RC 21476 (96914) 11 May 1999
Computer Science

IBM Research Report

Toward a Declarative Language for

Negotiating Executable Contracts

Daniel M. Reeves, Benjamin N. Grosof, Michael P. Wellman, and Hoi Y. Chan

University of Michigan Artificial Intelligence Laboratory

1101 Beal Avenue, Ann Arbor, MI 48109-2110 USA

Internet e-mail: {dreeves,wellman}@umich.edu

Web: http://ai.eecs.umich.edu/people/{dreeves,wellman}

IBM Research Division

T.J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA

(914) 784-7100

Internet e-mail: {grosof,hychan}@us.ibm.com (alt. grosof@cs.stanford.edu)
Web: http://www.research.ibm.com/people/g/grosof

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It
has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside
publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).
Copies may be requested from IBM T.J. Watson Research Center [Publications 16-220 ykt], P.O. Box 218, Yorktown Heights, NY
10598, or via email: reports@us.ibm.com .

Some reports are available on the World Wide Web, at http://www.research.ibm.com (navigate to Research Reports) or at
http://domino.watson.ibm.com/library/CyberDig.nsf/home .

IB M Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

Abstract: We give an approach to automating the negotiation of business contracts. Our
goal is to develop a language for both (1.) fully-specified, executable contracts and (2.)
partially-specified contracts that are in the midst of being negotiated, including via auto-
mated auctions. Our starting point for this language is Courteous Logic Programs (CLP’s),
a form of logic-based knowledge representation (KR) that is semantically declarative, intu-
itively natural, computationally tractable, and practically executable. A CLP is suitable
in particular to represent a fully-specified executable contract. The basic CLP KR also
facilitates modification during negotiation, because it includes prioritized conflict handling
features that facilitate modification. Beyond the basic CLP KR, we have developed an initial
ontology, and an associated style of representation, to specify additional aspects of a partial
contract and of a negotiation process. The initial ontology specifies the set of negotiables
and the structure of a contract in terms of its component goods/services and attributes.
Specifying the negotiable aspects of a good or service includes specifying its attributes, their
possible values, and dependencies/constraints on those attributes. Building upon the repre-
sentation of these negotiable aspects, we are in current work developing methods to structure
negotiations, especially to select and configure auction mechanisms to carry out the nego-
tiation. This work brings together two strands of our previous work on business process
automation in electronic commerce: representing business rules shared between enterprises,
and configurable auction mechanisms.

Copyright and Publication Information: This paper (formatted differently) is
to appear in the Proceedings of the AAAI-99 Workshop on Artificial Intelligence
in Electronic Commerce (AIEC-99), edited by Benjamin Grosof and Tim Finin,
http://www.cs.umbc.edu/aiec/. The Workshop Proceedings are to be published as a
AAAI Technical Report. AAAI is the American Association for Artificial Intelligence, Menlo
Park, CA, USA, http://www.aaai.org. The Limited Distribution Notice on the front page
notwithstanding (it is standard boilerplate for all IBM Research Reports), AAAT’s copyright
to this paper is non-exclusive — the author(s) and IBM retain unrestricted copyright to
distribute this paper.

Related Papers and Material: can be found via the authors’ Web addresses and as IBM
Research Reports at http://www.research.ibm.com .

Keywords: contracts, negotiation, auctions, e-commerce, electronic commerce, specifica-
tion, logic programs, default reasoning, rules, priorities, non-monotonic reasoning, intelligent
agents.

1 Introduction

One form of commerce that could benefit substantially from automation is contracting, where
agents form binding, agreeable terms, and then execute these terms. The overall contracting
process comprises several stages, including broadly:

1. Discovery. Agents find potential contracting partners.
2. Negotiation. Contract terms are determined through a communication process.

3. FEzecution. Transactions and other contract provisions are executed.

In this work we are concerned primarily with negotiation, and specifically with the process
by which an automated negotiation mechanism can be configured to support a particular
contracting episode. Our goal is a shared language with which agents can define the scope
and content of a negotiation, and reach a common understanding of the negotiation rules
and the contract implications of negotiation actions. Note that we make a sharp distinction
between the definition of the negotiation mechanism, and the actual negotiation strategies to
be employed by participating agents. Our concern here is with the former, though of course
in designing a mechanism one must consider the private evaluation and decision making
performed by each of the negotiating parties.

2 Overview of Problem and Approach

The central question in configuring a contract negotiation is “What is to be negotiated?” In
any contracting context, some features of the potential contract must be regarded as fixed,
with others to be determined through the contracting process. At one extreme, the contract
is fully specified, except for a single issue, such as price. In that case, the negotiation can
be implemented using simple auction mechanisms of the sort one sees for specified goods
on the Internet. The other extreme, where nothing is fixed, is too ill-structured to consider
automating to a useful degree in the current state of the art.

Most contracting contexts lie somewhere in between, where an identifiable set of issues
are to be determined through negotiation. Naturally, there is a tradeoff between flexibility
in considering issues negotiable and complexity of the negotiation process. But regardless
of how this tradeoff is resolved, we require a means to specify these issues, so that we can
automatically configure the negotiation mechanisms that will resolve them. That is, we
require a contracting language—a medium for expressing the contract terms resulting from
a negotiation.

2.1 Contracting Language

In developing a shared contracting language, we are concerned with the three stages of con-
tracting: discovery, negotiation, and execution. This multiplicity of purpose is one argument
for adopting a declarative approach, with a relatively expressive knowledge representation
(KR). “Declarative” here means that the semantics say which conclusions are entailed by

a given set of premises, without dependence on procedural or control aspects of inference
algorithms. In addition to flexibility, such an approach promotes standardization and human
understandability.

Traditionally, of course, contracts are specified in legally enforceable natural language
(“legalese”), as in a typical mortgage agreement. This has great expressive power—but often,
correspondingly great ambiguity, and is thus very difficult to automate.!, and is thus very
difficult to automate. At the other extreme are automated languages for restricted domains;
in these, most of the meaning is implicit in the automated representation. This is the current
state of Electronic Data Interchange (EDI). We are in the sparsely occupied middle ground,
aiming for considerable expressive power but also considerable automatability.

Our point of departure for our KR is pure logic programs (in the knowledge-represen-
tation-theory sense, not Prolog). (Baral & Gelfond [1] provide a helpful review.) Logic
programs are not only declarative and relatively powerful expressively, but also practical,
relatively computationally efficient, and widely deployed.

We embody the representation concretely as XML messages. This choice enhances human
readability (via standard XML rendering/UI tools) and supports inclusion and generation of
textual information. It also facilitates integration with EDI components. The XML approach
further facilitates developing/maintaining parsers (via standard XML parsing tools), inte-
grating with WWW-world software engineering, and the enriching capability to (hyper-)link
to ontologies and other extra information. See [8] for details about the XML representation,
its advantages, and its relationship to overall inter-agent communication.

Our KR builds on our prior work representing business rules in Courteous Logic Programs
(CLP’s) [3] [4] [6] [7] (see also Section “Courteous Logic Programs as KR”). To express
executable contracts, these rules must specify the goods and services to be provided, along
with applicable terms and conditions. Such terms include customer service agreements,
delivery schedules, conditions for returns, usage restrictions, and other issues relevant to the
good or service provided.

As part of our approach, we extend this KR with features specific to negotiation. Fore-
most among these is the ability to specify partial agreements, with associated negotiable
parameters. A partial agreement can be viewed as a contract template. Some of its param-
eters may be bound to particular values while others may be left open.

2.2 Negotiable Parameters

Once we have this contracting language, our next step will be to use it to establish the auto-
mated negotiation process. As noted above, a key element of this is to identify the negotiable
parameters. The contract template effectively defines these parameters by specifying what
the contract will be for any instantiation of parameter values.

The problem then, is to enable the contract language to allow descriptions of contract
templates. In addition, we require auxiliary specification of possible values for parameters,
and dependencies and constraints among them. Given this specification of what can be
negotiated, we require a policy to determine what is actually to be included in the given

!'Even if a natural language contract is completely unambiguous, it would require a vast amount of
background and domain knowledge to automate.

negotiation episode (rather than assigned a default value, or left open for subsequent reso-
lution).

This answers the question of what is to be negotiated; the remaining question is how. In
general, there are many ways to structure a negotiation process to resolve multiple parame-
ters. We focus on processes mediated by auctions. As we describe below, the problem then
becomes one of configuring appropriate auctions to manage the negotiation.

3 Auction-Based Negotiation

Mechanisms for determining price and other terms of an exchange are called auctions. Al-
though the most familiar auction types resolve only price, it is possible to define multidi-
menstonal generalizations and variants that resolve multiple issues at once. This can range
from the simple approach of running independent one-dimensional auctions for all of the
parameters of interest, to more complicated approaches that directly manage higher-order
interactions among the parameters.

Auctions are rapidly proliferating on the Internet.? Although typical online auctions
support simple negotiation services, researchers have begun to deploy mechanisms with ad-
vanced features. For example, our own Michigan Internet AuctionBot supports a high degree
of configurability [11] (http://auction.eecs.umich.edu/), and IBM’s auction system supports
one-sided sales auctions integrated with other commerce facilities [9].

Although multidimensional mechanisms are more complicated, and not yet widely avail-
able, we expect that they will eventually provide an important medium for automated nego-
tiation. For example, combinatorial auctions allow bidders to express offers for combinations
of goods, and determines an allocation that attempts to maximize overall revenue. We are
aware of one prototype system currently supporting combinatorial auctions over the Inter-
net [10]. Multiattribute auctions, typically employed in procurement, allow specification of
offers referring to multiple attributes of a single good [2].

Whether a multiattribute auction, a combinatorial auction, or an array of one- or zero-
dimensional auctions is appropriate depends on several factors. Although a full discussion
is beyond the scope of this paper, we observe that these factors can bear on any of:

e The legality of auction configurations. For example, if some attributes are inseparable
(i.e., both must be specified in the contract), then it makes no sense to treat them as
separate goods in a combinatorial auction.

e The expected performance of auction configurations. For example, if parameters rep-
resent distinct and separable contract options, then they could be handled either by
separate or combined auctions. Whether they should be combined depends on how
complementary they are as perceived by the negotiating agents.

e The complexity of auction configurations, for both the mechanism infrastructure and
participating agents. Dimensionality plays a large role in complexity tradeoffs.

2Looking at Yahoo alone yields 104 auction services listed, and 120,000 active auctions on their own
service (http://auctions.yahoo.com/).

4 QOwur Approach

4.1 Courteous Logic Programs as KR

Next, we discuss our approach to the fundamental KR used for describing contract agree-
ments.

Rules as an overall representational approach capture well many aspects of what one
would like to describe in automated contracts. Rules are useful generally to represent much
of the substantive contents of negotiation messages, especially to describe products and
services that are offered or requested. This includes, for example: offers, bids, and proposals;
requests for bids or proposals; requests for quotations (RFQs); and surrounding agreements
such as contractual terms and conditions, and customer service agreements. Rules are also
useful to represent relevant aspects of business processes, e.g., how to place an order, return
an item, or cancel a delivery.

The usefulness of rules in a declarative KR for representing executable specifications of
contract agreements is based largely on their following advantages relative to other software
specification approaches and programming languages. First, rules are at a relatively high
level of abstraction, closer to human understandability, especially by business domain experts
who are typically non-programmers. Second, rules are relatively easy to modify dynamically
and by such non-programmers.

Our point of departure is a particular form of rules: predicate-acyclic pure-belief logic
programs (LP’s). Here, we mean “logic programs” in the sense of pure-belief knowledge rep-
resentation, rather than in the sense of the Prolog programming language. “Pure-belief” here
means without procedural attachments. “Predicate-acyclic” means without cyclic/recursive
paths of dependence among the rules’ predicates.?

This KR has a deep semantics that is useful, well-understood theoretically, and highly
declarative. This semantics reflects a consensus in the rules representation community; it
is widely shared among many commercially important rule-based systems and relational
database systems. This core is also relatively computationally efficient.*

Logic programs are relatively simple and are not overkill representationally. Logic pro-
grams are also relatively fast computationally. Under commonly met restrictions (e.g., no
logical functions of non-zero arity, a bounded number of logical variables per rule), inferenc-
ing — i.e., rule-set execution — in LP’s can be computed in worst-case polynomial-time.®

The KR we are using to represent contracts is Courteous Logic Programs. Courteous
LP’s expressively generalize the ordinary LP’s (described above) by adding the capability
to conveniently express prioritized conflict handling, i.e., where some rules are subject to
override by higher-priority conflicting rules. For example, some rules may be overridden by

3 A logic program &’s predicate dependency graph PDGy is defined as follows. The vertices of the graph
are the predicates that appear in €. (p;,p;) is a (directed) edge in PDG¢ iff there is a rule 7 in £ with p; in
its head (i.e., consequent) and p; in its body (i.e., antecedent). “Predicate-acyclic” means that there are no
cycles in the predicate dependency graph.

4The general case of LP’s, with unrestricted recursion/cyclicity interacting with negation-as-failure, has
problems semantically, is more complex computationally and, perhaps even more importantly, is more diffi-
cult in terms of software engineering. It requires more complicated algorithms and is not widely deployed.

5Unlike classical logic, e.g., first-order logic, which is NP-complete under these restrictions, and semi-
decidable without these restrictions

other rules that are special-case exceptions, more-recent updates, or from higher-authority
sources. Courteous LP’s facilitate specifying sets of rules by merging and updating and
accumulation, in a style closer (than ordinary LP’s) to natural language descriptions.

Courteous LP’s include priorities, between rules, that are partially-ordered. Classical
negation is enforced: p and classical-negation-of-p are never both concluded, for any belief ex-
pression p. Priorities are represented via a fact comparing rule labels: overrides(rulel, rule2)
means that rulel has higher priority than rule2. If rulel and rule2 conflict, then rulel will
win the conflict.

The version of Courteous LP’s we are using, partially described in [7] and [6], is further
expressively generalized as compared to the previous version in [5] and [4].

Example: Modification Lead-Time

The English description of a business-to-consumer electronic commerce preferred-customer
draft contract communicated from a airline (seller) to a traveler (buyer) might include a
contract clause that comprises the following two business rules. Described in English, the
first rule is:

Buyer can modify the departure time up
until 14 days before scheduled
departure, if

- the buyer is a preferred customer.

The second rule is:

Buyer can modify the departure time of

an item up until 2 days before

scheduled departure, if

- the buyer is a preferred customer, and

- the modification is to postpone the
departure, and

- the current flight is full.

This second rule is a special-case rule and overrides the more general-case rule. (The rationale
is that when the current flight is full the airline has demand for extra seats.)
These rules are straightforwardly represented in Courteous LP’s, e.g., as:

<leadTimeRulel>
modificationNotice(?Buyer, ?Seller,
?Flight, 14days) <-
preferredCustomer0f (?Buyer, ?Seller).

<leadTimeRule2>
modificationNotice(?Buyer, ?Seller,
?Flight, 2days) <-
preferredCustomerQf (?Buyer, 7Seller) AND
modificationType (?Flight, postpone) AND
flightIsFull(?Flight) .

overrides(leadTimeRule2, leadTimeRulel)

Here the arrow (“<-”) indicates “if” and the “?” prefix indicates a logical variable.

Courteous LP’s have several virtues semantically and computationally. A Courteous LP
is guaranteed to have a consistent, as well as unique, set of conclusions. Priorities and
merging behave in an intuitively natural fashion. Execution (inferencing) of courteous LP’s
is fast: only relatively low computational overhead is imposed by the conflict handling.®

Our work on representing contracts via courteous LP’s builds on our prior work on
representing business
rules via courteous LP’s (see http://www.research.ibm.com/people/g/grosof). We have a
running prototype implementation [7] of Courteous LP’s as a Java library, including
XML formatting, rule specification, and rule inferencing/execution. An initial version of
the prototype will be released as a free Web alpha in the spring of 1999.

4.2 Ontology for Specifying Partial Contracts

At an abstract level, what distinguishes a contract template from a fully-specified contract
is that the contract template contains a set of variables, and the goal of the negotiation is to
find an assignment to those variables. Once the variables are bound to specific values, there
is a fully-specified contract. We call these variables the negotiable parameters (or negotiable
attributes). To support performing this negotiation, the language of the contract must
express the appropriate value ranges for, and constraints upon, the negotiable parameters.

We have talked about CLP as a basic KR suitable for specifying (via rules) an executable
agreement. Beyond the basic KR we provide negotiation-specific ontology for expressing
partially specified contracts and guiding and constraining the negotiation process. Below we
give an initial set of such negotiation-level predicates.”

The first predicates we introduce allow bundling of attributes. The predicate attri-
bute(?Parent, ?Child) allows us to create a tree of attribute bundles. If specified with
the attribute predicate, the bundle of attributes is considered non-separable, i.e., it is not
possible for a buyer to get some of the attributes from one seller and some from another.
When it is possible to separate sets of attributes in this way®, we use the predicate com-
ponent (?Parent, ?7Child) which again is used to impose an arbitrary tree structure of
components and subcomponents on the negotiable attributes.

The attribute and component predicates are used to impose a hierarchy on negotiable
parameters in the contract. Only the leaves of this tree structure may actually be negotiated,
and this is indicated explicitly in our ontology with the predicate negotiable (?NameOf-

6For a previous version of courteous LP’s, [6] gives the computational complexity analysis. The compu-
tational complexity of the further expressively generalized version is similar.

"They happen to all be predicates currently. In more extended versions of this approach we might find it
useful to add logical functions as well.

8 Although it is still up to the negotiation mechanism to determine whether or not components are actually
supplied by different sellers.

NegotiablePredicate). This predicate indicates that the named predicate® represents a
negotiable parameter of the contract.

Some parameters may be “negotiable” only in the sense that one party determines them
and they are not open to counter-offers. We refer to these as internal parameters. Since
these parameters are determined in the negotiation phase just like every other, we do not
want to treat them specially in our ontology for representing negotiable aspects of the
contract. Instead we introduce a special predicate, negotiationType(?PredicateName,
?TypeOfNegotiation), where the second argument can take values such as sellerChooses
or buyerChooses. It is straightforward in CLP to specify a default, “open for discussion.”

The power of the negotiation-level predicates above is that they can be fully integrated
into the existing framework of CLP. For example, we can specify that an attribute of the
contract is only negotiable under certain conditions, or that the negotiation type depends
on several factors including results of other negotiation. Results of other negotiations are
easily reasoned about because they are simply facts in the rule set, such as buyer(alice)
or price(17).

Using the negotiation-level predicates presented, we now show the overall process for
transforming a partial contract (or contract template) into a fully executable contract. A
contract template consists of rules whose execution will fulfill the agreement (see Section
“Courteous Logic Programs as KR”), a set of negotiable attributes (predicates whose names
appear as arguments of negotiable), and rules about these attributes (those involving the
negotiation-level predicates above as well as rules which have negotiable predicates as the
head). First, the list of negotiable attributes is fed to the negotiation mechanism (considered
a black box at this stage). Also feeding to the negotiation mechanism is the tree structure
implied by the attribute and component rules. Additionally, the negotiation mechanism
needs the results of inferencing from the rules about negotiable attributes (possibly it will
need the rules themselves as well, i.e., the premises of that inferencing). This specifies
constraints and dependencies among attributes.

When the negotiation mechanism completes, its output will be an assignment to all of the
negotiable attributes. These will be represented as facts (recall that a negotiable attribute
is simply a predicate whose name correspond to the attribute itself and whose argument is
the value assigned to that attribute). When these facts are added to the original rule set
(the partial contract) the contract will be fully executable.!

4.3 Examples

Here we present some example negotiation rules in the domain of travel packages to demon-
strate the representation we are using. Note that these examples are meant to be illustrative
of the expressiveness and flexibility of our representation, not as examples of how actual
travel contracts should be specified.

Consider a contract for the purchase of a flight and hotel. The first thing we would like
the partial contract to express is that the flight and the hotel are separable components—a

9This is currently restricted to unary predicates of the form attribute(?Value) but we may lift this
restriction in the future to allow attributes that can be assigned tuples.

10These facts must be added at high priority (see 4.1) to ensure that they override any default values or
constraints.

single buyer will not necessarily get both from the same seller. Each component has some
(non-separable) attributes, yielding the following simple hierarchy:

component (contract, flight).
attribute(flight, airline).
attribute(flight, stopovers).
attribute(flight, seatClass).

component (contract, hotel).
attribute(hotel, quality).

The flight has various attributes, such as which airline (e.g., Northwest, Transworld,
or American Airlines) and the number of stop-overs. An executable CLP contract would
express such information with rules like the following:

flight(?Airline, ?FromCity, ?ToCity,
7Stopovers) <-
airline(?Airline)
AND stopovers(?Stopovers)
AND possibleRoute(?Airline,
?FromCity, ?ToCity).

To specify that certain attributes are negotiable, we use the predicate negotiable which
takes the name!® of a predicate from the contract as an argument:

negotiable(’airline).
negotiable(’stopovers) .

If hotel cost were a parameter to the contract determined solely by the seller, this could
be specified with the negotiationType predicate:

negotiable(’hotelCost) .
negotiationType(*hotelCost, sellerChooses).

By definition, every subcomponent in the contract must have a price attribute'2, but this
need not always be a negotiable parameter in the contract. For example, the total price of
the travel package may be determined based on the negotiated values of flight price (adjusted
by choice of seat class), hotel price, and discount:

flightPrice(?X) <-
flightBasePrice(7BP) AND
seatClassPrice(?SCP) AND

1We specify the name of the predicate rather than the predicate itself to avoid second-order
logic. The quoting syntax used here is similar to Knowledge Interchange Format (KIF) quoting (see
http://www.cs.umbc.edu/KIF).

12Price and quantity will remain distinguished by the mechanism since they are used in the scoring
algorithm for multiattribute auctions [2].

discount (?D) AND

?X == (1 - ?D) * (7?BP + 7SCP).
price(?X) <- flightPrice(?7FP) AND

hotelCost (?HC) AND

quantity(Q) AND X == Q x (?FP + 7HC).

4.4 Adding Negotiation Constructs to Existing Contracts

One important aspect of a contract template that does not at first appear to lend itself to
our method of breaking down the template into a set of attributes with possible values, is
the negotiation of what clauses to adopt or which criteria in the body of a given rule should
actually be adopted. To capture this form of negotiation within our framework, we use
boolean parameters to specify the adoption of rules and conjuncts/disjuncts as follows:

For a rule:

ruleHead <- ruleBody
AND isRuleIncluded(yes).
negotiable(’isRuleIncluded) .

Note that when the negotiation mechanism completes it will add to the above rules
exactly one of the following:

isRuleIncluded(yes) .
isRuleIncluded(no) .

For a conjunct:

(conj OR isConjIncluded(no))
negotiable(’isConjIncluded) .

For a disjunct:

(disj AND isDisjIncluded(yes))
negotiable(’isDisjIncluded) .

For example, consider the rule from Section “Courteous Logic Programs as KR” that the
buyer can (conditionally) modify its order up until 2 days before scheduled delivery:

odificationNotice(?Buyer, ?Seller,
?Flight, 2days) <-
preferredCustomer0f (?Buyer, ?Seller) AND
modificationType(?Flight, postpone) AND
flightIsFull(?Flight) .

For our mechanism to support negotiating the form of this rule (adoption of the rule
itself and adoption of the two conjuncts), we modify it as follows:

modificationNotice (?Buyer, ?Seller,
?Flight, 2days) <-
isRuleIncluded(yes) AND
(preferredCustomer0f (?Buyer, 7?7Seller)
OR isPreferredCustomerRequired(no)) AND
(modificationType(?Flight, postpone)
OR isPostponeRequired(no)) AND
flightIsFull(?Flight) .
negotiable(’isRuleIncluded) .
negotiable(’isPreferredCustomerRequired) .
negotiable(’isPostponeRequired) .

Also, the above example included two constants (2days and reduce) which could be
made negotiable by changing the constants to logical variables (e.g., NoticeAmt and Type),
adding unary predicates (noticeAmt and modificationType), and making those predicates
negotiable. In general,

foo(constantl, constant2) <- conditions.
would become

foo(?Varl, ?Var2) <- conditions AND
varl(?Varl) AND var2(?Var2).

negotiable(’varl).

negotiable(’var2).

5 Discussion and Future Work

We have presented our approach of using a rule-based contract description language to specify
negotiable parameters in a contract and discussed our planned approach for translating such
a contract template into a set of auctions. It is worth mentioning that this work differs from
existing work under similar names. Notably, Tuomas Sandholm’s Contract Net and other
work in distributed Al and industrial engineering describe mechanisms for subcontracting
among agents in order to divide work in accomplishing a task. By contrast, our approach is
to support an automated negotiation mechanism for agents to decide upon agreeable terms
of a contract, which can then be executed electronically.

Another area that we will be working on, when looking at aspects of execu-
tion/enforcement of negotiated contracts, will be to link more closely with the procedures
that will be performed as part of such execution/enforcement. For that purpose, it is de-
sirable for the KR to conveniently express “procedural attachments”: the association of
procedure calls (e.g., a call to a Java method ProcurementAuthorization.setApprovalLevel)
with belief expressions (e.g., a logical predicate such as approvalAuthorizationLevel). We
will thus expressively generalize further to Situated Courteous LP’s. Situated logic pro-
grams [3] hook beliefs to drive procedural APIs. More precisely, situated LP’s permit two
semantically-clean kinds of procedural attachments for condition-testing (“sensing”) and
action-performing (“effecting”). Later we will also want to take a further step of expressive
generalization to relax the cyclicity /recursion prohibition.

10

References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

Chitta Baral and Michael Gelfond. Logic programming and knowledge representation.
Journal of Logic Programming, 19,20:73-148, 1994. Includes extensive review of litera-
ture.

Fernando Branco. The design of multidimensional auctions. Rand Journal of Economics,
28:63-81, 1997.

Benjamin N. Grosof. Building Commercial Agents: An IBM Research Per-
spective (Invited Talk). In Proceedings of the Second International Conference
and FEzhibition on Practical Applications of Intelligent Agents and Multi-Agent
Technology (PAAMY97), P.O. Box 137, Blackpool, Lancashire, FY2 9UN, UK.
http://www.demon.co.uk./ar/PAAM97, April 1997. Practical Application Company
Ltd. Held London, UK. Also available as IBM Research Report RC 20835 at World
Wide Web http://www.research.ibm.com .

Benjamin N. Grosof. Courteous logic programs: Prioritized conflict handling for rules.
Technical report, IBM T.J. Watson Research Center, http://www.research.ibm.com |,
search for Research Reports; P.O. Box 704, Yorktown Heights, NY 10598, Dec. 1997.
IBM Research Report RC 20836. This is an extended version of [5].

Benjamin N. Grosof. Prioritized conflict handling for logic programs. In Jan Maluszyn-
ski, editor, Logic Programming: Proceedings of the International Symposium (ILPS-97),
pages 197-211, Cambridge, MA, USA, 1997. MIT Press. Held Port Jefferson, NY, USA,
Oct. 12-17, 1997. http://www.ida.liu.se/"ilps97. Extended version available as IBM Re-
search Report RC 20836 at http://www.research.ibm.com .

Benjamin N. Grosof. Compiling Prioritized Default Rules Into Ordinary
Logic Programs. Technical report, IBM T.J. Watson Research Center,
http://www.research.ibm.com , search for Research Reports; P.O. Box 704, Yorktown
Heights, NY 10598. USA, May 1999. IBM Reserach Report RC 21472.

Benjamin N. Grosof. DIPLOMAT: Compiling Prioritized Default Rules Into Ordinary
Logic Programs, for E-Commerce Applications (extended abstract of Intelligent Sys-
tems Demonstration). In Proceedings of AAAI-99, San Francisco, CA, USA, 1999.
Morgan Kaufmann. Extended version available in May 1999 as an IBM Research Re-
port RC21473, http://www.research.ibm.com, search for Research Reports; P.O. Box
704, Yorktown Heights, NY 10598, USA.

Benjamin N. Grosof and Yannis Labrou. An Approach to using XML and a Rule-based
Content Language with an Agent Communication Language. In Proceedings of the
1JCAI-99 Workshop on Agent Communication Languages, 1999. Held in conjunction
with the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99)
http://www.ijcai.org . Extended version available in May 1999 as IBM Research Report,
http://www.research.ibm.com, search for Research Reports; P.O. Box 704, Yorktown
Heights, NY 10598, USA.

11

[9] Manoj Kumar and Stuart I. Feldman. Internet auctions. In Third USENIX Workshop
on Electronic Commerce, pages 49-60, Boston, 1998.

[10] Tuomas Sandholm. Approaches to winner determination in combinatorial auctions.
Decision Support Systems, to appear.

[11] Peter R. Wurman, Michael P. Wellman, and William E. Walsh. The Michigan Internet
AuctionBot: A configurable auction server for human and software agents. In Second
International Conference on Autonomous Agents, pages 301-308, Minneapolis, 1998.

12

