RC 21472 (96900) 07 May 1999
Computer Science

IBM Research Report

Compiling Prioritized Default Rules

into Ordinary Logic Programs

Benjamin N. Grosof

IBM Research Division
T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA
(914) 784-7783 direct -7455 fax -7100 main
Internet e-mail: grosofQus.ibm.com
(alt. grosof@cs.stanford.edu)
Web: http://www.research.ibm.com/people/g/grosof

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It
has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside
publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).
Copies may be requested from IBM T.J. Watson Research Center [Publications 16-220 ykt], P.O. Box 218, Yorktown Heights, NY
10598, or via email: reportsQus.ibm.com .

Some reports are available on the World Wide Web, at http://www.research.ibm.com (navigate to Research Reports) or at
http://domino.watson.ibm.com/library/CyberDig.nsf/home .

IB M Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

Abstract:

Prioritized default rules offer a conveniently higher level of specification that facilitates
revision and modularity. They handle conflicts, including arising during updating of
rule sets, using partially-ordered prioritization information that is naturally available
based on relative specificity, recency, and authority. Despite having received much
study, however, they have had as yet little impact on on practical rule-based systems
and software engineering generally, and had very few deployed serious applications.

We give a new approach to the semantics and implementation of prioritized default
rules: to compile them into ordinary logic programs (LP’s). (By “logic program” and
“prioritized default rules”, we mean in the sense of declarative knowledge representation
(KR), including model-theoretic entailment and forward as well as backward inferencing,.
In particular, by “logic program”, we do not simply mean Prolog.)

We use the compilation approach both to expressively generalize and to implement
courteous LLP’s, a previous formalism featuring classical negation and prioritized conflict
handling. We show that we preserve courteous LP’s’ attractive reasoning behaviors and
polynomial-time computational cost. Our expressive generalization enables recursion,
and also reasoning about the prioritization. Our implementation enables courteous LP’s
functionality to be added modularly to ordinary LP rule engines, via a pre-processor,
with moderate, tractable computational overhead.

More generally, we show that the compilation approach is applicable to implementing,
and to defining, numerous variants of prioritized default rule KR’s, beyond the particular
courteous LP variant given here.

This takes a long step towards actual deployment of prioritized default rules in com-
mercially fielded technology and applications.

Copyright and Publication Information: The Limited Distribution Notice on the front page
notwithstanding (it is standard boilerplate for all IBM Research Reports), copyright to this Re-
search Report is not owned by anyone other than the author(s) and IBM.

Related Papers and Material: can be found via the author’s Web address and as IBM Research
Reports at http://www.research.ibm.com .

Keywords: logic programming, default reasoning, priorities, non-monotonic reasoning, intelligent
agents, rules, e-commerce, electronic commerce, compilation, knowledge compilation. More key-
words: applications, modularity, tractability, negation-as-failure, Prolog, updating, belief revision,
artificial intelligence, machine learning, deductive databases.

1 Introduction

The overall problem we address is: how to enable prioritized default rules to be used as a widely
practical knowledge representation for specification and execution of rule-based software.

We are attracted by some virtues of prioritized default rules: they handle conflicts, includ-
ing arising during updating of rule sets, using partially-ordered prioritization information that is
naturally available based on relative specificity, recency, and authority.

Prioritized default rules are of long-standing interest in the knowledge representation (KR)
community, and have received much study. Prioritized logic programs, a recent sub-family of
prioritized default rules, extend ordinary logic programs (LP’s) to feature classical negation and
prioritized conflict handling. Compared to ordinary LP’s, prioritized LP’s enable a conveniently
higher expressive level of specification that facilitates revision, updating, merging, and modularity.

However, prioritized default rules have as yet had little impact on practical rule-based systems
and software engineering generally, and had very few deployed serious applications. One difficulty
with prioritized default rules is getting the semantics right, including intuitively simple enough
that non-experts in KR can feel comfortable specifying, and often repeatedly modifying, rule sets.
Another difficulty is the complexity of implementing inferencing in a new KR. A third difficulty
is facilitating a transition, which is best made incrementally, by builders and users of previous
rule-based technology, to any new knowledge representation — including one for prioritized default
rules.

We take a new overall approach to remedy these three difficulties, especially the third. We call
this approach: Prioritized Default Rules via Compilation to ordinary logic programs,
abbreviated PDRC. Compilation is a broad approach, in that multiple prioritized-default-rule
KR’s can be compiled into ordinary logic programs (OLP’s). More precisely, the compilation
is parametrized by a transform. For the sake of practicality and scaling, we require that the
PDRC transform have worst-case polynomial-time complexity. Different semantics of the input
KR can be defined and/or implemented via different transforms. Two given different transforms
may correspond to the same semantics, or to different semantics.

By “knowledge representation”, we mean a reasoning formalism that is specified in terms not
only of syntax but also of semantics in the sense of what conclusions are entailed (a.k.a. sanctioned),
i.e., a formalism that is declarative. By “logic program” and “prioritized default rules”, we mean
in the sense of declarative knowledge representation, including model-theoretic entailment (i.e., a
set of premises entails a set of sanctioned conclusions) and forward as well as backward inferencing
relative to such entailment. In particular, by “logic program”, we do not simply mean Prolog,
which is one particular kind of backward-inferencing LP engine.

In applying our approach, we begin by focusing on our favorite of the previous prioritized
default rule KR’s: courteous logic programs [9], a kind of prioritized logic programs. Courteous
LP’s have a number of attractive properties, detailed at more length in [8]. They have a unique
consistent conclusion set, and are computationally tractable (under commonly-made assumptions)
with relatively modest extra computational cost compared to OLP’s. Their behavior captures many
examples of prioritized default reasoning in a graceful, concise, and intuitive manner. They have a
number of established well-behavior properties, including under merging.

As a target KR, OLP’s are very attractive. They are computationally tractable (again, under
commonly-made assumptions), unlike even the propositional case of classical logic, yet represent
basic non-monotonicity via the negation-as-failure expressive feature. They are in widespread de-
ployment and application, including by many programmers who know and care very little about KR
generally. There are a number of highly efficient and sophisticated OLP rule systems / inferencing
engines available, including for forward as well as backward inferencing. OLP’s are also closely

related to derived relations in SQL relational databases, and to several other varieties of rule-based
systems.
Overview: see the Abstract.

2 Preliminaries

Background: We assume the reader is mainly familiar with: the standard concepts and results in
the logic programming literature (e.g., as reviewed in [2]), including ordinary logic program (also
known as a “normal” or “general” logic program; e.g., cf. pure Prolog), instantiation, unification,
predicate / atom dependency graph and its cyclicity characteristics, the stratified semantics [1] and
locally stratified semantics [14], the well-founded semantics, [16], the Clark predicate completion
[5], and extended logic programs [6].

Well-Founded Semantics: There are multiple different semantics for OLP. In general, our
compilation approach could be used with any of them. Our current favorite, however, is the well-
founded semantics (WFS). We like both its behavior and its relative computational simplicity. It
always has a unique model, i.e., set of conclusions. For ground OLP’s (i.e., after instantiation of the
OLP), inferencing (exhaustive or backward) in the WFS takes time O(g?) and has output size O(g),
where g is the size of the input OLP. For acyclic ground OLP’s, inferencing takes time O(g). Acyclic
is a subclass of stratified, which is a subclass of locally stratified, which is a subclass of weakly
(a.k.a. “dynamically” or “effectively”) stratified; the stratified and locally stratified semantics are
equivalent to special cases of the WFS. Acyclic means the atom dependency graph has no cycles;
locally stratified means it has no cycles in which negation-as-failure appears. Formally, the WFS
is defined in terms of a model (T, F'), where T is the set of true atoms, and F' is the set of false
atoms. p being true means that p is an entailed conclusion. p being false means that p is not
entailed, and also that ~p is satisfied. ~ stands for negation-as-failure. When every atom is in
TUF, then the model is said to be total, i.e., 2-valued, otherwise it said to be partial, i.e., 3-valued.
For weakly stratified OLP’s, the WFS is 2-valued. More generally, sometimes p’s truth value is
assigned to a 3rd value: undefined.

3 Priorities 4+ Classical Negation

We write C1LP to stand for the previous (i.e., “version 1”) concept of courteous LP, defined in
[9].

In the rest of this section, we define a new concept (“PCNLP” below): a less restricted version of
C1LP syntax for which we give in this section a very partial semantics. Later on, we give for it a few
different choices of complete semantics; more generally, it has a family of semantics, parametrized
by the PDRC compilation transform. We closely follow the terminology and notation of [9], except
where explicitly noted.

We are motivated to define the PCNLP syntax by the fact that two other prioritized LP KR's,
in addition to C1LP, have a very similar syntax: [4] [17]. All three of these KR’s were developed
independently.

A prioritized logic program with classical negation, abbreviated as PCNLP, is de-
fined syntactically as a set of labelled rules, whose language includes the prioritization predicate
Owverrides. Here, “labelled rule” and the “prioritization predicate” are as in C1LP.

PCNLP syntax thus differs from OLP as follows. Each atom in a rule may be classically
negated. Each rule has an (optional) rule label. The rule labels are used as handles for specification

of prioritization between rules, using a syntactically-reserved prioritization predicate Overrides.
Owverrides(i, j) specifies that the label 7 has (strictly) higher priority than the label j.
A PCNLP rule, like a C1LP rule, has the form:
(laby Ly < Li A ... NLy A~Lpi1 A ... N~Ly,

Here, n > m > 0, and each L; is a classical literal. Lg is called the head (i.e., consequent) of the
rule; the rest is called the body (i.e., antecedent) of the rule. A classical literal is a formula of the
form A or —A, where A is an atom. - stands for the classical negation operator symbol, and is read
in English as “not”. ~ stands for the negation-as-failure operator symbol, and is read in English as
“fail”. lab is the rule’s label. The label is optional. If omitted, the label is said to be empty. The
label is not required to be unique within the scope of the overall logic program; i.e., two rules may
have the same label. The label is treated as a 0-ary function symbol. The label is preserved during
instantiation; all the ground instances of the rule above have label lab. Overrides and the labels
are treated as part of the language of the logic program, similarly to other predicate and function
symbols appearing in the logic program.

A literal is a formula of the form L or ~L, where L is a classical literal. An unnegated literal
(i.e., an atom) is called positive. A ground rule with empty body is called a fact.

Syntactically, OLP is simply a special case of PCNLP. An OLP rule lacks a label and
does not mention classical negation.

Intuitively, the semantic intent is that —p means p is believed (or “known” or “proved” or
“inferrable”) to be false, while ~p means that p is not believed to be true; ~p thus can be satisfied
if p is neither believed to be true nor believed to be false, i.e., if p’s truth value is “unknown”.
Intuitively, —p is stronger than ~p; ~ and — are sometimes thus known as weak and strong negation,
respectively.

Semantically, we interpret every rule with empty label as having the same catch-all label
emptyLabel, which is treated as a new symbol (i.e., new with respect to the rest of the LP’s
language).

Semantically, we treat a PCNLP or OLP rule with variables as shorthand for the set of all its
ground instances. This is as usual in the logic programming literature (including C1LP). We write
Cstd to stand for the LP that results when each rule in C is replaced by the set of all its possible
ground instantiations.

In the spirit of WFS, we define the model, (which we also call the set of conclusions) of a
PCNLP most generally to be a truth value assignment that maps each each ground classical literal
(rather than atom as in OLP WFS) to exactly one of (true, false,undefined), i.e., a model (T, F')
for the ground classical literals. This generalization from atoms to classical literals is as usual in
the logic programming literature when defining semantics for classical negation.

Relative to a PCNLP C: the rule locale for a predicate p, written as RuleLocale(p), is the
(possibly empty) subset of rules within C in which p appears in the rule head (positively or nega-
tively). Similarly, the rule locale for a ground atom p is the subset of rules within C**** in which
p appears in the head. (In [9] [8] this was called “definitional locale” and written as “Defn(p)”.)

Within a (ground-)atom locale RuleLocale(p), each rule has either head p or head —p. Intu-
itively, the rules having head p may conflict with the rules having head —p, with regard to whether
p versus —p should be concluded. The rules having head p “push” for p. The rules having head —p
“push” for —p”. Prioritization information guides the resolution of this conflict.

Example 1 (Fred’s Family Matters)

As an example of PCNLP, and as example of how we will generalize expressively beyond C1LP’s
syntax, we next give a modified version of [8]’s Example 10, a rule set about Fred’s family and his

mail’s importance, that Fred specifies to his rule-based mail agent. Below, the “?” prefix indicates
a logical variable.
(Clo) Important(?msg) < From(?msg,?z) A CloseFamily(?z, Fred)
(Dai) ~Important(?msg) <« From(?msg, AuntDaisy)
(Eme) Important(?msg) < NotificationO f(?msg,?es) A Personal Emergency(?es)
(CW A) —Important(?msg) <+
Overrides(Dai,Clo) <«
Overrides(?z, CWA) <+ (7x # CWA)
Overrides(?z,?y) <« About(?z, Mortal Danger) N ~About(?y, Mortal Danger)
About(Eme, Mortal Danger) <
Personal Emergency(?s) <« SeverelllnessOf(?s,?7z) A CloseFamily(?z, Fred)
CloseFamily(?z, Fred) < Ancestor(?z,Fred)
Ancestor(?z,?7z) < Parent(?z,?7y) A Ancestor(?y, ?z)
Parent(Mark, Fred) <
Parent(Betty, Mark) <+
CloseFamily(AuntDaisy, Fred) <
From(Iteml9, Betty) <
From(Item20, AuntDaisy) <
From(Iteml15, AuntDaisy) <
NotificationO f(Item115, Sit79) <«
SeverelllnessOf(Sit79, AuntDaisy) <

4 Review: Courteous V1
In this section, we closely follow the terminology and notation of [9], except where explicitly noted.

Definition 2 (Courteous V1 Syntax)

Syntactically, a C1LP C is a PCNLP with three restrictions.
(1) C (i.e., its ground-atom dependency graph) is acyclic. *
(2) Prioritization is “facts-only”: Every rule in C mentioning Overrides has the form of a positive
fact (about Overrides).
(3) The set of such prioritization facts in C specifies the prioritization relation to be a strict
partial order on the labels. O
C1LP is called “courteous” because it is well-behaved and respects precedence (i.e., priority), in
several regards. Every C1LP has a unique conclusion set that is consistent (inconsistent means both
p and —p are conclusions). Propositional C1LP inferencing is tractable: worst-case, quadratic-time.
In the definition of the semantics for C1LP in [9], the conclusion set is constructed incremen-
tally (accumulatively) by iterating along a stratified sequence of (ground-)atom rule locales. The
direction of the stratification, similar to locally-stratified semantics of OLP’s, is from deeper (i.e.,
depended-upon in the sense of a head depending on a body) to shallower atoms; in addition, the
Overrides atoms are treated as deepest. Every rule with empty label is interpreted as having the
same catch-all label empty label, which is treated as a new symbol (i.e., new with respect to the
rest of the LP’s language).

! Acyclicity (our terminology follows [2]) prevents recursion among ground atoms, hence is often also called non-
recursiveness in the literature. This is a cause of some confusion, however, in that strictly speaking, acyclicity does
not prevent recursion among predicates.

In each iteration (i.e., in each stratum), one atom rule locale p; is “run” to add its conclusion,
if any, to the conclusion set iterate. In this locale, p; or —p; may be concluded; what happens
is defined in terms of a prioritized competition among candidate arguments. A candidate
argument c is generated iff the body of a rule r (in the locale) “fires”: i.e., when 7’s body is satisfied
in the previous ((i — 1)™*) conclusion set iterate, i.e., is entailed by the conclusions from the deeper
locales. Overall in the locale, there is thus a (possibly empty) team of candidates for p; (i.e.,
having head p;) and, likewise, a team of candidates for —p;; these two teams are said to oppose each
other. Each candidate has an associated label: ¢ takes r’s rule label. A team wins iff: it has
at least one unrefuted member, and every member of the opposing team is refuted.
Refutation is based on prioritization: one candidate having label j refutes another opposing
candidate having label k iff j has higher priority than k, i.e., iff Overrides(j, k) is satisfied in the
previous conclusion set iterate. If the team for p; wins, then p; is added to the conclusion set;
likewise for —p;. It can happen that there are two non-empty teams, but neither team is refuted. In
this case, then neither team wins; this corresponds to mutual skeptical defeat. It can also happen,
of course, that neither team wins because both teams are empty, i.e., there are no candidates.

5 Compiling Generalized Courteous LP’s

In this section, we define a new, generalized version of courteous LP’s, using the compilation
approach.

Central is a conflict-resolution transform, written CR_Cour1, which transforms any given
PLPCN C into an OLP CR_Cour1(C). This transform in effect represents within OLP the C1LP
semantical process of prioritized competition among teams of candidates.

In overview, the transform has four steps.

Step 1: Eliminate classical negation.

For each predicate P, each appearance of =P is replaced by an appearance of the new predicate
n_P.

Step 2: Analyze which pairs of rules are in opposition.

Opposition between two rules means that their heads represent unifiable complementary literals.

Step 3: For each predicate @, create an associated output set of OLP rules. This is done by
modifying the PCNLP rules whose heads mention @), plus adding some more rules.

Step 4: Union the results of step 3 to form the overall output OLP.

Definition 3 (Eliminate Classical Negation)

The ECN transform, which eliminates (the appearance of) classical negation, takes an input
PCNLP C and produces an output PCNLP ECN(C). This is done by a simple rewriting operation,
essentially the same as that in [6]. Each appearance of =P is replaced by n_P, where n_P is a newly
introduced predicate symbol (with the same arity as P). We call n_P: P’s negation predicate. n_P
is only introduced if there is actually an appearance of =P in the input PCNLP. Note that if the
input PCNLP does not contain any appearances of classical negation, then the output PCNLP is
simply the same as the input PCNLP.

We say that n_P is the complement or opposer of P, and vice versa. Given a predicate () in
ECN(C), we write Q' to stand for Q’s complement.

It is useful to retain a trace, i.e., log record, of what rewriting was performed by any particular
application of the ECN transform, i.e., to remember which predicates were original, which were
newly introduced, and which pairs are complements. We accordingly define the ECN transform to
additionally output traceECN(C) which contains this information.

We further define the inverse ECN transform: ECN~!, which maps ECN(C) back into C. This
just rewrites n_P back to be -P. O

Definition 4 (Opposing Rules)

(a.) Relative to a PCNLP C:
Let rule rule; have head ¢(tj) and rule rule; have head —¢(tk), where ¢ is a predicate, and ¢j and
tk are term tuples of appropriate arity for g. We say that the rules rule; and rule; are opposers
of each other when tj and ¢tk are unifiable. We then also say that (rulej,rule;) is a relevant
opposition pair, with associated maximum general unifier 6, = mgu(tj,tk). We also write 6;;, as
mgu(rule;,rule;). Note that 6 is required to be a non-empty substitution (i.e., a non-empty
unifier / substitution). Opposition pairs are symmetric: we also say that (ruleg,rule;) is a relevant
opposition pair.

We write RelOppPairs(rule;) to stand for the set of all relevant opposition pairs in which rule
rulej appears as the first member of the pair.

(b.) Relative to ECN(C): We apply the same terminology and notation to post-ECN-transform
rules where —¢ has been rewritten as n_gq.

Summary of (a.) & (b.): two rules are opposers, with associated mgu, if their heads represent
unifiable complementary literals. O

Definition 5 (CR_Courl Per Locale)

Relative to a post-ECN-transform PCNLP ECN(C): for each of its predicates g, we define the
per-locale transform of its rules as follows.

We write this per-locale transform as CR_Cour1(C, ¢) to indicate its association with the original
(i.e., pre-ECN-transform) PCNLP C.

Below, ¢ ' is to be read as: the complement of g. This is done before any subscripting is applied.
E.g., if q is Urgent, then q,' is n_-Urgent,. E.g., if q is n_Important, then q,, is Important.s.

If RelOppPairs(q) is empty, then CR_Couri(q) is: RuleLocale(q) modified to remove the rule
labels from each rule. L.e., in this case, the per-locale transform simply passes through the input’s
rule locale for predicate g, unchanged except to remove labels. In this case, we call the locale:
1-sided. A special case of the 1-sided case is when RuleLocale(q) or RuleLocale(q) are empty:
then RelOppPairs(q) is empty as well.

Otherwise, i.e., if RelOppPairs(q) is non-empty, then CR_Cour1(q) is defined (more complexly)
as follows. In this case, we call the locale: 2-sided.

Initialize CR_Cour1(C, q) to be empty.

(1.) For each rule; in RuleLocale(q), add to CR_Cour1(C, q) the rule:

q(tj) < qu(ti) A ~q,' () (1)

Here, rule; has the form:

(labj) q(tj) <« Bjlyj] (rule;)

where Bj[yj] stands for the body of rule;; yj is the tuple of logical variables that appear in Bj; tj
is the term tuple appearing (as argument tuple to ¢) in the head of rule;. lab; is rule;’s rule label
(which may be empty). ¢, and g, are newly introduced predicates, each with the same arity as g.
Intuitively, g, (t) stands for “q has an unrefuted candidate for instance ¢”. Intuitively, ¢,'(¢) stands
for “¢™" has an unrefuted candidate for instance t”, or, alternatively, “g has an unrefuted opposer
candidate for instance t”.

(2.) For each rule; in RuleLocale(q), add to CR_Cour1(C,q) the rule:

9 (t3) < Bilyj] (2))

Here, rule; has the form:

(labj) q(tj) <« Bjlyj] (rule;)

where Bj[yj] stands for the body of rule;; yj is the tuple of logical variables that appear in Bjj; tj
is the term tuple appearing (as argument tuple to g) in the head of rule;. lab; is rule;’s rule label
(which may be empty). ¢, is a newly introduced predicate. Intuitively, g.;(t) stands for “q has a
candidate for instance ¢, generated by rule rule;”

(3.) For each rule; in RuleLocale(q), add to CR_Cour1(C,q) the rule:

qu (t]) <~ Qe (t]) A ~qrj (t]) (3.])

Here, ¢; is a newly introduced predicate. Intuitively, g;(¢) stands for “the candidate for ¢ for
instance t, generated by rule;, is refuted”. Intuitively, “refuted” means “refuted by some higher-
priority conflicting rule’s candidate”.

(4.) For each rule; in RuleLocale(q) and each jkPair in RelOppPairs(rule;), add to CR_Cour1(C, q)
the rule:

arj(tj-0jx) < q(tk-0;1) A Overrides(laby,labj) (4jk)
where jkPair has the form:

(rulej, ruleg) (jkPair)
Here, rule; is as in (3.), and similarly, rulej has the form:

(labk) q '(tk) <« Bk[yk] (ruleg)

- stands for the operation of applying a substitution, as usual with unifiers. 6;; stands for
mgu(rule;, ruley). g, bears the same relationship to (¢, ruley) as g.; bears to (g,rule;); it ap-
pears in aspect (3.) of CR_Courl(q). Overrides stands, as usual, for the prioritization predicate.
In the Overrides literal, if lab; or laby, is empty, then it is assigned to be emptyLabel. emptyLabel
is a newly introduced 0-ary function (i.e., logical function symbol with 0 arity); intuitively, it stands
for the empty rule label. (Recall the semantics of empty rule label in PCNLP, from section 3.)
Note that emptyLabel is introduced at most once for a given C, i.e., the same emptyLabel is shared
by all the per-locale CR transforms. O

Definition 6 (CR_Courl Transform Overall)

Let C be a PCNLP. The overall output OLP CR_Cour1(C) is defined as follows. Let Preds(ECN(C))
stand for the set of all predicates that appear in ECN(C).

CR_Cour1(C) = U CR_Cour1(C, q)
g€ Preds(ECN(C))

In other words, the output of the transform for the overall PCNLP is the result of first eliminat-
ing classical negation, via the ECN transform, then collecting (i.e., union’ing) all the per-locale
transforms’ outputs. O

One semantics (among many possible) for PCNLP as a knowledge representation is determined
by compiling PCNLP to OLP via CR_Courl, and adopting the well-founded semantics (WFS) for
the resulting OLP. We call this formalism: version 1 of unrestricted courteous-flavor PCNLP,
abbreviated CU1LP.

Let C be a given PCNLP. It has an original set of predicate and function symbols, i.e., ontology.
CR_Cour1(C) typically has eztra (i.e., newly introduced by the transform) predicate and function
symbols. In general, these may include: the original negation predicates that represent classical
negation of the original predicates (e.g., n-Urgent where Urgent was an original predicate); the
adornment predicate symbols that represent the intermediate stages of the process of prioritized ar-
gumentation (e.g., Urgent,, Urgent.s, Urgent,4,n_-Urgent,); and the adornment function symbol
emptyLabel.

We define the OLP conclusion set of C to be the WFS conclusion set of CR_Cour1(C). We
also call this the adorned OLP conclusion set of C, because it contains conclusions mentioning the
adornment symbols. We define the unadorned OLP conclusion set to be the subset that does not
mention any of the adornment symbols.

Corresponding to the OLP conclusion set is its PCNLP version which contains classical negation
rather than negation predicates. We define the (unadorned) PCNLP-version conclusion set to be
the result of applying the inverse ECN transform ECN~! to the unadorned OLP conclusion set, e.g.,
the negation predicate n_Urgent is rewritten instead as —Urgent.

When the context is clear, we will leave implicit the distinction between these different versions
(adorned vs. unadorned, OLP versus PCNLP) of the conclusion set.

We summarize all this as follows.

Definition 7 (Compile PCNLP Via CR_Courl)

Let C be a PCNLP. The CU1LP semantics for C is defined as the tuple
(C,0,{To, Fo),(Tpcn, Fpcn))

Here, the post-transform (adorned) OLP O is CR_Couri(C). (To, Fo) is the (WFS OLP) model for
O. (Tpcn, Fpen) is the unadorned PCNLP version of (Tp, Fp). O

Next, we use the CR_Courl transform and the compilation approach to define a generalized
version of courteous LP’s. To keep to the spirit of “courteous”-ness cf. CI1LP, we wish to have
some strong semantic guarantees about well-behavior that are similar to those in C1LP. Accordingly,
we thus restrict CULLP somewhat so as to ensure such well-behavior.

Definition 8 (Courteous LP’s, Version 2)

Let C be a CUILP. We say that C is a generalized, i.e., version-2, courteous LP, abbreviated as
C2LP, when the following two restrictions are satisfied:
(1.) CR_Couri(C) is locally stratified.
(2.) Prioritization is a strict partial order “within” every 2-sided rule locale.

By (2.) we mean the following. For every 2-sided predicate rule locale in Definition 5, the set of
Overrides tuples in Tp is a strict partial order when restricted to the set of rule labels appearing
in RuleLocale(p) U RuleLocale(p™), where p is the locale predicate. O

Example 9 (Fred’s C2LP)

Example 1 is a C2LP. Unlike a C1LP, it contains recursive (i.e., cyclic) dependencies, i.e., here
about Ancestor. Also unlike a C1LP, it contains non-fact rules about Overrides; these result in
reasoning about the prioritization. The CR_Courl transform’s output for the 2-sided I'mportant
predicate locale is:

Important(?msg) < Important_u(?msg) A ~n_Important_u(?msg)

Important_c_1(?msg) < From(?msg,?z) A CloseFamily(?z, Fred)

Important_u(?msg) <« Important_c_1(?msg) A ~Important_r_1(?msg)

Important_r_1(?msg) <+ n_Important_c2(?msg) A Overrides(Dai, Clo)
Important_r_1(?msg) < n_Important_c4(?msg) A Overrides(CW A, Clo)
Important(?msg) < Important_u(?msg) N ~n_Important_u(?msg)
Important_c_3(?msg) < NotificationOf(?msg,?es) A Personal Emergency(?es)
Important_u(?msg) <« Important_c3(?msg) N ~Important_r_3(?msg)
Important_r_3(?msg) <+ n_Important_c2(?msg) A Overrides(Dai, Eme)
Important_r_3(?msg) <« n_Important_c4(?msg) A Overrides(CW A, Eme)
n_Important(?msg) < n_Important_u(?msg) A ~Important_u(?msg)
n_Important_c2(?msg) <« From(?msg, AuntDaisy)
n_Important_u(?msg) <« n_Important_c2(?msg) N ~n_Important_r_2(?msg)
n_Important_r 2(?msg) <« Important_c_1(?msg) A Overrides(Clo, Dai)
n_Important_r 2(?msg) <« Important_c3(?msg) A Overrides(Eme, Dai)
n_Important(?msg) < n_Important_u(?msg) A ~Important_u(?msg)
n_Important_c_4(?msg) <«
n_Important_u(?msg) < n_Important_c.4(?msg) A ~n_I'mportant_r_4(Tmsg)
n_Important_r 4(7msg) <+ Important_c_1(?msg) A Overrides(Clo, CW A)
n_Important_r 4(?7msg) < Important_c_3(?msg) A Overrides(Eme, CW A)
CR_Courl does not modify any of the other predicates’ rule locales: they are all one-sided and do
not mention classical negation.
The C2LP’s entailed conclusions about I'mportant are: Important(Iteml9), —~Important(Item20),
and I'mportant(Item115). The C2LP’s entailed conclusions about Overrides include some result-
ing from reasoning through rules, e.g.: Overrides(Eme, Dai). O

6 Well-Behavior

In this section, we show well-behavior properties for C2LP. We begin by showing that C2LP provides
an equivalent alternative semantics, and thus an alternative means of implementation as well, for

C1LP.

Theorem 10 (C2LP Equivalent on C1LP)

Let C be syntactically a C1LP.

If C is interpreted as a CU1LP, then:

(1.) C is a C2LP; and

(2.) C’s unadorned PCNLP conclusion set is the same as the C1LP semantics’ conclusion set, i.e.,
Tpcp is the same as the C1LP answer set.

Proof : (Detailed sketch)

(1.) Let O stand for the post-transform OLP CR_Cour1(C). Examining the dependencies intro-
duced by the CR_Cour1l transform, it follows straightforwardly that pre-transform acyclicity of the
dependency graph (on the original atoms) implies O is acyclic (i.e., on the post-transform atoms).
Acyclicity implies local stratifiability. Prioritization premises being facts-only implies that the OLP
model of the prioritization is simply the set of pairs specified by the premise prioritization facts.
Prioritization premises being a strict partial order thus implies that the model of the prioritization
is a strict partial order, including when projected onto any subset of the labels.

(2.) Because the O is locally stratified, its WFS coincides with the locally stratified semantics.
In the rest of the proof, we adopt that as the semantics for O.

Further examining the dependencies introduced by the CR_Courl transform, it follows straight-
forwardly that we can choose O’s (local-)stratification to be a sequence of strata from which there

is a sequence-preserving isomorphism to the sequence of strata in the C1LP semantic construction
for C. Let p; be the i'* (original) atom in the C1LP semantic construction. Let p; have the form
q(a), where ¢ is a predicate and a is a ground-term tuple. We choose the i O-stratum to consist
of the rule locales for the following set of atoms:
{q(a)a qQu (G,), qrj (G,), qcj (a’)a
¢ (a), 4, (@),) (a), 4 (0)}

where j ranges over RuleLocale(q) as in Definition 5. Note that some of these rule locales may be
empty.

Each O-stratum is acyclic. Thus in the locally-stratified semantics’ iterated fixed point con-
struction [14], each stratum’s contribution to the conclusions is simply equivalent to (the ground
literals derivable from) its Clark predicate completion [5]. (This equivalence property was shown
for stratified semantics in [1], and straightforwardly generalizes to the locally-stratified case.)

The Clark predicate completion for each of the above-listed atoms straightforwardly implies that
they equivalently represent the prioritized argumentation process for the ¢(a) locale in the C1LP
semantics (recall our earlier review of that in section 4). In particular, the unadorned conclusions
about g(a) and ¢ '(a) in the O-stratum are equivalent to those in the corresponding C1LP stratum.

Accumulating the conclusions while iterating in the stratification sequence thus (inductively)
implies (2.). O

Theorem 11 (C2LP Behaves Courteously)

Let C be a C2LP. Then C behaves courteously, i.e., has the following four properties just as C1LP
does.

(1.) Its conclusion set is unique and 2-valued, i.e., its WFS model is total.

(2.) Tts conclusion set is consistent, i.e., for every ground atom ¢(a), ¢(a) and —¢(a) are never
both assigned to true.

(3.) Each unadorned conclusion can equivalently be described as resulting from the same per-
locale prioritized argumentation process as in the C1LP semantics (recall review of that
in section 4).

In more detail, this process is as follows. Consider the post-instantiation version of (PCNLP)
C. Let g(a) be an original ground atom. If the body of rule; in with head g(a) is satisfied, then we
say rule; generates a candidate cj for g(a), with associated label lab; taken from rule;. Likewise,
if the body of rule; with head ¢ '(a) is satisfied, we say rule, generates a candidate ck for ¢ '(a),
with associated label laby taken from ruleg. Let Cands(g(a)) consist of all the candidates for ¢(a),
and Cands(q'(a)) consist of all the candidates for ¢ '(a). Let ¢j be in Cands(q(a)), and ck be
in Cands(q '(a)). If Overrides(labg,lab;) is satisfied, then we say that cj is refuted. Likewise, if
Owverrides(labj, laby) is satisfied, then we say that ck is refuted. Let Unre futedCands(g(a)) consist
of all the unrefuted candidates for g(a), and UnrefutedCands(q '(a)) consist of all the unrefuted
candidates for ¢ '(a). Then g¢(a) is a conclusion iff UnrefutedCands(g(a)) is non-empty and
UnrefutedCands(q ' (a)) is empty; and, likewise, ¢ '(a) is a conclusion iff Unre futedCands(q ' (a))
is non-empty and UnrefutedCands(g(a)) is empty.

(4.) The prioritized argumentation process in (3.) can alternatively be characterized as: a
candidate is unrefuted exactly when it is maximal-priority; and a candidate wins exactly when it
is maximal-priority and all other maximal-priority candidates agree with it.

In more detail, this process characterization is as follows. Let candidates be as in (3.). A
candidate in Cands(q(a)) U Cands(q ' (a))
is unrefuted iff: it is maximal-priority in Cands(q(a)) U Cands(q ' (a)). Here, we say that an
element is maximal-priority with respect to a set, when there is no other member of that set with

10

greater prioritization (in the sense of Overrides being satisfied). g(a) (respectively, ¢ '(a)) is a
conclusion iff the set of maximal-priority candidates (in C’s atom rule locale, i.e., with head g(a)
or ¢ '(a)) is non-empty and all of them are for g(a) (respectively, ¢ '(a)).

Proof : (Detailed sketch)

Let O stand for the post-transform OLP CR_Cour1(C).

(1.) The WFS implies a unique model. This is 2-valued because O is locally stratifiable.

(2.) Consider the post-instantiation version of O. Its local stratifiability implies the Clark pred-
icate completion [5] (abbreviated 2PC, where “2” stands for “2-valued”)) for each of its atoms. It
suffices to show that for any ground atom ¢(a), that either g(a) or ¢ '(a) is assigned to false in the
model of O. For each of these two atoms, the only rules in its locale arise from (1.) in Definition 5.
Consider ¢(a) in particular. It may have no rules in its locale, in which case its 2PC implies that
q(a) is false in the model. Similarly, ¢'(a) may have no rules in its locale, in which case its 2PC
implies that ¢ '(a) is false in the model. It thus suffices to show consistency for the case when
both ¢g(a) and ¢ '(a) have non-empty rule locales. If g(a) does have one or more rules in its locale,
then each of these rules is (a copy of):

q(a) + qu(a) A ~q,'(a)

Assume that g(a) is true in the model. The 2PC for g(a) then implies that g, (a) is true in the
model and g¢,'(a) is false in the model. If ¢7'(a) does have one or more rules in its locale, then
each of these rules is (a copy of):

¢ '(a) < g, (a) A ~qu(a)
Since gy (a) is true in the model and ¢,'(a) is false in the model, the 2PC for ¢ '(a) implies that
q '(a) must be false in the model. Alternatively, instead of assuming that g(a) is true in the model,
let us assume that ¢ '(a) is true in the model. The 2PC for ¢ '(a) then implies that ¢,'(a) is true
in the model and g,(a) is false in the model. The 2PC for g(a) then implies that g(a) is false in
the model. In summary, the 2PC for ¢(a) and ¢ " (a) thus implies that ¢ (a) is not a conclusion if
g(a) is a conclusion, and vice versa.

(3.) This property follows from an argument that is very similar to the proof of part (2.) in
Theorem 10. The main difference from the proof of part (2.) in Theorem 10 is that for general
C2LP, unlike in C1LP, O may not be acyclic, and thus each O-stratum may contain recursion.

O’s local stratifiability implies the Clark predicate completion (2PC) for O. (That stratifiability
implies 2PC was shown in [1]. This straightforwardly generalizes to the locally-stratified case.
Essentially, the Clark predicate completion follows from the fixed-point property of the model.)

The 2PC for O implies the 2PC for each of O’s ground atoms. As in the proof of part (2.) in
Theorem 10, consider the following set of atoms:

{q(a)a qQu (G,), qrj (G,), qcj (a’)a
q (a), ¢,'(a), 4,5 (a), q.j(a)}
where j ranges over RuleLocale(q) as in Definition 5. (Note that some of these rule locales may be
empty.) The 2PC for each of the above-listed atoms straightforwardly implies that they equivalently
represent the prioritized argumentation process for the g(a) locale in the C1LP semantics (recall
our earlier review of that in section 4).

(4.) The strict partial order property for prioritization (restriction (2.) in Definition 8) implies
that unrefutedness corresponds to maximality in the prioritization ordering within the locale. O

11

7 Algorithms and Computational Complexity

Next, we analyze the computational complexity of CUILP. We show it is worst-case polynomial-

time for the propositional case and for the Datalog case with a bounded number of variables per rule.

As part of this analysis, we give algorithms for CU1LP, including transforming and inferencing.
Let C stand for the input PCNLP. Let n stand for its size. Let O stand for the OLP CR_Cour1(C).

Algorithm 12 (Transform CR_Courl)

To perform the CR_Courl transform:

1. Perform the ECN transform. To do this, linearly scan C, rewriting each occurrence of classical
negation, and building a table of the newly-introduced original negation predicates, with ancillary
information constituting the trace EC'N.

2. Organize the post-ECN rules into predicate rule locales. To do this, linearly scan the rules,
looking at their rule heads.

3. Build RelOppPairs. To do this, iterate through the original predicates. For each predicate,
outer-loop through its rule locale, and inner-loop through its complementary predicate’s rule locale,
attempting to unify the inner-loop head atom with the outer-loop head atom. If successful in this
attempt, store the relevant opposition pair with its unifier in RelOppPairs.

4. Initialize O to be empty. Then for each predicate:
perform the per-locale transform CR_Cour1(C,q), and append the result to O. To do this, outer-
loop through the rules in the locale; for step (4.) in Definition 5, also inner-loop through the
rules in RelOppPairs(outer — loop — rule). While doing all this, keep a record trace Adorn of the
newly-introduced predicates and functions, including which are adorning. O

Theorem 13 (Complexity of CR_Courl)

CR_Cour1’s overall computational complexity is: O(n?) time and O(n?) output size.
Proof : (Sketch)

Step (1.) takes O(n) time.

Step (2.) takes O(n) time.

Step (3.) takes O(n?) time and its output has size O(n?).
Step (4.) takes O(n?) time.

O

Terminology: We say an LP, e.g., an OLP or a CU1LP, obeys the VBD restriction when that
LP has an upper bound v on the number of variables appearing in any single rule, and is either
Datalog (i.e., all function symbols are 0-ary) or ground. To indicate that the bound on the number
of variables is v, we also say that the LP is VBD(v). Note that if the LP is ground, even if it is not
Datalog, then there is an upper bound v = 0 on the number of variables per rule. Any ground LP
thus VBD(0).

Output size complexity of instantiation (review):

In general, the result of (ground-)instantiating a given finite OLP containing variables may be
infinite in size, e.g., when the Herbrand universe is infinite.

However, suppose the OLP is restricted to be VBD(v). Then the instantiated OLP’s size is O(h**1),
where h is the OLP’s size. The Datalog restriction implies that the Herbrand universe is O(h). The
bound v on the number of variables per rule then implies that each rule has O(h") instantiations.
a

Theorem 14 (Complexity of O™5¥’s size)

12

Suppose C is restricted to be VBD(v). Then O is also VBD(v), and O™5'¢ has size O(n(*12)). By
comparison, under the same VBD(v) restriction C™* has size O(n(*1).
Proof : (Detailed sketch)

Examining the particular form of the rules produced by CR_Courl, we see that they preserve
the restrictions: the post-transform OLP O is Datalog or ground, respectively, if C is Datalog or
ground; and O has no more than v variables per rule. Moreover (also by such examination), the
Herbrand universe — except for rule labels — of O is the same as that of C.

The differences between C’s and O’s Herbrand universes are as follows. There are no more than
O(n) rule labels in C; we will for clarity call these the “original” rule labels. These are part of C’s
Herbrand universe. O’s rules have no labels. However, a subset (none, some, or all) of the original
rule labels appear in O’s rules as arguments to the prioritization predicate Overrides, i.e., in the
rules generated from step (4.) of 5. Furthermore, emptyLabel may appear in O’s such rules, while
it need not appear in C.

Therefore, O’s Herbrand universe must (like C’s) have size O(n).

Recall (by Theorem 13) that O has size O(n?). Thus (by the above review of output size
complexity of instantiation) @' has size O(n(?12)). O

By “inferencing” in the rest of this section, we mean either exhaustive or backward. By “ex-
haustive”, we mean inferencing forward to compute the entire model, i.e., all its ground-literal
conclusions. By “backward”, we mean query-answering.

Algorithm 15 (CU1LP Inferencing)

To perform CUILP inferencing (exhaustive or backward):

1. Perform the CR_Courl transform on the input C.

2. If inferencing backward, perform the ECN transform on the query.

3. Perform inferencing in O (with the post-ECN query if doing backward inferencing).

4. Perform the transformation of the results of inferencing back to the unadorned PCN version.
To do this, while linearly scanning the results, filter out conclusions mentioning adornment symbols
and rewrite original negation predicates back to their classically-negated forms. This makes use of
the trace EC'N and traceAdorn info generated by the CR_Courl transform step. O

Theorem 16 (CU1LP Inference Complexity)

CUILLP inferencing (exhaustive or backward) has the following overall worst-case computational
complexity bounds:

1. O(n>®+2) time,
O(n{v+2)) output size for C’s OLP conclusions, and
O(n"*1) output size for C’'s PCNLP conclusions,
when C is restricted to be VBD(v).

2. O(n*+?) time,
when C is restricted to be acyclic and VBD(v).

3. O(n*) time, and O(n?) output size,
when C is restricted to be ground, i.e., to be VBD(0).

4. O(g?) time, and O(g) output size,
when the size g of 05! ig finite.
(Recall that g may be infinite, in general.)

13

In summary:

e When C is restricted to be VBD(v) ((1.), (2.) or (3.)),
CUILP inferencing has the same worst-case time and space complezity as: OLP inferencing
where the bound v on the number of variables per rule has been increased to v + 1.

e More generally, CLP inferencing has time and space complexity that is worst-case quadrati-
cally larger than OLP inferencing. O

Proof : (Detailed Sketch)

Consider the steps of Algorithm 15.

Step (1.) takes time O(n?) and has output size O(n?), by Theorem 13.

Step (2.) takes time linear in the size of the query: thus O(n) time, assuming the query is no
longer than C.

Step (3.) takes O(g?) time and has output size O(g) — recall the complexity of OLP inferencing
under the WFS.

Step (4.) takes O(g) time, and has output size O(g).

Suppose C is restricted to be VBD(v). Then g = O(n?*2), by Theorem 14. Step (3.) thus takes
O(n%(+2)) time and has output size O(n(?*2)). And Step (4.) thus takes O(n(?*?)) time and has
output size O(n(*+t1)). The size of the unadorned PCN version is smaller than the adorned version
because the adornments are filtered out, reducing the size of the Herbrand base from O(n(?*2)) to
O(n(”"'l)).

O

More Discussion of Overhead Compared to OLP Inferencing:

CUI1LP inferencing has the same worst-case time and space complexity as: OLP inferencing where
the bound v on the number of variables per rule has been increased to v+ 1, when C is restricted to
be VBD(v).

By comparison, in WFS, under the same restrictions, OLP inferencing complexity is: O(n(”+1))
time for acyclic case, O(n>{*1)) time more generally, and O(n(*1t1)) output size. In terms of worst-
case time complexity, therefore, one is not paying a huge overhead for the expressive convenience of
prioritized defaults with classical negation: only a polynomial degree or two beyond OLP inferenc-
ing, where OLP inferencing already itself costs multiple polynomial degrees when logical variables
appear.

8 Implementation

We have built a running implementation [10] of general-case CU1LP. This will be demonstrated
at the AAAT-99 conference during July 18-22, 1999. We built the CR_Cour1 transformer ourselves;
it is implemented in pure Java?. In addition, we use two previously existing WFS OLP inferenc-
ing engines built by others and implemented in C. One is exhaustive forward-direction: Smodels
(version 1), by Ilkka Niemela and Patrik Simons, http://saturn.hut.fi/html/staff/ilkka.html. The
other is backward-direction: XSB, by David Warren et al, http://www.cs.sunysb.edu/~sbprolog.
We will be making our implementation publicly available via the Web in spring of 1999.

Note: The current implementation does not translate the results of OLP inferencing back to
the unadorned PCNLP version. (L.e., it does not perform step (4.) of Algorithm 15.)

2trademark of Sun Microsystems

14

9 Variant Transforms

Our compilation approach enables one to use a variety of transforms from PCNLP to OLP, not just
CR_Courl. Changing the transform may result in different conclusions, i.e., a different semantics
for PCNLP. In this section, we give a couple of example transforms that are simple modifications
of CR_Cour1. Each modifies the semantics/behavior given to PCNLP by PDRC.
Grosof [8] gives an alternative semantics for refutation, called “top-dog”:
q wins iff there is a candidate for ¢ that
refutes all opposing candidates.

This behaves differently, e.g., when merging rule sets. Top-dog can be represented in our compi-
lation approach by modifying the CR_Cour1 transform as follows. In Definition 5: omit step (1.);
and modify step (3.) by changing the head predicate of rule (3j) to be g instead of g,.

When specifying or production-testing a rule set, it is often useful to be alerted to problems in
the specification. To add an alarm for the presence of active conflict that is not resolved
by priority, CR_Courl can be modified as follows so as to generate additional adornments that
represent mutual skeptical defeat. In Definition 5, add the extra step:

“(5.) For each rule; in RuleLocale(q), add to CR_Cour1(C, q) the rule:

gs(tj) <~ qu(ts) A g, (t7) (5))

Here, ¢4 is a newly introduced predicate. Intuitively, gs(¢) stands for ‘there is mutual skeptical
defeat about ¢(t)’, or ‘there is stalemated, unresolved conflict about ¢(t)’.”

Elsewhere, we give a further expressive generalization of PCNLP and CU1LP which permits
the scope of conflict to be specified via mutual-exclusion constraints, a kind of integrity con-
straints. For that form of prioritized /courteous LP’s, we apply our PDRC approach by developing a
transform suitable for that KR formalism. A brief overview of this formalism, plus a long electronic-
commerce example including this transform’s output, is in [10].

10 Discussion

There are a number of previous approaches to prioritized logic programs with classical negation,
pertinent to courteous LP’s; see [8] for a review.

Compilation is of course a well-known idea in general programming languages and general
software engineering. The idea of compiling more expressive KR’s into less expressive KR’s has
received considerable attention in the last 10 years or so. However, to our knowledge, compilation
has not been applied previously to compile prioritized default rules, e.g., prioritized LP’s with
classical negation, into ordinary LP’s.

Gelfond & Son [7] give an approach to representing prioritized LP’s in extended LP’s, rather
than OLP’s. However, that approach is also quite different from ours in that it represents the
specification of prioritized reasoning behavior at the meta-level, somewhat similar to a Prolog
meta-interpreter. They also do not give as substantive characterizations of well-behavior as
we do here and as the previous work on courteous LP’s did, for particular prioritized reasoning
schemes; rather, the emphasis is on enabling a mechanism for specification of a variety of such
prioritized reasoning schemes.

Baral & Gelfond [2] give examples and discussion of using OLP’s to represent prioritized default
reasoning, but do not give a general method to go from prioritized defaults to OLP’s.

15

11

Current Work

Current work takes several directions.

One direction is applications in electronic commerce. These include using courteous/prioritized

LP’s to represent: contractual agreements and product/service descriptions [15], e.g., in business-
to-business and supply chain; business policies for security authorization [12]; and storefront per-
sonalization [10], e.g., in discounting, promotions, and advertising.

A second direction is an XML version of courteous/prioritized LP’s used for interchange/translation

[11] between heterogeneous rule-based intelligent agents / knowledge-based systems.

A third direction is generalizing further expressively.
A fourth direction is incremental compilation.
A fifth direction is relationships to Prioritized Default Logic [3], Defeasible Logic [13] and other

prioritized default formalisms, including variants of LP’s.

References

[1]

K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 89-148. Morgan
Kaufmann, Los Altos, CA, 1987.

Chitta Baral and Michael Gelfond. Logic programming and knowledge representation. Journal
of Logic Programming, 19,20:73—-148, 1994. Includes extensive review of literature.

Gerhard Brewka. Reasoning about priorities in default logic. In Proceedings of the Twelfth
National Conference on Artificial Intelligence (AAAI-94), pages 940-945, Menlo Park, CA /
Cambridge, MA, 1994. AAAT Press / MIT Press.

Gerhard Brewka. Well-founded semantics for extended logic programs with dynamic prefer-
ences. Journal of Artificial Intelligence Research, 4:19-36, 1996.

K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data Bases,
pages 293-322. Plenum Press, New York, 1978.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365-385, 1991. An earlier version appears in Pro-
ceedings of the Seventh International Conference on Logic Programming (D. Warren and P.
Szeredi, eds.), pp. 579-597, 1990.

Michael Gelfond and Tran Cao Son. Reasoning with prioritized defaults. In Jurgen Dix,
Luis Moniz Pereira, and Teodor Przymusinski, editors, Logic Programming and Knowl-
edge Representation (LPKR ’97) (Proceedings of the ILPS ’97 Postconference Workshop).
http://www.uni-koblenz.de/~dix/LPKR97, 1997. Held Port Jefferson, NY, USA, Oct. 16,
1997. http://www.ida.liu.se/~ilps97.

Benjamin N. Grosof. Courteous logic programs: Prioritized conflict handling for rules. Tech-
nical report, IBM T.J. Watson Research Center, http://www.research.ibm.com , search for
Research Reports; P.O. Box 704, Yorktown Heights, NY 10598, Dec. 1997. IBM Research
Report RC 20836. This is an extended version of [9].

16

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Benjamin N. Grosof. Prioritized conflict handling for logic programs. In Jan Maluszynski,
editor, Logic Programming: Proceedings of the International Symposium (ILPS-97), pages
197-211, Cambridge, MA, USA, 1997. MIT Press. Held Port Jefferson, NY, USA, Oct. 12-17,
1997. http://www.ida.liu.se/~ilps97. Extended version available as IBM Research Report RC
20836 at http://www.research.ibm.com .

Benjamin N. Grosof. DIPLOMAT: Compiling Prioritized Default Rules Into Ordinary Logic
Programs, for E-Commerce Applications (extended abstract of Intelligent Systems Demon-
stration). In Proceedings of AAAI-99, San Francisco, CA, USA, 1999. Morgan Kauf-
mann. Extended version available in May 1999 as an IBM Research Report R(C21473,
http://www.research.ibm.com, search for Research Reports; P.O. Box 704, Yorktown Heights,
NY 10598, USA.

Benjamin N. Grosof and Yannis Labrou. An Approach to using XML and a Rule-based Content
Language with an Agent Communication Language. In Proceedings of the IJCAI-99 Workshop
on Agent Communication Languages, 1999. Held in conjunction with the Sixteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-99) http://www.ijcai.org . Extended
version available in May 1999 as IBM Research Report, http://www.research.ibm.com, search
for Research Reports; P.O. Box 704, Yorktown Heights, NY 10598, USA.

Ninghui Li, Joan Feigenbaum, and Benjamin N. Grosof. A logic-based knowledge represen-
tation for authorization with delegation (extended abstract). In Proceedings of 12th interna-
tional IEEE Computer Security Foundations Workshop, 1999. Extended version available in
May 1999 as an IBM Research Report, http://www.research.ibm.com , navigate to Research
Reports; P.O. Box 704, Yorktown Heights, NY 10598, USA.

Donald Nute. Defeasible logic. In Handbook of Logic in Artificial Intelligence and Logic
Programming Vol. 3, pages 353-395. Oxford University Press, 1994.

Teodor Przymusinski. On the declarative semantics of deductive databases and logic programs.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming. Morgan
Kaufmann, San Francisco, CA., 1988.

Daniel M. Reeves, Benjamin N. Grosof, Michael Wellman, and Hoi Y. Chan. Toward a Declar-
ative Language for Negotiating Executable Contracts. In Proceedings of the AAAI-99 Work-
shop on Artificial Intelligence in Electronic Commerce (AIEC-99), Menlo Park, CA, USA;
http://www.aaai.org , search for workshop Technical Reports;, 1999. American Association
for Artificial Intelligence (AAAI Press). Also available in May 1999 as an IBM Research Re-
port, http://www.research.ibm.com , search for Research Reports; P.O. Box 704, Yorktown
Heights, NY 10598, USA. Earlier version appeared at the IBM Institute for Advanced Com-
merce Workshop on Internet Negotation Technologies, http://www.ibm.com/iac/ .

A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general logic programs.
Journal of ACM, 38(3):620-650, 1991.

Yan Zhang and Norman Y. Foo. Answer sets for prioritized logic programs. In Jan Maluszynski,
editor, Logic Programming: Proceedings of the International Symposium (ILPS-97), pages 69—
83, Cambridge, MA, USA, 1997. MIT Press. Held Port Jefferson, NY, USA, Oct. 12-17, 1997.
http://www.ida.liu.se/~ilps97.

17

