rules that mention (positively or negatively) the same head atom.

Tractability and uniqueness of the answer set are highly attractive prop-
erties, in our view. They make reasoning be practical: not only exhaustive
forward inferencing, but also rapidly iterated belief revision. But more than
that, they make authoring rules (knowledge acquisition) be more natural.
They make it much easier to understand and predict the reasoning behav-
ior, and thus to debug and to trust the program. Locality is a major help
too. The author of rules (e.g., a non-technical end-user) need focus only on
the set of rules in a locale, in a modular fashion. Tractability and locality
enable a human to “simulate in his head” what the rules will “do” and thus
what they “mean”, even in relatively large rule sets. Modularity, under-
standability, and predictability are often crucial requirements for practical
usage, e.g., as we have found at IBM in our agent-building experience.

2 Preliminary Definitions; Extended LP’s

Background: We assume the reader is familiar with extended LP’s [11],
with the semantics of stratified (ordinary, non-extended) logic programs with
negation as failure (e.g., [33]), and with the standard concepts in the logic
programming literature (e.g., as reviewed in [2]), including predicate / atom
dependency graph and its acyclicity / non-recursiveness; and instantiation.
Appendix A contains some review of these concepts.

In this section, we introduce some preliminary definitions, notation, and
terminology. This includes reviewing extended LP’s cf. [11].

Each rule r in an extended logic program & has the form:
Ly — ILyAN ... ALy AN~Ly g A .. A~Ly
where n > m > 0, and each L; is a literal.

We will define courteous LP’s’ rule syntax to be similar but not identical
to that of extended LP’s.

Notation and Terminology: A literal is a formula of the form A or —A,
where A is an atom. — stands for the classical negation operator symbol,
and ~ for the negation-as-failure operator symbol. In English, we read the
former as “not” and the latter as “fail”. We say that an unnegated literal
(i.e., an atom) is positive. A ground rule with empty body is called a fact.
Syntactically, a “general” logic program is one in which each literal L; above
is an atom, i.e., where no classical negation is permitted.

The semantics of extended LP’s treats a rule with variables as shorthand
for the set of its ground instances. We will do likewise with courteous LP’s.
We write £ to stand for the LP that results when each rule in £ having
variables has been replaced by the set of all its possible ground instantia-
tions. The semantics of extended LP’s is further defined using the concept



of an answer set (i.e., set of conclusions); again, we will do likewise with
courteous LP’s. An answer set is a subset of the ground literals. We write
= to stand for truth relative to an answer set.

As we discussed in section 1, as Gelfond & Lifschitz define its semantics,
an extended LP may be contradictory, i.e., inconsistent: it may have an
inconsistent answer set. An answer set is inconsistent if it contains a pair of
complementary literals; indeed in their semantics, an inconsistent extended
LP has one answer set which is the set of all ground literals. For example,
the extended LP consisting of the two conflicting rules

p(—
ﬁp(—
is inconsistent. The answer set contains both the literals p and —p.

Observe that restricting extended LP’s to be acyclic or stratified (and/or

Datalog) does not ensure their consistency, e.g., as in the above example.

3 Definition: Courteous Logic Programs

Syntactically, a courteous logic program is defined as a restricted class of
extended logic programs in which, additionally, rules have labels. These
labels are used as handles for specification of prioritization between rules.

Definition 1 (Labelled Rule)

A labelled rule has the form:
(laby Ly <~ LA ...ANLyA~Lyig A ... A~Ly

where lab is the rule’s label (and, as before, n > m > 0, and each L; is
a literal). The label is optional. If omitted, the label is said to be empty.
The label is not required to be unique within the scope of the overall logic
program; i.e., two rules may have the same label. The label is treated as a
0-ary function symbol. The label is preserved during instantiation; all the
ground instances of the rule above have label lab. O

Definition 2 (Prioritization Predicate)

A special binary predicate Owverrides is used to specify prioritization.
Owverrides(i, j) specifies that the label ¢ has (strictly) higher priority than
the label j. O

Definition 3 (Prioritization Sub-Program)

A prioritization sub-program is defined as a set, possibly empty, of positive
ground facts about Overrides. Each of these is called a prioritization fact.

The prioritization relation Querrides specified by the prioritization sub-
program is required to be a strict partial order, i.e., transitive and anti-
symmetric (and irreflexive). O

Since each prioritization fact is a rule of the program, it may in principle
have a label. As we will see, however, such labels are effectively ignored
semantically.



Definition 4 (Courteous LP: Syntax)

A courteous logic program C is defined as the disjoint union of a
main (sub-)program with a prioritization sub-program:
C = Cmain U Couverrides

Overrides is syntactically reserved: it must not appear in C,,;, but rather
appear only within the prioritization sub-program.
C (i.e., its ground-atom dependency graph) is required to be acyclic. 2 O

Note that the prioritization predicate Querrides and the labels are
treated as part of the language of the logic program, similarly to other pred-
icate and function symbols appearing in C.

Note that adding a prioritization sub-program does not affect the acyclic-
ity of a program.

Terminology: Relative to C: the definitional locale for a ground atom
p, written as Defn(p), is defined as the (possibly empty) subset of rules
within C*™**¢ in which p appears in the rule head (positively or negatively).

Let p = p1,...,pm be a sequencing of all the (ground) atoms of C™™*?.
We say that p is a total stratification of the atoms when p is a reverse-
direction topological sort of the atom dependency graph. “Reverse” here
means that body comes before head.

Terminology: By shallower (respectively, deeper), we mean later (re-
spectively, earlier) in the stratification sequence. p is thus a sequence in
which deeper locales precede shallower locales. Observe that if atom b de-
pends on atom a (i.e., in the atom depdendency graph), then b is shallower
than a.

Associated with the total ordering of the atoms is the associated
totally ordered partition of C™*!¥’s rules into definitional atom locales
Defn(py),...,Defn(p,). Each stratum, i.e., element in this partition, is
a single atom’s definitional locale. O

Definition 5 (Courteous LP: Semantics)

C has a unique answer set S, defined as follows.

Let p be a total atom stratification of C, such that all of the prioritization
(i.e., Overrides) atoms come before all the other (i.e., main) atoms. (There
may be several such total stratifications; the choice among them does not
matter.)

Let p; stand for the i** (ground) atom in this sequence p. The answer
set is constructed iteratively:

Sg :m
S; = Uj:l,...,i Tj , 121
S = Usz

where () stands for the empty set,

2 Acyclicity (our terminology follows [2]) prevents recursion among ground atoms, hence
is often also called non-recursiveness in the literature. This is a cause of some confusion,
however, in that strictly speaking, acyclicity does not prevent recursion among predicates.



T, =
{op; | Cand? # 0 , Vk € Cand;?.3j € Cand{. S;_; = Overrides(j,k)}
Cand? = {j | labels(j,r) , Head(r) = op, , S;—1 = Body(r)}

Here, o stands for a classical sign, either positive (sometimes written as +)
or negative (-, also written as —). labels(j,r) stands for: j is the label
for rule r. Head(r) and Body(r) stand for the head and body of rule r,
respectively. Note that Head(r) = op; implies that » € De fn(p;).

Every rule with empty label is interpreted as having the same catch-all
label empty_label, which is treated as a new symbol (i.e., new with respect
to the rest of C’s language). O

Notation: C p p means that p is in the answer set of C.

Explanatory Description: The answer set is defined incrementally
and constructively, by means of a series of partial answer sets S;, that are
built up by iterating along a total atom stratification, generating conclusions
for each ground atom (and thus each predicate) along the way.

The 7** stratum in the total atom stratification contributes an increment
T; to the answer set. Recall that a stratum corresponds to the atom p;’s
definitional locale. T} is the conclusion, if any, resulting from the rules in
that atom locale. The set T; either consists of a single ground literal, or is
empty. The literal is of positive sign, i.e., p;, or it is of negative sign, i.e.,
Pi-

T; is the winner, if any, that results from prioritized competition
among candidate arguments. A candidate argument is generated by a
rule r € Defn(p;) whose body Body(r) successfully “fires” in the sense of
being true in the previous answer set iterate S;_;, in which iterate the earlier
strata’s conclusions have accumulated. Such a rule has either p; or —p; as its
head Head(r). Candidates are represented by their labels and are collected
into two sets. There is one such set for each sign o: Cand{, which can be
viewed as a team arguing for the same conclusion, namely op;,.

The prioritized competition among candidates can be viewed in terms
of these two opposing teams. If both teams are empty, then there is no
winner. Otherwise, if one team is empty, then the other (non-empty) team
wins. The most interesting case is when both teams are non-empty. This case
corresponds to conflict. In extended logic programs, conflict results in in-
consistency. In this case (and only in this case), the prioritization Overrides
comes into play. One team wins iff every member of the opposing
team is refuted. Refutation is based on prioritization: one candidate
argument with label j refutes another candidate argument with label & iff
Jj has higher priority than k, i.e., if Overrides(j, k) is true in the previous
answer set iterate S;_;. Note that Overrides(j, k) is true iff

Overrides(j, k) —
is present as a prioritization fact in the prioritization sub-program Coyerriges-
If neither team is refuted, then neither team wins: i.e., the teams can de-
feat each other. (Note that due to the strict partial order property of



the prioritization Qverrides, it cannot happen that both teams refute each
other.) This outcome of mutual defeat corresponds to skepticality: if there
are unrefuted candidate arguments both for p; and for —p;, then no conclu-
sion about p; is drawn; intuitively, there is then no strong justification to
believe either, so no “commitment” is made.

Figure 1 illustrates the above semantic steps for an atom locale. It em-
phasizes three phases: 1) rules firing to produce candidates, 2) candidates
refuting each other based on priority, and 3) skepticism being applied.

Remarks: Our definition of courteous logic programs is as a pure
formalism. It therefore supports inferencing in both the forward direction
(as in the intelligent agents applications discussed in section 1) and the
backward direction, i.e., query-answering (as in Prolog).

The prioritization (Overrides), refutation, and skepticality are local, in
the sense that they apply directly only within the scope of each atom locale,
then ramify indirectly to the entire program.

If a locale contains only rules whose heads share the same sign, then we
say that the locale is one-sided. If a locale is one-sided, then there can be
no conflict within it, and the prioritization within it is irrelevant.

In particular, since the prioritization sub-program is one-sided, its rules’
labels and the prioritization among them (if, indeed, it has any) are irrele-
vant, and can thus be omitted equivalently.

Since empty_label cannot appear in the prioritization sub-program, any
rule with empty label effectively does not participate in strict prioritization.
More generally, if the prioritization sub-program is empty, then labels are
superfluous.

In general, the prioritization relation Qverrides may compare two labels
i and j that belong to different locales. Such priority is ignored by the
semantics. Similarly, prioritization facts mentioning non-label arguments
may be permitted, but are ignored.

Lemma 6 (Independence of Total Stratification Choice)

The courteous LP answer set of Definition 5 is independent of the (non-
deterministic) choice of total (atom) stratification. O

Proof : Our approach is to analyze the inferential dependencies.

By the definition of the construction, the conclusion drawn about p;
in p;’s locale depends only on the previous conclusions drawn about: the
atoms in the locale’s rules’ bodies, plus the priority atoms relevant to the
locale. (The priority atoms relevant to the locale are those that compare
two labels that appear in the locale’s rules.) But by our definition of total
stratification, any total stratification has the following property: all of the
atoms appearing in p;’s rules’ bodies, and all the prioritization (Overrides)
atoms, came before p; in the sequence. Intuitively, those atoms’ locales
have been tried and milked for all they are worth. Thus any choice of total
stratification results in the same T;. Since this is true for each p;, the overall
answer set is thus the same no matter which total stratification is chosen.
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Actually, above we skipped over a subtlety: the special case of prioriti-
zation (Overrides) atom locales. Each prioritization atom’s locale depends
on no other atoms. It does not depend on any other atoms via the locale’s
rules’ bodies because each prioritization rule is required by definition to have
an empty body. Nor does it depend on prioritization atoms that compare
the (labels) of rules (and thus candidates) within the locale: there can be
no conflict within the locale, since the locale is one-sided (the prioritization
sub-program is required by definition to be positive). Therefore, the priori-
tization atoms can “go first” (in the total stratification sequence, before the
non-prioritization atoms) with no problem. O

4 Initial Examples

4.1 Nixon Diamond

Example 7 (Pacifism; Skepticality)

Consider the well-known Nixon Diamond example of conflict in default rea-
soning. This can be straightforwardly represented by program C; consisting
of:
(Qua) Pacifist(z) «— Quaker(z)
(Rep) —Pacifist(z) « Republican(z)
Quaker(Nizon)
Republican(Nizon) «—
Interpreted as an extended logic program, the first two rules conflict for
instance Nizon, resulting in inconsistency of the entire program.
By contrast, the courteous interpretation behaves skeptically and consis-
tently. The answer set is simply
{Quaker(Nizon), Republican(Nizon)}
, with no conclusion drawn either way about Nixon’s Pacifism.
Next, consider program C, in which the Republican rule is given higher
priority, by adding the rule:
Overrides(Rep, Qua) +—
The (courteous) answer set now includes the conclusion = Pacifist(Nizon).
We find this to be a simple and intuitively natural representation. O

4.2 Inheritance and Specificity

A common pattern of priority is to have a more specific exception-case rule
override a more general-case rule, e.g., in default inheritance reasoning.

Example 8 (Molluscs; Inheritance; Specificity Priority)

Etherington & Reiter’s [9] example of a default inheritance hierarchy about
molluscs can be straightforwardly represented, with prioritization corre-
sponding to specificity, as the following program. There is no need to add the
extra “interaction” conditions that make the defaults be non-normal there
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(in Default Logic, the formalism they used).
Mollusc(z) «— Cephalopod(z)
Cephalopod(z) +— Nautilus(z)
(Mol) ShellBearer(z) «— Mollusc(z)
(Cep) —ShellBearer(z) «— Cephalopod(z)
(Nau) ShellBearer(z) «— Nautilus(z)
Overrides(Nau,Cep)
Overrides(Cep, Mol) «—
Overrides(Nau, Mol)
For example, with
Mollusc(Molly)
Cephalopod(Sophie) «—
Nautilus(Natalie) «—
the answer set for the ShellBearer predicate locale is
{ShellBearer(Molly),~Shell Bearer(Sophie), Shell Bearer(Natalie)}.
By contrast, in Etherington & Reiter’s style of representation without
prioritization, the Mol and Cep rules above are modified to have extra “in-
teraction” conditions involving negation-as-failure:
(Moly ShellBearer(z) «— Mollusc(x) N~CEPHALOPOD(x)
(Cep) —ShellBearer(z) «— Cephalopod(z) N~NAUTILUS(z) O

4.3 Personal E-Mail Agents

Next, we give two examples in which a rule base controls handling of e-mail
in a personal intelligent agent. One aspect of such handling is classifying
mail into high importance vs. lower importance.

Example 9 (Mail Importance: Stores and Deliveries)

Karen has some rule-form knowledge she wants her agent to implement on
her behalf. Mail from a retail store should be treated as not highly impor-
tant (typically, it’s junk). Mail from someplace from which Karen is awaiting
a delivery should be treated as highly important. These two rules can be
represented as:
(Jun) —Important(msg) «— From(msg,z) A Retailer(z)
(Del) Important(msg) < From(msg,z)
A AwaitingDeliveryFrom(Karen, )
Also, Karen has various other facts and knowledge, e.g.,
AwaitingDeliveryFrom(Karen, ParisCo)
In addition, Karen has access to a shared background knowledge base con-
taining facts about organizations. She includes this information in her knowl-
edge base. E.g.,
Retailer(FaveCo) «—
Retailer(BabyCo) +
Retailer(ParisCo) «—
Now Karen receives a mail item:
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From(msg54, BabyCo) <+
The courteous program draws the conclusion ~Important(msgb4). So far,
so good — Karen is pleased when she inspects a trace of what her agent has
done on her behalf. After a while, another mail item arrives:

From(msg81, ParisCo) <+
The courteous program has a conflict between the first two rules, and hence
skeptically and consistently draws no conclusion about I'mportant(msg81).
When Karen inspects the trace, she exclaims “Oops!”’. She wants this kind
of item to be treated as high importance — the delivery rule should win
over the junk rule. This is easy to remedy: all she has to do is to add the
prioritization fact

Overrides(Del, Jun)
Things go smoothly until after a while arrives the mail item

From(msgll7, FaveCo) <+
The courteous program concludes —Important(FaveCo). However when
Karen inspects the trace, she again exclaims “Oops!”. She wants this kind
of item to be treated as high importance — because it is from FaveCo, one
of her favorite stores. Again, this is easy to remedy: all she has to do is to
add a new rule, and prioritize it as an exception override to the junk rule:

(Fav) Important(msg) «— From(msg, FaveCo)
Overrides(Fav, Jun) «— a

Example 10 (Mail Importance: Family)
Fred has three rules he wants his agent to implement on his behalf. Mail
from a close family member has high importance. But mail from Aunt Daisy
does not (she tends to waste Fred’s time and Fred does not like her much);
this rule is an exception to the first, and hence is given higher priority than
it. E-mail notifying Fred of a personal emergency has high importance; in
case of conflict with any other rules, this rule should win, hence it is given
higher priority than them. Fred can represent these rules straightforwardly
as:
(Clo) Important(msg) «— From(msg,z) A CloseFamily(z,Fred)
(Dai) —~Important(msg) « From(msg, AuntDaisy)
(Eme) Important(msg) «— NotificationO f(msg,es)
A Personal Emergency(es)
Overrides(Dai,Clo) +
Overrides(Eme, Dai) «
Overrides(Eme,Clo) «—
Personal Emergency(s) «— SeverelllnessO f(s,x)
A CloseFamily(z, Fred)
CloseFamily(Betty, Fred) «—
Close Family(AuntDaisy, Fred) «—
Fred receives a couple of messages:
From(Iteml9, Betty) «
From(Item20, AuntDaisy)
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Fred’s agent concludes Betty’s message is important (Important(Item19))
and that Daisy’s message is not important (—Important(Item?20)). After a
while, Fred receives another message from Daisy:

From(Iteml115, AuntDaisy) «—

NotificationO f(Item115, Sit79)

SeverelllnessO f(Sit79, AuntDaisy) «—
(where the last two facts were extracted from the message’s body by a natural
language processing routine.) Fred’s agent concludes Daisy’s latest message
is important (Important(Item115)), unlike her previous message, because
it is notifies him of a personal emergency. O

5 Well-Behavior; Inferencing Algorithm

This section describes how courteous LP’s behave well in several regards.
We begin with discussion and examples, then proceed to theorems and an
algorithm.

5.1 Discussion and Examples

A key to courteous LP’s’ computational and conceptual simplicity is that the
prioritization and conflict resolution is local, pairwise, and atomic.

By local, we mean restricted to rules (rule instances, more precisely)
within the same locale.

By pairwise, we mean that the only conflicts that need be considered
are between two rule instances. In many other systems for default reasoning
(e.g., circumscription and Default Logic and their prioritized versions), by
contrast, conflict may involve k > 2 default instances together constituting a
minimal conflict set (e.g., potentially any subset of the overall set of defaults);
this is a source of exponential worst-case computational complexity.

By atomic, we mean that the essential focus of conflict is not even two en-
tire rule instances, but rather only their heads, i.e., a pair of complementary
ground literals competing about the truth assignment of the same ground
atom.

Example 11 (Basics; Localization of Conflict; Chaining)

Next, we illustrate some basics of how courteous LP’s behave, even with
empty prioritization. The rule set

b=, Tp—

qg < p,r < 7p

U — SNt A~V o, Tt S

w — u A ~"7p
has answer set {s,—t,~u,w}. The unresolved conflict about p is localized
in its impact: other conclusions are entailed (without all propositions be-
ing entailed as in extended LP’s), including by some chaining. —p’s failure
helps the last rule fire. (If formalized instead in Default Logic (as “normal”
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defaults), by contrast, there would be two “extensions”: the first including
p and thus g; the second including —p and thus r.) O

Example 12 (Conflicting Chains; Pairwise; Non-Contrapositive)

The following rule set illustrates the pairwise-ness of conflict resolution and
prioritization.
e—b

b—a , a—

? ?

—e—d , d—c , c—
f<_e ) g{__‘e
Here, two chains of implication conflict with each other. The first chain
consists of three rules that together “argue” for e. The second chain consists
of three rules that together “argue” for —e. The resulting courteous LP
answer set is {a, b, ¢,d}. The conflict about e is unresolved; neither e nor —e
is concluded, hence neither f nor g is.

Continuing this example: Suppose the rules in the first chain are given
higher priority than those in the second chain. Then the resulting answer
set is {a,b,c,d, e, f}. This includes e, now the winner in its locale, and f by
chaining on e. This also still includes the earlier “steps” ¢ and d of the other
chain. That the rule for e wins does not contrapositively affect the status of
d, for example. O

Terminology: By contrapositive here, we mean that when —b is estab-
lished somehow, the rule “if a then b” can be used to infer —a,

So far, our examples have been fairly simple: with few logical variables
and relatively shallow chaining. In general, in courteous LP’s: chaining may
be through several prioritized locales, there may be predicates that have
multiple logical variables as arguments, and logical functions may appear.
The following rather abstract example illustrates.

Example 13 (Chaining Through Prioritized; Multiple Variables)
(1) a(X,2)) « bX,Y)Ac(Y,q(%))

(2) —a(X,Y) « d(X,Y)

(38) Owverrides(1,2) «—

(4) d(el,e2) «

(4) b(el,e2) —

W) ele2 qle3) —

(4) b(e3,eT) «

(4) c(eT,q(e8)) «

(5) —d(el,e2) «

(6) Owverrides(4,5) «—

1) FX,Y) — a(X,¥)

(8) g(r(X),ed) «— a(X,ed)A j(ed)
9) ~f(X,Z) « h(X,e5) N —k(X,Z,e6) A m(Z)
(10)  h(el,e5)

(11) —k(el,e3,e6)



(11) m(e3) «
(11) m(e8) «
(11) Owerrides(9,7) «—
(12) a(e2,e4)
(13) jled) —
Here, X,Y, Z are logical variables; el, ..., e8 are object constants (i.e., 0-ary

logical function symbols); and ¢, 7 are logical function symbols.
The resulting answer set is:
{b(el, e2), b(e3,e7), (€2, (€3)), e(eT, g(e8)), h(el, e5), j e4),
—k(el,e3,e6),m(e3), m(e8),d(el,e2),a(e2,e4),a(el,e3),a(e3, e8),
f(e2,e4),~f(el,e3), f(e3,e8),g(r(e2),ed)}
The chain of conclusions

d(el,e2), a(el,e3), —f(el,e3)
is particularly interesting. In each of these three conclusions’ (atom) locales,
there is a conflict which is resolved (i.e., to produce a winner) by priority. O

5.2 Theorems and Algorithm
Theorem 14 (Consistency)

Every courteous LP has exactly one answer set which is consistent. O
Proof : Consider the answer set construction in Definition 5. Consider a
given total (atom) stratification.

The answer set construction’s definition directly implies there exists ex-
actly one answer set.

Consistency is shown by an induction on the total stratification p (i.e.,
iteration ¢ = 0,1,...) in the answer set construction. The inductive step is
to show that each atom locale’s incremental contribution 7T; to the answer
set iterate preserves consistency of the answer set iterate. By preserving
consistency here, we mean that if S;_; is consistent then S; = (S;_1 UT;) is
consistent. The base case of the induction is trivial: the empty answer set
So is consistent.

By definition of the construction, for atom p;, p;’s locale’s contribution
T; is either p; or —p; or (. T is thus consistent in itself.

A simple way to see why S; is consistent is the following. Each (ground)
atom p; is syntactically distinct from from each other previous p;, for j < 7.
Each T; if non-empty is thus a ground literal whose atom is distinct from
the atoms appearing in each previous T}, for j < i. S; is, therefore, just an
accumulation of ground literals whose atoms are distinct in this sense. And
S; contains at most one literal containing p,. S; is thus consistent.

More formally, we show next that S; is a conservative extension of S;_;.
By conservative extension here, we mean in the usual sense cf. the classical-
logic literature. We equivalently syntactically reformulate our representation
to make the atom p; be a primitive propositional (zero-argument) predi-
cate. S; ;1 can then be viewed as a formula of classical propositional logic:
a conjunction of (ground) literals. By definition of the construction, the
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propositional-predicate symbol p; does not syntactically appear as an atom
in the formula S;_;. lL.e., p;, and therefore T}, are new with respect to S;_;.
Newness of the increment T; implies the conservative extension property.
Because T; is a consistent-in-itself, conservatively-extending increment
to S;_1, it must preserve consistency of the answer set iterate.
O

Next, we discuss how the semantics of courteous LP’s relates to the
semantics of extended LP’s and general LP’s.

Terminology: By an LP’s extended interpretation (respectively,
courteous interpretation), we mean the semantic interpretation of that
LP as an extended LP (respectively, courteous LP). We say that an LP is
E-consistent when its extended interpretation is consistent; intuitively, this
corresponds to a situation in conflict is absent.

In the courteous LP representation, the labels and prioritization sub-
program are permitted to be empty. Therefore, for any acyclic extended LP,
one can treat it syntactically as a courteous LP and also one can interpret
it semantically as a courteous LP. As we will see below, this results in no
change to the semantics if that LP is E-consistent.

Conversely, for any courteous LP, one can treat it syntactically as an ex-
tended LP and also interpret it semantically as an extended LP: simply by
ignoring the labels on the rules and the special role of the prioritization pred-
icate Qverrides in the courteous semantics. Terminology: We call this the
extended interpretation of the courteous LP, i.e., of the unlabelled version
of that courteous LP. Similarly, one can take the extended interpretation of
any courteous LP’s main part.

Next, we show that the courteous and extended semantics are essentially
equivalent for the case of E-consistency. In the presence of conflict, by
contrast, the courteous and extended semantics differ in that the courteous
interpretation of an extended LP is always consistent.

Acyclic general LP’s are essentially a special case of E-consistent acyclic
extended LP’s: they are conflict-free because each locale is one-sided; and,
therefore, they are E-consistent.

Observe that the prioritization sub-program of a courteous LP is (syn-
tactically) an acyclic general LP.

Theorem 15 (Agreement with Extended and General LP’s)
Let LP be (syntactically) a courteous LP. Suppose it is E-consistent. Equiv-
alently, suppose its main part (LP,,.in) is E-consistent. Then:

1. LP’s courteous interpretation and LP’s extended interpretation are
the same. That is, there is a single answer set under the extended
interpretation, and it is the same as the answer set under the courteous
interpretation.

2. The main part of LP’s courteous interpretation is the same as the
extended interpretation of its main part L£P,,.;n. By main part of
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the interpretation, we mean its restriction to the non-Overrides pred-
icates.

A special case is whenever LP is (syntactically) an acyclic extended LP
that is E-consistent, i.e., whenever LP lacks labels.

A further special case is whenever LP, or its unlabelled version, is (syn-
tactically) an acyclic general LP, i.e., whenever LP lacks classical negation.
O
Remark: Here, we interpret general LP’s under the locally stratified se-
mantics [1] [33], the stable semantics [10], or the well-founded semantics
[37]. These semantics all coincide for the acyclic case since that is a spe-
cial case of locally stratified (see, e.g., [2] for review of relevant concepts
and literature). General LP’s are syntactically a special case of extended
LP’s. Semantically, they are essentially a special case of extended LP’s; the
only difference is that in the usual definition, LP I/ atom in general LP’s is
treated also as LP F —atom, i.e., the closed world assumption is applied to
all atoms.

Proof :

Background: Extended LP’s are defined by Gelfond & Lifschitz to have
stable-style semantics. Stable semantics for the acyclic case coincides (see,
e.g., [2] for review of literature) with the (locally) stratified semantics [33]
and the well-founded semantics [37].

Overview and Introduction: If the main sub-program is consistent when in-
terpreted as an extended LP, there is no conflict. The prioritization and
labels are then irrelevant. The courteous semantics’ stratified construction
then essentially corresponds to the locally stratified semantics of [33]. For
the acyclic case, the locally stratified semantics essentially coincides with
[11]’s stable-style semantics for extended LP’s.

Details:
Terminology: As usual throughout this paper, “atom” means ground atom.

We are given that LP is E-consistent. Let us take its unlabelled version
and view it as an extended LP. By a result of [11], because it is E-consistent,
it can be transformed equivalently into (re-represented as) a general LP. In
that transform, —p is simply made into (re-represented as) a new predicate
p' distinct from p, for every pre-transform predicate p. Notationally, we say
that each classically negated ground literal —p; is made into (re-represented
as) pl.

Since the pre-transform LP had an acyclic atom dependency graph
(ADG), the post-transform LP must also have an acyclic ADG (in the
new representation). In particular, there can be no dependency of p} on
Pp;, NOT vice versa, since that would correspond to a cycle from p; to p; in
the pre-transform ADG. Therefore, the post-transform LP is locally strati-
fiable. Therefore, the post-transform LP has exactly one model under the
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locally-stratified semantics. Correspondingly, according to the transform’s
equivalence property, the pre-transform LP has a unique extended answer
set. This model, and correspondingly this answer set, can be built via the
locally stratified construction in the post-transform LP.

Because of the simple nature of the transform, the post-transform ADG
is very similar to the pre-transform ADG. We can thus choose the local
stratification of the post-transform LP as follows. Each stratum consists of
a pair of post-transform atoms p;,p} that correspond to (i.e., re-represent)
a complementary pair of (ground) literals p;, —p; for the same pre-transform
atom p;. We will call this stratum a “literal-pair” stratum. These strata
(the i’s) are sequenced (totally-ordered) according to a stratification p (a
sequence of ¢’s) that is chosen exactly as the sequence of i’s was chosen in
Definition 5: a reverse topological sort of the dependency graph in which the
Overrides locales precede all the other locales. We will call this stratification
of the literal-pair strata a “total” stratification, since it totally orders the i’s
(though it does not totally order the post-transform atoms).

The i** literal-pair stratum and the total-stratification ordering of the
i’s, in the post-transform LP, thus correspond respectively to the it* atom
locale stratum and the same total-stratification ordering, in the courteous
LP answer set’s definitional construction in Definition 5.

By an argument similar to that we used in the Proof of Theorem 14,
the given E-consistency implies that each literal-pair stratum is making a
contribution of one or zero literals, not both its literals, to the extended
answer set. In other words, it contributes at most one side (p; XOR —p;) of
the atom p;, not both sides (p; AND —p;). This corresponds in the courteous
answer set construction to the situation in which there is no conflict (which
is defined precisely as: at most one side having candidates in p,’s locale).

In the courteous answer set construction, the result in each locale is thus
independent of (unaffected by) the prioritization and labels.

Therefore, the courteous answer set is the same as the extended answer
set. And because the main part of the program is unaffected by the prior-
itization, the main part of the courteous interpretation is thus the same as
the courteous (or extended) interpretation of the main part of the program.

It remains to show that L7P,.,.:,’s E-consistency implies LP’s E-
consistency, and vice versa. Again, we reason about the stratified semantic
construction for the extended LP (via its transform to a general LP). We
choose the prioritization sub-program (i.e., the Overrides atoms) now in-
stead to be a set of shallowest strata in the extended interpretation’s locally-
stratified construction. 3 The prioritization sub-program (i.e., the Quverrides
atoms’ locales) is itself consistent (since one-sided), and logically orthogonal
to (neither affects nor is affected by) the main part of the interpretation.
LP nain corresponds to all the previous strata. E-consistency is simply the

3Recall that in the total stratification cf. Definition 5, the Qverrides atoms’ locales
were a set of deepest strata.
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existence of a consistent answer set. It is easy to see then that both directions
of the E-consistency equivalence follow. O

Next, we discuss inferencing and its computational complexity.

We begin by reviewing a few facts about how instantiation affects size.
Let n stand for the size of C. Let m stand for the size of C****¢. An interesting
question is how much larger m is than n. If C has no free variables, e.g.,
is propositional, then m = n. A common restriction in practice for logic
programs is the Datalog condition, i.e., that there are no function symbols
with arity greater than 0. Another common restriction in practice for logic
programs is that there is a finite upper bound v on the number of variables
appearing in any one rule. Taken together, the Datalog and variables-bound
conditions on C imply that the size of the Herbrand base is O(n), and that
m is O(n"*1).

Theorem 16 (Tractability of Inferencing; Algorithm)

Suppose C™**¢ is finite. Let its size be m. Then C’s entire answer set can be
computed in time O(m?) * .

As a special case, suppose C obeys the Datalog restriction and has a
bounded number v of variables per rule. Let C’s size be n. Then C’s entire
answer set can be computed in time O(nZ (1)), O
Proof : A conceptually simple algorithm (for exhaustive forward infer-
encing) is to implement directly the answer set construction that we gave
in defining courteous programs. Next, we sketch this algorithm enough to
analyze its computational complexity.

(In the following complexity analysis, as in the theorem statement, we
ignore log factors, e.g., in sorting or for accessing an element in a list.)

Instantiation: Scan C to generate the Herbrand base. Then syntactically
expand C to form C™**?. This can be done in time O(m).

Total Stratification: The size (edges plus vertices) of the atom depen-
dency graph is O(m); it can be built essentially by scanning C***¢| in time
O(m). Topological sort can be done in time linear in the size of the graph,
by doing a depth-first traversal (e.g., [8], pp. 485-487).

Atom locales: Consider an atom locale. Let d be its size. Generating
candidates can be computed simply because satisfaction (e.g., of rule bodies)
in the previous answer set iterate can be tested quickly, by lookup operations.
The overall cost to generate these candidates, classified by sign, is thus O(d).
There are at most O(d?) pairs of opposing candidates to consider in the
refutation process. For each pair, computing refuted-ness requires simply a
lookup of the corresponding prioritization atom. Applying the skepticism
principle requires a single XOR operation. The overall cost of inferencing
per atom locale is thus O(d?).

There are O(m) atom locales; however, the more lcales there are, the
smaller they have to be, since the total size of all the locales together is

*ignoring log factors, e.g., for insertion or retrieval of an element in a list
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O(m). The overall effort bound of O(m?) is obtained by considering the
situation where the locales are large. O

Discussion: The core of the extra computational cost, relative to
(acyclic) general LP’s or consistent extended LP’s, is the refutation process.
One must consider refutation for each ordered pair of opposing candidates
in each locale; this results in quadratic complexity within the locale. For
conflict-free programs, this overhead is absent, and the overall cost is O(m).
The above algorithm imposes non-constant-factor overhead only when
there actually is conflict to deal with. In the general case, this overhead
is an additional factor of O(m), making the overall cost O(m?). However, of-
ten the overhead factor is lower than O(m): e.g., if in each locale the number
of conflicting rules is small (relative to m). More precisely, this observation
and the proof above imply the following tighter complexity bound.

Corollary 17 (Overhead Factor from Conflict Handling)

In Theorem 16:

Suppose the size of the smaller of the two teams of candidates in each (atom)
locale is bounded by O(f(m)), where f(m) is smaller than m (e.g., f(m) =
m* where 0 < o < 1). Then the overhead factor is O(f(m)), i.e., overall
cost is O(m - f(m)). O

Proof : In the proof of Theorem 16:

In each locale, the number of pairs of opposing candidates, and thus the
refutation cost, is bounded by O(d - f(m)). The total size of all the locales
together, i.e., the sum of all the d’s, is O(m). Therefore, the total refutation
cost, summed across all locales, is O(m - f(m)). The other costs besides
refutation cost total O(m). O

6 Simple Updating cf. Databases; Closed World
Assumption

6.1 Database-Flavor Updating; Recency Priority

A common principle in databases and deductive databases is that more re-
cent “update” information overrides less recent information. The update
may overturn a previous conclusion directly, or may imply indirectly that
it should be overturned. This is simple to represent in courteous LP’s: by
adding the more recent rules (e.g., facts), and prioritizing them higher than
the previous rules. This has several virtues compared to general or extended
LP’s. Negation-as-failure is not required. Moreover, the previous rules do
not have to be modified at all — the update is modular in that sense. As a
bonus, a group of rules (e.g., a “module”) can share a label, thereby reducing
the number of prioritization facts needed to specify the overriding preference
for recency.
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Example 18 (Directly Overturning Previous Conclusion)

E.g., suppose the previous rule set is:

(prevl) p <
At this point, p holds as a conclusion. Then updating with (i.e., adding) the
new, more recent fact

(updl) p

Overrides(updl,prevl) «—
results in concluding —p.

Similarly, the previous conclusion might have been derived from chaining.

E.g.,

(prev2) q <

(prev2) p «— ¢
updated by

(upd2) —p

Overrides(upd2,prev2) «—
results in concluding —p. O

Example 19 (Indirectly Overturning Derived Previous Concl.)

Yet more generally, the new overriding conclusion might also have been
derived by chaining from the update, rather than directly appearing in the
update. E.g., from the previous

(prev3) r
(prevd) s «—
(prevd) t
(prevd) q «— rAs
(prevd) p «— qAt

p is a conclusion. Updating by
(upd3) =p — wu
(upd3) u
Overrides(upd3,prevd) «—
results in concluding —p instead, as well as .

6.2 Forcing; Cumulativity

Theorem 20 (Forcing a Conclusion)

Courteous LP’s have a relatively simple way to force a conclusion ¢: sim-
ply include a fact g+, at (strictly-)highest priority within its locale. O
Terminology: By strictly-highest priority, we mean having priority higher
than any other rule in its locale.

Proof : Consider the answer set construction. A strictly-highest-priority
candidate refutes every opposing candidate in its locale, hence its side wins.
a

Related to this point is the following property.
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Theorem 21 (Cumulativity)

Courteous LP’s are cumulative in the sense of [28] [25]: if p is a conclusion
of C, then adding the fact p« (with any priority within its locale) to C results
in a C’' that has the same answer set as C. O

Proof : Consider the answer set construction, and a given total atom
stratification sequence p. Compare the change as one goes from C before to
C' after.

For every locale ¢ that precedes p’s locale in p, there can be no change in
that locale’s set of rules, its set of candidates, or its contribution 7; to the
answer set.

In p’s locale, the new fact simply adds a new candidate for p in p’s locale.
p’s side’s team was already winning even before adding this new candidate
— every opposing candidate was refuted — and the new candidate does not
alter this. Thus p’s locale is unchanged in its contribution T;.

Consider the next locale following p’s locale in p. This locale’s rules are
unchanged. All of its candidates (i.e., the truth of its rules’ bodies) are
unchanged because all of the previous contributions are unchanged. Hence
its contribution is unchanged. By an inductive argument, ditto for every
later locale. O

6.3 Closed World Assumption

A common representational device adopted in databases and many other
settings is the Closed World Assumption (CWA).

The Closed World Assumption for any given literal (e.g., for a given
predicate), can be represented in a simple fashion using priority plus classical
negation. To achieve the effect of minimizing the predicate p after all the
other rules “have had their say”, include the rule —p(z) with lowest priority
within its locale.

By contrast, [11] give an approach in extended LP’s — they represent the
CWA for p by the rule —p(z)«~p(z). Observe that this employs negation-
as-failure, and also creates a cycle in the dependency graph.

Example 22 (CWA: Airline Flights)

A typical kind of relational database over which CWA is adopted is for airline
flights. Each flight is represented as a positive ground literal in the predicate
flight(source, destination, time, airline). Implicitly, there are definitely no
flights other than the explicitly asserted ones. Let C be a courteous LP
whose flight locale is:
(scheduled)  flight(Miami, Detroit,10am, Elysian_Air) «—
(scheduled)  flight(JFK, New_Orleans,4pm, Fountain_Air)
(scheduled)  flight(Dallas, Seattle, Tpm, Middle_Air) «—
(CW A_flight) —flight(s,d,t,a)
Overrides(scheduled, CW A_flight) —

(Here, s,d,t,a are variables.)
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The resulting answer set consists of three positive flight(...) ground con-
clusions

flight(Miami, Detroit, 10am, Elysian_Air)

flight(JFK, New _Orleans, 4pm, Fountain_Air)

flight(Dallas, Seattle, Tpm, Middle_Air)
plus a bunch of negative = flight(...) ground conclusions, e.g.,

~flight(New_Orleans, Dallas,4pm, Middle_Air) O

7 Merging Rule Set Modules; Advice Taking;
Teams

Courteous programs have desirable properties with regard to merging of
rule sets, i.e., of (sub-)programs. Such merging may be a simple union,
or more generally it may involve prioritization between the rule sets being
merged, i.e., the merge may be prioritized.

7.1 Parallel Merges

Consider the program Cig» formed by taking the union of two programs C;
and C;. We define this as merging them in parallel, i.e., without adding
prioritization. We view each of the programs as modules.

To be fully precise, in order to ensure that concept of merging is well-
defined, there is a subtlety. In this paper, for simplicity’s sake in defining
merging (both parallel and prioritized), we require as a condition that,
C; does not contain prioritization facts mentioning labels from C,, nor vice
versa. In other words, before merging two modules, there is no inter-module
(strict) prioritization.

Theorem 23 (Preservation in Parallel Merging)

Suppose p is a conclusion in both C; and C;. Consider their parallel merge
Cig2- Suppose that for each rule in p’s locale, the truth of its body is un-
changed after the merge. Then p is conclusion of Cigo. O

Proof : In p’s locale, the set of candidate arguments in Cigo is simply
the union of the set of candidate arguments in C; and the set of candidate
arguments in Cy. This is because the truth of the rule bodies was unaffected.

Terminology: By refutation pair, we mean an ordered pair of candidate
arguments where the first refutes the second.

The set of refutation pairs in Cigo is, likewise, the union of the set of
refutation pairs for C; with the set of refutation pairs for C,. This is because
there is no new strict prioritization after the merge.

The set of unrefuted arguments in Cigo is thus the union of the set
of unrefuted arguments before the merge in C; with the set of unrefuted
arguments in C,.
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We are given that p is a conclusion in both C; and C;. In both C; and
C,, therefore, in p’s locale, the set of unrefuted arguments is non-empty and
all for p; none of the unrefuted arguments is for =p. The union of these sets,
i.e., the set of unrefuted arguments in C;g3, is thus non-empty and all for p.
But this is just equivalent to p being a conclusion in Cigs. O

Example 24 (Preservation in Parallel Merging)
Let C; consist of

(1) p « a
a

2) p < b
b —

Overrides(1,2) «—
C;’s answer set includes p: there is conflict about p between rules 1 and 2,
but it is resolved by the priority in 1’s, and thus p’s, favor.
Let C, consist of

(8) » « ¢
C
(4 p — d
d —

Overrides(4,3) «—
Cy’s answer set includes p: there is conflict about p between rules 3 and 4,
but it is resolved by the priority in 4’s, and thus p’s, favor.

Intuitively, we expect that p should also be a conclusion of the merged
program Cigo. All of the rules in p’s locale still “fire”, just as before the
merge: i.e., their bodies remain true, since there is no conflict involving
them. And indeed, p is a conclusion of Cigs.

However, there is a subtlety. No one rule / candidate refutes all the rules
/ candidates that oppose it. There is no strict priority between rules 1 and
3, nor between rules 4 and 2. Nevertheless, the team of rules 1 and 4 is able
to refute all their opposers. This kind of situation, in part, motivates the
team aspect of our definition of prioritization’s semantics — we will return
to this point in subsection 7.3. O

7.2 Prioritized Merges

Let us define the prioritized merge C;5» of two modules (programs) C;
and C, as the set of rules formed by first taking their union, and then adding
prioritization facts representing that each rule in C; is higher priority than
each rule in Cy. There is a subtlety in ensuring this is well-defined. It may
be that, before merging, some of the rules have empty labels; for purposes
of defining the merging priority, an explicit label is assigned to these rules,
essentially as in our earlier discussion of empty_label. (Also, recall that
prioritization between the prioritization facts themselves has no effect.)
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More generally, it is straightforward to define merging many modules
(not just two) with an inter-module prioritization partial order, using
the concept of composing prioritization given in [14] [15] [17].

In intelligent agent applications such as those we are pursuing at IBM,
modules may correspond to different users’/agents’ knowledge bases; merg-
ing then corresponds to taking advice from other agents [17]. E.g., Joe’s
workflow rule set may be formed by combining rules he writes (and main-
tains) himself with rules written (and maintained) by Sue, his supervisor.
E.g., Joe may also merge in a news-handling rule module from his buddy
Angela, and merge in rule modules on different subjects from various “en-
terprise” rule sets associated with different organizational levels or units.

There are many natural bases for inter-module prioritization informa-
tion [14] [17]. E.g., Joe may merge in a newer (fresher) module, or a more
special-case (specificity) module. Relative authority (e.g., organizational) or
reliability (e.g., expertise) of modules’ sources may be the basis for priori-
tizing between the merges.

Theorem 25 (Preservation in Prioritized Merging)

Suppose p is a conclusion of C;. Then p is a conclusion of C;5,. O

Proof : Consider the answer set construction (according to Definition 5) of
Cis2. The proof is by induction along the stratification of the locales. The
inductive hypothesis is that the theorem property holds for the (partial)
answer set iterate up through locale i, i.e., for S;. In each locale, after the
merge, the candidates from C;’s rules are still candidates — i.e., their bodies
are true, because of the inductive hypothesis — and refute any opposer
candidates from C,’s rules (because of the merge’s prioritization). In the
base case of the induction, the bodies are true because they are empty —
recall that the first locale in the stratification is chosen to be for an Qverrides
atom. O

Example 26 (Preservation in Prioritized Merge)

Let C; consist of
p — a
a <+
q — bAc
b «—
c «—
Cy’s answer set is {p,q,a,b,c}:
Let C, consist of
ap — d
d «
—QqQ —
g +— b
Cy’s answer set is {—p,7a,d}. Notice that it has the opposite conclusion
about a and about p than C; does.
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Then C;5,’s answer set is {p,q,a,b,c,d}. Notice that in a’s locale, the
rule from C; wins over the conflicting rule from C,. Thus the body of C;’s
rule about p was satisfied. (This illustrates the inductive aspect mentioned
in the Proof of Theorem 25.) The body of Cy’s rule about p was also satisfied.
In p’s locale, the candidate from C; wins over the conflicting rule from C,; in
q’s locale, likewise. O

7.3 Teams in Refutation, and Merging

Behavior under merging is a major desideratum motivating our choice of
how to define prioritization, especially the team aspect of refutation.

A “naive” alternative approach to defining refutation is the fol-
lowing, which we dub “top dog” or “single combat”:

p wins iff there is a candidate for p that
refutes all opposing candidates.

However, this alternative approach is problematic, as the next example il-
lustrates.

Example 27 (Simple Merge of 2 Cloned Modules)

Consider the following parallel merge of a simple module with a clone of
itself.
(la) p «
(16) =p
(1) Overrides(la,1b) «
Modulel i p

(2a) p <

(2b) —=p

(2¢) Owverrides(2a,2b) —
Module2 v p

(Here, Modulel refers to rules {la,1b,1c}, and Module2 refers to rules
{2a,2b,2c}. Recall the | notation from after Definition 5.)

With our definition of courteous LP’s, (Modulel U Module2) pp. We
find this behavior intuitively desirable.

However, if instead the “top-dog” definition is adopted, then the merge
does not preserve p as a conclusion:

(Modulel U Module2) o p !
The difficulty is that rule (1a) does not override rule (2b), and rule (2a) does
not override rule (1b); neither rule (1a) nor rule (2a) is a “top dog” able
single-handedly to refute all opposers. O

The above example was extremely simple. However, this kind of behavior
and issue motwating our team definition arises generally, e.q., for inferences
via chaining, for merging with non-clones, for prioritized merging, and for
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rule sets not created by merging. Example 24 illustrates this point, as does
the next, slightly more complicated version of the example above.

Example 28 (Merge of 2 Cloned Modules, with Chaining)

(Mod4_R1) q « r

(Mod4_R2) r «

(Mod4_R3) s «

(Mod4_R5) p «— qAr

(Mod4_R8) —p «— s

(Mod4_R9) Owverrides(Mod4_R5, Mod4_R8)

(Mod7_R1) q « r

(Mod7_R2) r «

(Mod7_R3) s «

(Mod7_R5) p «— qAr

(Mod7_R8) —p «— s

(Mod7_R9) Owverrides(Mod7_R5, Mod7_R8) «—

ModuleT i~ {p, q,r,s}

We desire, as in courteous, that
(Module4 U ModuleT) p {p, q,r,s}
But under the alternative “top-dog” definition:
(Module4 U ModuleT)fp ! O

Summary: The team aspect of refutation in courteous LP’s handles
well a subtlety in prioritization, and facilitates merging (prioritized
or unprioritized), e.g., “advice-taking” between agents.

8 More Analytic Properties

NB: This section can be skipped by the reader less interested in com-
parisons with the non-monotonic reasoning literature.

In this section, we give some analysis of properties of the courteous LP
formalism, that are especially of interest for purposes of comparison with
other approaches in the non-monotonic reasoning literature.

8.1 Local Monotonicity of Prioritization

Theorem 29 (Prioritization is Locally Monotonic)

Prioritization is locally monotonic in the sense of the following.

I. Within an atom locale, adding prioritization preserves the previous
conclusion if there was one, and may result in an additional conclusion.

I1. Suppose the predicate dependency graph is acyclic. In other words,
suppose that for each predicate p, no instance of p depends on any other
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instance of p. Then within a predicate locale, adding prioritization preserves
all the previous conclusions, and may result in additional conclusions.

By adding prioritization, we mean adding more prioritization facts about

the labels of the rules in that locale (and only in that locale).
Proof : (I.): There are four possibilities for the atom locale a previous to
adding the prioritization: (1) no candidates, (2) a winning side (i.e., sign
of a) with no opposing candidates, (3) a winning side with every opposing
candidate being refuted, or (4) mutual defeat (unrefuted candidates for both
sides). Adding prioritization does not affect which rules’ bodies are satis-
fied, and thus does not change the set of candidates; it only changes the
refutations. Thus (1) and (2) are not affected by adding prioritization. In
case (3), all of the refuted opposing candidates are still refuted, hence the
previous winning side still wins. In case (4), it may be that all of one side
becomes refuted, creating a winner.

(IL.): We can view p’s predicate locale as consisting of the set of atom
locales, one per instance of p. Adding prioritization to p’s predicate locale is
thus equivalent to adding prioritization to these instance atom locales. Let
atoms a and b be distinct instances of predicate p. The given acyclicity of the
predicate dependency graph implies that b does not depend on a. Therefore,
adding prioritization to a’s locale (i.e., possibly adding a conclusion to a’s
locale) does not affect which rules fire in b’s locale, i.e., do not affect the
set of candidates in b’s locale. b’s locale prioritization is also unaffected by
adding prioritization to a’s locale. Thus the b atom locale behaves as in (I.).
This argument holds for all of the instances of p, not just b in particular. O

More prioritization may resolve conflict in the sense of creating winners
where before there was mutual defeat. The Pacifism example (Example 7)
illustrated this local monotonicity.

The local monotonicity of prioritization aids incremental develop-
ment: it makes it easier for a rule-base author, i.e., courteous logic pro-
grammer, to resolve conflicts and to anticipate the effects of program modi-
fications.

Terminology: By the global monotonicity of prioritization, we mean that
adding prioritization facts never causes retraction of conclusions from the
(overall, entire) answer set.

In courteous LP’s, prioritization is not globally monotonic (rather, it
is only locally monotonic). This contrasts with some other prioritized default
formalisms (e.g., prioritized circumscription or Prioritized Default Logic).

The next example illustrates.

Example 30 (Prioritization Not Globally Monotonic)
The rule set
(1) a «
<2> a —
b — a
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(38) ¢ «
(4) —c¢ «— b
Overrides(4,3) «
has unresolved conflict in the a locale, and thus neither a nor b is concluded.
This results in ¢ as conclusion.
Consider the effect on the answer set of adding
Overrides(1,2)
a is concluded (the update is locally monotonic within the a locale). b is thus
concluded. Therefore, —¢ is concluded, reversing and retracting the previous
conclusion ¢. The ¢ locale’s conclusion thus changes non-monotonically.
Analysis: Here, the newly resolved conflict in a deeper locale results in
a new candidate firing in the shallower locale, with non-monotonic effect in
that shallower locale. O

8.2 No Propagation of Ambiguity

Courteous LP’s do not propagate ambiguity in the sense of [36]’s paper
on “clash of intuitions” in default reasoning.

Example 31 (No Propagation of Ambiguity)

E.g., consider the LP formed by adding the following rules to the unpriori-
tized Pacifism example (Example 7):

FootballFan(z) + Republican(z)

AntiMilitary(z) <« Pacifist(z)

- AntiMilitary(z) < FootballFan(x)

Then ~AntiMilitary(Nizon) is concluded, rather than not being concluded.
This can be viewed as follows. The Quaker and Republican rules con-
flict about Nixon’s Pacifism, and the conflict is handled skeptically in a
local fashion, resulting in a single partial “extension” (in the Default Logic
sense of “extension”), i.e., a single answer set iterate, which contains neither
Pacifist(Nizon) nor ~Pacifist(Nizon). In the AntiMilitary locale, the
FootballFan rule thus “fires” while the Pacifist rule does not.

Terminology: By contrast, Touretzky & et al call the following
behavior: “propagating ambiguity”. Some default reasoning for-
malisms spawn multiple extensions in this example: one extension with
Pacifist(Nizon) and AntiMilitary(Nizon), a second extension with
Pacifist(Nizon) and —~AntiMilitary(Nizon), and a third extension with
—Pacifist(Nizon) and - AntiMilitary(Nizon). Observe that neither sign
(side) of AntiMilitary(Nizon) nor of Pacifist(Nizon) is present in the in-
tersection of all these multiple extensions. Terminology: We can call this
intersecting (i.e., disjoining) after extension-spawning: “global” skepti-
cism. By contrast, the courteous semantics has “local” skepticism.
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9 Discussion: Related Work

9.1 Courteous Can Avoid Negation-As-Failure

To achieve somewhat similar effects to defaults or priorities, previous logic
programming work has often resorted to the non-monotonic mechanism of
negation-as-failure, which provides a “hook” for blocking a rule.

In courteous LP’s, the prioritization mechanism reduces the need
for the representational use of negation-as-failure. (Recall especially
our discussions of specificity-based override and of the Closed World As-
sumption.) This lessened need is, in part, significant because negation-as-
failure causes many of the difficulties in the semantics of logic programs, both
computationally and conceptually / intuitively (especially for non-technical
authors faced with classical negation as well).

9.2 Previous Logic Programming Approaches

Brewka [4] has a form of prioritized extended LP’s that is closely related
to courteous LP’s. Courteous LP’s (first introduced in [19] whose content
partially overlaps with this paper) and Brewka’s approach were developed
independently. Brewka’s syntax is similar to courteous LP’s; however, he
is concerned with two additional directions of expressive generality: cyclic
dependencies, especially negative (through ~); and reasoning about the pri-
oritization itself, e.g., cf. [16] [3] [18] [17]. He modifies the well-founded
semantics to strengthen its conclusions; prioritization specifies how rules de-
feat each other via negation-as-failure. For comparison, each courteous LP
rule 7 is most appropriately treated as “seminormal”,i.e., as including addi-
tional body literal ~head(r). His semantics, including for priorities, behaves
differently from courteous LP’s, in general, even for some expressively sim-
ple cases. Worth considering is Example 27 which in courteous results in
conclusion p but in Brewka’s does not 5. His formalism, like courteous, has
the great virtue of computational tractability; conclusions can be computed
in O(n?®) time, as compared to O(n?) for courteous. Unlike courteous, his
approach can result in an inconsistent conclusion set; he gives no consistency
guarantee even for restricted cases.

Next, we summarize Brewka’s [4] review of three other relevant ap-
proaches. Praaken & Sartor [32] has an argument-theoretic approach very
similar to Brewka’s. Buccafurri, Leone, & Rullo’s [6] ordered LP’s use an
inheritance hierarchy as the basis of priority, but allow only one form of nega-
tion. Kowalski & Sadri [24] has a conflict handling approach in which rules
that are “exceptions” to others are treated as having implicit preference.

Baral & Gelfond [2] discuss techniques for achieving some of the effects
of priorities within extended LP’s, e.g., via abnormalities, but do not give
a general method. Pereira et al [31] address the issues of consistency, and

Spersonal communication with Brewka
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priorities between abnormalities, in extended LP’s. Their approach to modi-
fying the semantics is quite different in spirit and detail from ours, e.g., they
force in ~ literals contrapositively. An interesting issue for future work
is to investigate the relationship between the courteous approach and the
representational methods based on abnormalities given by Baral & Gelfond
and Pereira et al.

Hierarchical Constraint Logic Programming (HCLP) [38] has a notion
somewhat similar to defaults with priorities: soft constraints, which are
used in an abductive-flavor manner. In details of concept, inferencing, and
application, HCLP differs markedly from courteous logic programs.

Contemporaneously and independently of this paper, the following other
related work appeared, too late to provide detailed comparisons here.
Brewka [5] and Zhang & Foo [39] each give an approach to prioritizing
extended LP’s. Gelfond & Son [12] give an approach to specifing priori-
tized defaults in extended LP’s. Leite & Pereira [26] gives an approach to
updating LP’s that can achieve some similar effects as prioritizing LP’s.

9.3 Previous Other Non-Monotonic Reasoning Approaches

As our examples illustrated, courteous LP’s have more expressive power on
several dimensions than default inheritance systems in the vein of Touretzky
[35]: e.g., multiple body conditions, multiple variables, prioritization beyond
specificity, and appearance of negation (including by failure) in the body. An
interesting issue that we are pursuing in current work is how to automatically
infer implicitly the higher priority of more specific rules.

Prioritized default circumscription [14] [15] (generalizing [30] [27]) has a
concept of prioritization that is similar to courteous’, though more general.
However, circumscription behaves contrapositively, and thus quite differently
from logic programs.

Extended LP’s are equivalent to a special case of Default Logic [34], as
Gelfond & Lifschitz showed. Prioritized variants of Default Logic (see 3],
which includes a review of that literature) are thus a target for comparison.
Courteous LP’s’ semantics differ significantly from that of these Prioritized
Default Logic (PDL) variants: the latter proliferate multiple extensions (of
which there are exponentially many, in the worst case). In logic program-
ming terms, each extension can be viewed as an alternative candidate set of
conclusions, i.e., an alternative answer set. This multiplicity of extensions
derives from PDL’s heritage: Default Logic.

E.g., in the unprioritized Nixon diamond (C; in Example 7), two
extensions are spawned: one with Pacifist(Nizon) and one with
—Pacifist(Nizon). In the first extension, Pacifist(Nizon) is then available
for further rules to “use” in the sense of satisfying their antecedents (bod-
ies in LP terminology); while in the second extension, —Paci fist(Nizon) is
available to do likewise. In effect, the reasoning across the multiple exten-
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sions must “carry along” the size-2 disjunction of possibilities about Nixon’s
Pacifism. Informally: the presence of conflict, especially conflict unresolved
by priority, can generate such a disjunctive split; k& such unresolved conflicts
may result in k such disjunctive splits, and hence 2* extensions.

Another way to put this is that the PDL approaches propagate ambiguity
in the sense of [36]’s paper on “clash of intuitions” in default reasoning (recall
the discussion in subsection 8.2).

Courteous LP’s are, roughly speaking, less expressive than PDL or prior-
itized circumscription; there, arbitrary formula expressions, including quan-
tifiers, are permitted in the consequent or antecedent of a rule.

However, courteous LP’s are much less complex computationally and
conceptually than those relatively expressively powerful formalisms.

Inference in courteous logic programs is tractable (polynomial-time); un-
like prioritized Default Logic and circumscription and their ilk, courteous
programs avoid having a second source of NP-hard complexity be-
yond the underlying monotonic-logical inferencing [13]. The locality
of skepticism and prioritization is crucial in this regard: it nips in the bud
the potential branching into multiple extensions. Together with the (inter-
locale) stratification, this locality ensures a single answer set.

9.4 Alternative Variants of Courteous LP’s

Alternative variants of courteous logic programs can be defined which
do propagate ambiguity and proliferate multiple extensions. One
variant can be defined by using Brewka’s style of definition in which all se-
quences of rules are attempted that are compatible with the prioritization
information (including not only the explicit prioritization but also the strat-
ification). Another variant can be defined by branching into two extensions,
one with p and one with —p, when a locale has unrefuted candidate(s) for
each. A major practical difficulty with each of these variants is that there
are, in the worst case, an exponential number of extensions to consider.

9.5 Simplicity of Courteous LP Approach

Part of courteous LP’s’ simplicity derives from the logic programming ap-
proach: e.g., definiteness (no “carrying around” or “propagating” of disjunc-
tions or “ambiguity”) and no contrapositivity; in particular, these properties
keep the underlying monotonic-logical inferencing tractable.

Another key to courteous LP’s’ computational simplicity is that the pri-
oritization and conflict resolution is local, pairwise, and atomic (recall the
discussion near the beginning of Section 5).

The value of the courteous approach to logic programming, in our view, is
in finding a definition such that the resulting formalism is simple concep-
tually and computationally, yet useful expressively. (This definition com-
bines expressive generalization, e.g., about prioritization, with expressive
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restriction, e.g., about dependencies.) The lack of tremendous mathemati-
cal complexity is thus a feature and virtue, and is no accident — it is closely
related to the simplicity with which the courteous knowledge representation
can be explained to, or explained by, a new rules-writer.

10 Current Work

In current work, we are implementing courteous logic programs (acyclic Dat-
alog case) as an improved fundamental knowledge representation in RAISE,
for use in building commercial intelligent agent applications (recall section
1). A RAISE prototype is currently running.

Our directions of generalizing representationally include: permitting re-
cursion; implicit specificity priority, inheritance, and integrity constraints;
and rich reasoning about the prioritization relation.

Our directions for interactive knowledge acquisition include analyzing
conflict statically and dynamically, soliciting prioritization rules from users,
and inter-agent advice-taking (prioritized merging of rule sets).
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A Appendix: Review of Logic Programming Con-
cepts

Body; Head

In standard logic programming terminology/notation, a rule has the form:

head +— body
body is the antecedent of the rule, and head is the consequent of the rule; intuitively,
the rule is to be read as: “if body then head”. In a rule, body may be empty, but head
may not be empty. (A query, by contrast, is written in the form — body )

Logic Programs Without Negation; Stratified

We say that an extended logic program without classical negation, but possibly
with negation-as-failure, is “general” We say that an extended logic program with-
out classical negation and without negation-as-failure is “momnotonic” or “Horn”.
The kind of logic programs found in today’s implementation, e.g., in the Prolog
programming language, are usually in the “general” class.

The Horn class is especially important because of its tractability: in the propo-
sitional case, linear time to answer a query, quadratic time for exhaustive forward
inference. Even without classical negation, negation-as-failure is problematic in
many cases. The conceptual intuition behind negation-as-failure involves invoking
a recursive sub-inference: ~a succeeds when a is not inferred. A sticky issue in
general is: what is the set of rules from which a may be inferred in this recursive
sub-inference — may it involve the rule which had ~a in its body (antecedent),
hence involving a kind of circularity? The theoretical debate about formal seman-
tics in the logic programming community reflects this problematic character. There
is, however, virtual consensus about the semantics of the stratified class of general
logic programs. This class has a single answer set / model; the recursive sub-
inference (for testing negation as failure) can exclude from consideration the rule
which spawned the call.

Truth Relative to an Answer Set

Let U be a subset of the ground literals (e.g., an answer set), and let L be a ground
literal. U |= L stands for: L is true in U, i.e., L € U. One can view |= as entailment,
or as satisfaction, or as the answering of queries: for ground formulas.
We extend this notion straightforwardly to permit conjunction and ~ as well:

UE(LiAN ... NLpyAN~Lpy1 A o..~Ly)
when

UIZLZ 3 i:l,...,m

UKL, , i=m+1,...,n
where n > m > 0 (and each L; is ground).

Atom and Predicate Dependency Graphs

An important concept in the logic programming literature, e.g., in the semantics of
stratified logic programs, is that of a dependency graph. (Next, in reviewing it, we
follow closely [2], pages 79 and 83.)

Let £ be a logic program (general, extended, or courteous). &’s predicate
dependency graph PDG¢ consists of the predicates as vertices. A triple (p;, p;, s)
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is a labelled edge in PDG¢ iff there is a rule » in £ with p; in its head and p; in
its body and the label s € {+, —} denoting whether p; appears within the scope of
the negation-as-failure operator ~ in the body of r. s being — denotes that such
appearance is within the scope of ~; s being + denotes that such appearance is not
within the scope of ~. Note that an edge may be labeled both by + and —.

Intuitively, £’s atom dependency graph is analogous to its predicate de-
pendency graph, but has as its vertices ground atoms instead of predicates. The
atom dependency graph ADG¢ consists of the ground atoms as vertices. A triple
(pi,pj, 8) is a labelled edge in ADGg iff there is a rule 7 in £*!¢ (i.e., after replac-
ing rules by their instances) with p; in its head and p; in its body and the label
s € {+, —} denoting whether p; appears within the scope of the negation-as-failure
operator ~ in the body of r.

£ is said to be acyclic, also known sometimes as non-recursive, when its
atom dependency graph does not have a cycle. Observe that, for any &£: if its
predicate dependency graph is acyclic, then its atom dependency graph must be
acyclic; however, the converse does not hold in general. A cycle in the predicate
or atom dependency graph is said to be a negative cycle if it contains at least one
edge with a negative label.

An acyclic dependency graph is a directed acyclic graph (dag), and thus can be
viewed as a strict partial order. Recall that a topological sort of a strict partial order
is a total order that is compatible with that partial order. The edges’ direction in
the dependency graph is from shallower (heads) to deeper (bodies) with respect to
dependency; hence in the total stratification sequence of section 3 (which is reversed
in direction relative to the dependency graph), earlier corresponds to deeper and
later corresponds to shallower. In general, there may be multiple topological sorts
for a given dag / strict partial order: i.e., if the given strict partial order is not
a total order. Thus there may be multiple total stratifications for a given acyclic
extended logic program.
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B Appendix: Talk Slides

This appendix contains talk slides that summarize the more basic content of this
paper. They are oriented towards a scientific conference audience, suitable for a
25-minute presentation.
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Talk Slides
as companion to IBM Research Report RC20836.

(This talk first presented at International Logic Programming Symposium,

Port Jefferson, NY, USA, Oct. 1997.)

Courteous Logic Programs:
Prioritized Conflict Handling For Rules

Benjamin N. Grosof

IBM T.J. Watson Research Center
grosof@watson.ibm.com
(or grosof@us.ibm.com or grosof@cs.stanford.edu)
http://www.research.ibm.com/people/g/grosof
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Motivating Applications and Requirements

Aim: improve expressive convenience, esp. for KR in ...

Application Area:

Information Flow enhanced by rule-based intelligent Agents
e finding and filtering
e categorizing, prioritizing for attention
e selectively: forwarding, disseminating, sharing

IBM’s Agent Building Environment Toolkit Released 7/96
e product alpha, free on Web; C++/Java
e core is our RAISE research engine
e approach revolves around “situated” logic program
e innovative procedural attachments & embeddability
e acyclic, Datalog, positive;
exhaustive forward inferencing cf. deductive DB

Practical ABE applications built:
e e-commerce shopping, customer service,
e e-mail, netnews, ...

Rule base personalizes agent.

User is relatively non-technical.

User is “domain expert” for own “workflow" .
e.g., mail handling or shopping interests.

Application-specific rule forms/templates.

Crucial requirements: facilitate authoring
e modularity, understandability, predictability
e to debug and trust
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Challenge of Conflict Handling;
Prioritized Defaults As Approach

like: expressive power of classical negation:
e to infer both —p via rules and p via rules, with
enforcement of mutual exclusion / negation, e.g.,
important vs. not, urgent vs. not, actions

problem: easy to get conflicts,
esp. by non-technical authors

want: facilitate modularity and merging of rule sets
e incl. automatic, inter-agent
e collect 'em and swap 'em with your friends

problem: 2 forms of negation is conceptually confusing,
esp. for non-technical users

inspiration: idea of prioritized defaults
from general non-monotonic reasoning literature
e deal with conflicts, not give up

like: partially-ordered prioritization
e relatively weak, qualitative info to specify
e suffices to resolve conflicts for many interesting cases:
— updating cf. deductive DB
— specificity and inheritance
— legalistic regulations, authority
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Overview of Courteous LP’s

1. ensure consistency; unaffected still concluded
2. simple to specify override (priorities)

3. inferencing tractable for Datalog
(By contrast, conflict handling is a
source of NP-hardness for
most expressively powerful prioritized default for-
malisms.)

4. unique answer set; thus conceptually simple

i

5. includes consistent “extended” LP and “general” LP

(acyclic)

6. avoid many typical uses of negation-as-failure
e more disciplined and modular
e conceptually simpler

Meets desiderata to considerable extent:
e inferencing: practical; usefully expressive
e authoring:
*x modularity, understandability, predictability
+ rapidly iterated belief revision
+ simulate in author’s head

Key to How: locale = {rules mentioning predicate p in head}
is focus of conflict handling
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Review: Extended Logic Programs [Gelfond &
Lifschitz 1991]

Allow classical negation —. Rule has form
LO — Ll/\ /\Lm/\NLm_|_1/\ /\NLn

where n > m > 0.
Literal L; is A or = A, where A is an atom.
~ is negation-as-failure.

ELP with variables stands for its set of ground instances.

Semantics: Answer set is a set of literals that is stable. 0,
1, or many answer sets per ELP, cf. # of extensions in DL.
Unique if stratifiable, e.g., acyclic.

Inconsistency Possible: “blow-up” similar to classical.
Even for simplest expressive fragment.

p(—
ﬂp(—

results in unique answer set containing every literal.

Thus, does not directly handle conflict.
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Courteous LP’s: Definition

“Courteous” because:
respects precedence, i.e., priority between rules.
well-behaved: consistent unique answer set.

Based on Extended Logic Programs (ELP).

Augment ELP syntax and modify ELP semantics:

e Add optional label (name) to each rule.

e Include prioritization facts of form
Overrides(i,j)
Overrides is a special reserved predicate.
Overrides(i, 7) means ¢ has higher priority than 7.
Overrides is a strict partial order on labels.

e Locale is “definition” of one ground atom.
Locale(p) = { all rules whose head is p or —p }

e Stratify the CLP into locales.
(Dependency graph)

The answer set is defined via constructive induction along
the stratification.
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Courteous LP’s, Definition, cont'd

e Priorities are applied locally.
Defined via refutation process with teams of
candidate arguments for p versus —p.

Each rule whose body “fires” generates a
candidate argument for its head.
The argument takes its label from the rule’s label.

Argument ¢ for p refutes argument j for —p
when Overrides(i, j). Vice versa when Overrides(j,1).

Unrefuted arguments survive. If only one side survives, it
is the winner. If two sides survive, they mutually defeat
each other: i.e., skepticism is applied.

e Skepticism is applied locally (after refutation).
Prevents branching into multiple extensions.
Consistent. Provides alternative ELP semantics.

e Restrictions here:
acyclic atom dependency graph.
(Current work: relax; e.g., recursion)
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Example: Pacifism

(Qua) Pacifist(x) «— Quaker(x)
(Rep) —Pacifist(zr) «— Republican(x)
Quaker(Nizon)
Republican(Nizon)
Inconsistent as an ELP, due to conflict.
CLP is skeptical and consistent; answer set is:

{Quaker(Nizon), Republican(Nizon)}

If add:
Overrides(Rep, Qua) «—

Then answer set also has:

—Pacifist(Nizon).
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Example: Molluscs; Inheritance

Inheritance chain [Etherington & Reiter, AAAI-83].

CLP can represent prioritization due to specificity.
Obviates need for extra “interaction” conditions that lead to
semi-normality in Default Logic representation.

Mollusc(xz) «— Cephalopod(x)
Cephalopod(x) «— Nautilus(z)
(Moly ShellBearer(z) «— Mollusc(x)
(Cep) —ShellBearer(z) «— Cephalopod(x)
(Nau) ShellBearer(z) «— Nautilus(x)
Overrides(Nau, Cep)
Overrides(Cep, Mol) —
Overrides(Nau, Mol)
E.g., with
Mollusc(Molly)
Cephalopod(Sophie)
Nautilus(Natalie)

the answer set for the Shell Bearer predicate is
{ShellBearer(Molly),

—Shell Bearer(Sophie),
Shell Bearer(Natalie)}.
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Version WITH Default Logic style
interaction conditions:
Example: Molluscs; Inheritance

Inheritance chain [Etherington & Reiter, AAAI-83].

CLP can represent prioritization due to specificity.
Obviates need for extra “interaction” conditions that lead to
semi-normality in Default Logic representation.

Mollusc(xz) «— Cephalopod(x)

Cephalopod(x) «— Nautilus(z)
(Mol) ShellBearer(z) «— Mollusc(x) N~CEPHALOPOD(z)
(Cep) —ShellBearer(z) «— Cephalopod(x) N ~NAUTILUS(x)
(Nau) ShellBearer(xz) <« Nautilus(z)

Overrides(Nau, Cep)

Overrides(Cep, Mol) «—

Overrides(Nau, Mol)

E.g., with

Mollusc(Molly)

Cephalopod(Sophie) «—

Nautilus(Natalie) «—

the answer set for the Shell Bearer predicate is
{ShellBearer(Molly),

—Shell Bearer(Sophie),
Shell Bearer(Natalie)}.
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Conflict & Augmentability in
Example Personal E-Mail Agent

Ainitial:
(Junk) —Important(?msg)
— From(?msg,?z) A RetailStore(?x).
(Delv) Important(?msg)
— From(?msg, 7z) A Awaiting Delivery(Karen, x).
Awaiting Delivery(Karen, ParisCo).
RetailStore(FaveCo)«—.
RetailStore( BabyCo)«—.
RetailStore(ParisCo)«—.

Apair © From(msgb4, BabyCo)«—.
r —~Important(msgb4)

Apait - From(msg81, ParisCo)«—. conflict case
W Important(msg81) , kb =Important(msg81)

Ainstruct = Overrides(Delv, Junk)«—.
augment: priority
~ Important(msg81)

Apair : From(msgl17, FaveCo)«.
~ —Important(msgl17)

Ainstruct :
(Fave) Important(?msg) <« From(?msg, FaveCo).

Overrides(Fave, Junk)—. specificity
r Important(msgl117)
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Example: Basic Behavior,
Localization of Conflict,
Chaining

p—.
q—p-.
r<——p.
§—.
= —.
—u«—s N\ =it A ~v.
w——u N\ ~p.

has answer set {s, —t, —~u, w}

e unresolved conflict about p
iIs localized.
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Results: Well-Behavior and Inferencing

e Consistent, unique answer set.
e Subsumes “general” LP (acyclic).

e Agrees with ELP when ELP is consistent.
Alternative semantics for ELP.

e Tractable inferencing.
Overhead is relatively low for conflict handling feature.
O(m?) to compute entire answer set
m = size of instantiated LP
vs.
O(m)  to compute for “general” LP (acyclic).

Refutation i1s core of extra cost.

(m finite if Datalog.
m = n’t, where n = size of uninstantiated LP,
when Datalog & bounded # v of variables per rule.)

e Algorithm: for exhaustive forward inferencing
is straightforward (see expanded version of paper).

e (Current work:) Priorities behave similarly to
circumscription and Prioritized Default Logic.
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More about Behavior

conflict resolution is
- local,
- pairwise,
- atomic

no propagation of ambiguity
cumulative

to force a conclusion p:
include p <«  at highest-priority

for database-flavor updating:
recency priority; simple, modular

for Closed World Assumption:
include —P(z) <«  at lowest-priority

obviate most need for explicit negation-as-failure

merging and advice taking:
well-behaved composition of modules’ conclusions
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Teams in Refutation, Merging

e Naive alternative approach to defining refutation:
“top dog” / “single combat”
p wins iff there is a candidate for p that
refutes all opposing candidates

Problematic Example:
simple merge of 2 cloned modules
does not preserve conclusions!
(la) p «
(16) —p
(1) Owerrides(la,1b) «
Modulel v p

(20) p <

(20) —p —

(2¢) Overrides(2a,2b)
Module2  p

but: (Modulel U Module2) b p !

e Team aspect of refutation in courteous:
* handles well a nasty subtlety in prioritization
* facilitates merging:
o prioritized or unprioritized merges
o “advice-taking” between agents
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Related Work

e Brewka's form of prioritized ELP’s [independent]:
— similar syntax
— different semantics: modifies well-founded; prioritizes

~J

— emphasis: cyclicity, reasoning about Overrides
— O(m?) time inference

— problematic for ex. where team refutation needed
— no consistency guarantee

e Abnormalities in ELP’s [Baral & Gelfond]:
no general method

e Hierarchical Constraint LP [Wilson & Borning]:
soft constraints, used abductively.

e Consistency and priorities between abnormalities, in ELP’s
[Pereira et al]. Force in ~ literals contrapositively.

o Prakken & Sartor; Buccafurri et al; Kowalski & Sadri

e ILPS-97 and its KR workshop: several on prioritized LP’'s
Area seems to be heating up!

95



Current Work

Current Status: prototype running as new RAISE engine.

e Further implementation; workflow applications

e Generalizing representation:
- recursion,
- inheritance and specificity,
- advice taking; reasoning about prioritization

e User interaction

e Relationships to other formalisms
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Courteous LP’s: Advantages

e Consistent set of conclusions, always
e Computationally low overhead
e Priorities; subtlety: teams

e Clean semantics, conceptual simplicity =—:

¢ Human-agent interaction: instruct, edit; predict, ex-
plain

e Inter-agent communication: merge, update
e Learning: from advice or induction
e Embedding: situating; SQL DB'’s

e Other rule-based applications: interface; direct use

57



