
SweetDeal: Representing Agent Contracts with
Exceptions using XML Rules, Ontologies, and

Process Descriptions
Benjamin N. Grosof

MIT Sloan School of Management
50 Memorial Drive

Cambridge, MA 02142, USA
+01 617 253 8694

bgrosof@mit.edu
http://www.mit.edu/~bgrosof

Terrence C. Poon*
Oracle Corporation

500 Oracle Parkway
Redwood Shores, CA 94065, USA

+01 650 506 7000

tpoon@alum.mit.edu
* work done while at MIT

ABSTRACT
SweetDeal is a rule-based approach to representation of business
contracts that enables software agents to create, evaluate, negoti-
ate, and execute contracts with substantial automation and modu-
larity. It builds upon the situated courteous logic programs
knowledge representation in RuleML, the emerging standard for
Semantic Web XML rules. Here, we newly extend the SweetDeal
approach by also incorporating process knowledge descriptions
whose ontologies are represented in DAML+OIL (emerging stan-
dard for Semantic Web ontologies) thereby enabling more com-
plex contracts with behavioral provisions, especially for handling
exception conditions (e.g., late delivery or non-payment) that
might arise during the execution of the contract. This provides a
foundation for representing and automating deals about services –
in particular, about Web Services, so as to help search, select, and
compose them. Our system is also the first to combine emerging
Semantic Web standards for knowledge representation of rules
(RuleML) with ontologies (DAML+OIL) for a practical e-
business application domain, and further to do so with process
knowledge. This also newly fleshes out the evolving concept of
Semantic Web Services. A prototype (soon public) is running.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Methods]:
Representation languages, Representations (procedural and rule-
based); H.4.m [Information Systems Applications]: Miscellane-
ous.

General Terms
Design, Theory, Languages, Management, Standardization, Eco-
nomics, Human Factors, Algorithms, Documentation.

Keywords
Electronic contracts, electronic commerce, XML, Semantic Web,
Web Services, Semantic Web Services, knowledge representation,

intelligent software agents, rules, logic programs, ontologies,
business process automation, process descriptions, process knowl-
edge, RDF, Description Logic, DAML+OIL, OWL, knowledge-
based, declarative.

1. INTRODUCTION
A key challenge in e-commerce is to specify the terms of the deal
between buyers and sellers, e.g., pricing and description of
goods/services. In previous work [1] [2], we have developed an
approach that automates (parts or all of) such business contracts
by representing and communicating them as modular sets of de-
clarative logic-program rules. This approach enables software
agents to create, evaluate, negotiate, and execute contracts with
substantial automation and modularity. It enables a high degree
of reuse of the contract description for multiple purposes in the
overall process of contracting: discovery, negotiation, evaluation,
execution, and monitoring. That approach, now called Sweet-
Deal, builds upon our situated courteous logic programs (SCLP)
knowledge representation in RuleML [3], the emerging standard
for Semantic Web XML rules that we (first author) co-lead.
SweetDeal also builds upon our SweetRules prototype system for
rules inferencing and inter-operability in SCLP RuleML [4].1
In this paper, we newly extend the SweetDeal approach by also
incorporating process knowledge descriptions whose ontologies
are represented in DAML+OIL [5]. OWL [30], the emerging Se-
mantic Web standard for ontologies from the World Wide Web
Consortium (W3C), is based very closely on DAML+OIL; their
fundamental knowledge representation is Description Logic (DL),
an expressive fragment of first-order logic, and both encode this
syntactically in Resource Description Framework (RDF) [33].
RDF is a somewhat cleaner, simpler, and more expressive lan-
guage for labeled directed graphs than basic XML, and is itself in
turn easily encoded in XML. We chose DAML+OIL because it
was more stable during the period we performed this work; in-
deed, when we began this work, OWL did not yet exist.
Our extension of the SweetDeal approach to incorporate such
process descriptions enables more complex contracts with behav-
ioral provisions, especially for handling exception conditions that

1 SweetDeal is fairly unique in its approach and capabilities; for

related work on it, see [1] [2].

Copyright is held by the author/owner(s).

WWW 2003, May 20-24, 2003, Budapest, Hungary.
ACM1-58113-680-3/03/0005.

might arise during the execution of the contract. For example, a
contract can first identify possible exceptions like late delivery or
non-payment. Next, it can specify handlers to find or fix these
exceptions, such as contingency payments, escrow services, pre-
requisite-violation detectors, and notifications. Our rule-based
representation enables software agents in an electronic market-
place to create, evaluate, negotiate, and execute such complex
contracts with substantial automation, and to reuse the same (de-
clarative) knowledge for multiple purposes. In particular, our ap-
proach provides a foundation for representing and automating
deals about services – including about electronic services, e.g.,
Web Services – so as to help search, select, and compose them. It
thereby points the way to how and why to combine Semantic Web
techniques [6] with Web Services techniques [7] to create Seman-
tic Web Services [29], a topic which the DAML-Services effort
[8] and the Web Service Modelling Framework (WSMF) effort
[28] have also been addressing (although not yet much in terms
of describing contractual deal aspects).
Our SweetDeal system is also the first to combine emerging Se-
mantic Web standards for knowledge representation of rules
(RuleML) with ontologies (DAML+OIL) knowledge for a practi-
cal e-business application domain, and further to do so with proc-
ess knowledge. The process knowledge ontology (e.g., about ex-
ceptions and handlers) is drawn from the MIT Process Handbook
[9], a previously-existing repository unique in its large content
and frequent use by industry business process designers. This is
the first time that the MIT Process Handbook has been automated
using XML or powerful logical knowledge representation.
This paper is drawn from a larger effort on SweetDeal whose
most recent portion (second author’s masters thesis) defined and
implemented a software market agent that creates contract pro-
posals in a semi-automated manner (i.e., in support of a human
user) by combining reusable modular contract provisions, called
contract fragments, from a queryable contract repository with
process knowledge from a queryable process repository. This ad-
dresses the negotiation process in an overall interaction architec-
ture for an agent marketplace with such rule-based contracts. A
prototype of the SweetDeal system is running. We intend to make
the prototype publicly available in the near future.

2. SWEETRULES, RULEML, SWEETDEAL:
MORE BACKGROUND

SweetDeal is part of our larger effort SWEET, acronym for “Se-
mantic WEb Enabling Technology”, and is prototyped on top of
SweetRules. Our earlier SweetRules prototype was the first to
implement SCLP RuleML inferencing and also was the first to
implement translation of (SCLP) RuleML to and from multiple
heterogeneous rule systems. SweetRules enables bi-directional
translation from SCLP RuleML to: XSB, a Prolog rule system
[10]; Smodels, a forward logic-program rule engine [11]; the IBM
CommonRules rule engine, a forward SCLP system [12]; and
Common Logic (formerly known as Knowledge Interchange
Format (KIF)), an emerging ISO industry standard for knowledge
interchange in classical logic [13]. 2 The latest component of
SweetRules is SweetJess [14] which aims to enable bi-directional
translation to Jess, a popular open-source forward production-rule

2 SweetRules is built in Java. It uses XSLT [22] and components

of the IBM CommonRules library.

system in Java [15]. The SweetJess prototype is publicly avail-
able free for Web download.
The SCLP case of RuleML is expressively powerful. The courte-
ous extension of logic programs enables prioritized conflict han-
dling and thereby facilitates modularity in specification, modifica-
tion, merging, and updating. The situated extension of logic
programs enables procedural attachments for “sensing” (testing
rule antecedents) and “effecting” (performing actions triggered by
conclusions). Merging and modification is important specifically
for automated (“agent”) contracts, because contracts are often as-
sembled from reusable provisions, from multiple organizational
sources, and then tweaked. Updating is important because a con-
tract is often treated as a template to be filled in. For example, be-
fore an on-line auction is held a contract template is provided for
the good/service being auctioned. Then when the auction closes,
the template is filled in with the winning price and the winner’s
name, address, and payment method. Indeed, in [2] we show how
to use SCLP to represent contracts in this dynamically updated
manner, for a real auction server – U. Michigan’s AuctionBot –
and the semi-realistic domain of a Trading Agent Competition
about travel packages. More generally, the design of SCLP as a
knowledge representation (KR) grew out of a detailed require-
ments analysis [1] for rules in automated contracts and business
policies. The RuleML standards effort is being pursued in infor-
mal cooperation with: (1) the W3C’s Semantic Web Activity,
which has now included rules in its charter along with ontologies;
(2) the DARPA Agent Markup Language Program (DAML) [16];
(3) the Joint US/EU ad hoc Agent Markup Language Committee
[31] which designed DAML+OIL; and (4) the Oasis e-business
standards body [32].

3. OVERVIEW OF THE REST OF THE
PAPER
In section 4, we review the MIT Process Handbook (PH) [9] [17],
and Klein et al’s extension of it to treat exception conditions in
contracts [18]. In section 5, we newly show how to represent the
Process Handbook’s process ontology (including about excep-
tions) in DAML+OIL, giving some examples. In section 6, we
describe our development of an additional ontology specifically
about contracts, again giving examples in DAML+OIL. This
contract ontology extends and complements the PH process ontol-
ogy. In section 7, we newly give an approach to using
DAML+OIL ontology as the predicates etc. of RuleML rules. In
section 8, we newly show how to use the DAML+OIL process on-
tology, including about contracts and exceptions, as the predicates
etc. of RuleML rules, where a ruleset represents part or all of a
(draft or final) contract with exceptions and exception handlers.
We illustrate by giving a long-ish example of such a contract rule-
set whose rule-based contingency provisions include detecting
and penalizing late delivery exceptions, thus providing means to
deter or adjudicate a late delivery. In section 9, we give conclu-
sions. In section 10, we discuss directions for future work. \

4. MIT PROCESS HANDBOOK (PH)
In this section, we review the MIT Process Handbook (PH) [9]
[17], and Klein et al’s extension of it to treat exception conditions
in contracts [18].
The MIT Process Handbook (PH) is a previously-existing knowl-
edge repository of business process knowledge. It is primarily
textual and oriented to human-readability although with some use-
ful automation for knowledge management using taxonomic
structure. Among automated repositories of business process
knowledge, it is unique (to our knowledge) in having a large

amount of content and having been frequently used practically by
industry business process designers from many different compa-
nies. Previous to our work in SweetDeal, however, its content had
never been automated in XML, nor had that content ever been
represented in any kind of powerful logical knowledge representa-
tion – the closest was its use of a fairly conventional Object-
Oriented (OO) style of taxonomic hierarchy, as a tool to organize
its content for retrieval and browsing.
The Handbook describes and classifies major business processes
using the organizational concepts of decomposition, dependencies,
and specialization. The Handbook models each process as a col-
lection of activities that can be decomposed into sub-activities,
which may themselves be processes. In turn, coordination is mod-
eled as the management of dependencies that represent flows of
control, data, or material between activities. Each dependency is
managed by a coordination mechanism, which is the process that
controls its resource flow.
Finally, processes are arranged into a generalization-specialization
taxonomy, with generic processes at the top and increasingly spe-
cialized processes underneath. Each specialization automatically
inherits the properties of its parents, except where it explicitly
adds or changes a property. This is similar to taxonomic class hi-
erarchies having default inheritance3, such as in many Object-
Oriented (OO) programming languages, knowledge representa-
tions (KR’s) and information modeling systems. Note that the
taxonomy is not a tree, as an entity may have multiple parents. In
general, there thus is multiple inheritance. For example,
BuyAsALargeBusiness is a subclass of both Buy and ManageEn-
tity. The figure below shows a part of the taxonomy with some of
the specializations for the “Sell” process. Note the first genera-
tion of children of “Sell” are questions; these are classes used as
intermediate categories, analogous to virtual classes (or pure inter-
faces) in OO programming languages. Since there is multiple in-
heritance, it is easy to provide several such “cross-cutting” dimen-
sions of categories along which to organize the hierarchy.

Figure 1: Some specializations of “Sell” in the MIT Process

Handbook.

Exception Conditions
The terms of any contract establish a set of commitments between
the parties involved for the execution of that contract. When a
contract is executed, these commitments are sometimes violated.

3 a.k.a. “inheritance with exceptions”, a.k.a. “non-monotonic in-

heritance”

Often contracts, or the laws or automation upon which they rely,
specify how such violation situations should be handled.
Building upon the Process Handbook, Klein et al [18] consider
these violations to be coordination failures – called “exceptions” –
and introduces the concept of exception handlers, which are proc-
esses that manage particular exceptions. We in turn build upon
Klein et al’s approach. When an exception occurs during con-
tract execution, an exception handler associated with that excep-
tion may be invoked.
For example, in a given contract (agreement), company A agrees
to pay $50 per unit for 100 units of company B’s product, and B
agrees to deliver within 15 days (commitments). However, due to
unforeseen circumstances, when the contract is actually per-
formed, B only manages to deliver in 20 days (exception). As a
result, B pays $1000 to A as compensation for the delay (excep-
tion handler).

Figure 2: Some exceptions in the MIT Process Handbook.

There are four classes of exception handlers in [18]. For an excep-
tion that has not occurred yet, one can use:

• Exception anticipation processes, which identify situations
where the exception is likely to occur.

• Exception avoidance processes, which decrease or eliminate
the likelihood of the exception.

For an exception that has already occurred, one can use:

• Exception detection processes, which detect when the excep-
tion has actually occurred.

• Exception resolution processes, which resolve the exception
once it has occurred.

[18] extends the MIT Process Handbook with an exception taxon-
omy. Every process may be associated via hasException links to
its potential exceptions (zero or more), which are the characteris-
tic ways in which its commitments may be violated. hasException
should be understood as “has potential exception”. Similar to the
process taxonomy, exceptions are arranged in a specialization hi-
erarchy, with generic exceptions on top and more specialized ex-
ceptions underneath. In turn, each exception is associated (via an
isHandledBy link) to the processes (exception handlers) that can
be used to deal with that exception. Since handlers are processes,
they may have their own characteristic exceptions.

Figure 3: Some exception handlers in the MIT Process

Handbook.4
Following the general style of (multiple) inheritance in the MIT
Process Handbook, the exceptions associated with a process are
inherited by the specializations of that process. Similarly, the han-
dlers for an exception are inherited by the specializations of that
exception.

5. REPRESENTING THE PH PROCESS
ONTOLOGY IN DAML+OIL
In this section, we newly show how to represent the Process
Handbook’s process ontology (including about exceptions) in
DAML+OIL, giving some examples. This ontology is given a
URI of http://xmlcontracting.org/pr.daml, where “pr” stands for
“process”. We have registered the xmlcontracting.org domain
name and are in the process of setting up the web site. For the
current full version of this ontology, and pointer to the xmlcon-
tracting.org site when it is indeed up, please see the first author’s
website.
We begin with some DAML+OIL headers:
<?xml version="1.0" ?>

<rdf:RDF

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

xmlns ="http://xmlcontracting.org/pr.daml#" >

<daml:Ontology rdf:about="">

4 Track MBTF is a typo in the MIT Process Handbook. It should

be Track MTBF (mean time between failures) instead.

 <daml:imports
rdf:resource="http://www.daml.org/2001/03/daml+oil
"/>

</daml:Ontology>

Next we define some main concepts in the MIT Process Hand-
book as top-level classes:
<daml:Class rdf:ID="Process">

 <rdfs:comment>A process</rdfs:comment>

</daml:Class>

<daml:Class rdf:ID="CoordinationMechanism">

 <rdfs:comment>A process that manages activities
between multiple agents</rdfs:comment>

</daml:Class>

<daml:Class rdf:ID="Exception">

 <rdfs:comment>A violation of an inter-agent
commitment</rdfs:comment>

</daml:Class>

<daml:Class rdf:ID="ExceptionHandler">

 <rdfs:subClassOf rdf:resource="#Process"/>

 <rdfs:comment>A process that helps to manage a
particular exception</rdfs:comment>

</daml:Class>

Then we define the relations between concepts as object proper-
ties:
<daml:ObjectProperty rdf:ID="hasException">

 <rdfs:comment>Has a potential
exception</rdfs:comment>

 <rdfs:domain rdf:resource="#Process" />

 <rdfs:range rdf:resource="#Exception" />

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="isHandledBy">

 <rdfs:comment>Can potentially be handled, in
some way or aspect, by</rdfs:comment>

 <rdfs:domain rdf:resource="#Exception" />

 <rdfs:range rdf:resource="#ExceptionHandler" />

</daml:ObjectProperty>

Specializations are expressed as subclasses6:
<daml:Class rdf:ID="SystemCommitmentViolation">

 <rdfs:subClassOf rdf:resource="#Exception"/>

 <rdfs:comment> Violation of a commitment made by
the system operator to create an environment well-
suited to the task at hand. </rdfs:comment>

</daml:Class>

<daml:Class rdf:ID="AgentCommitmentViolation">

 <rdfs:subClassOf rdf:resource="#Exception"/>

 <rdfs:comment> Violation of a commitment that an
agents makes to other agents.

 </rdfs:comment>

</daml:Class>

6 In Figure 2 (in Section 3), SystemCommitmentViolation and

AgentCommitmentViolation are shown as “Systemic” and
“Agent”, respectively.

The Process Handbook expects each specialization to inherit the
properties of its parent. The DAML+OIL semantics provide this
automatically since it entails monotonic (strict) inheritance of
such properties.
The Process Handbook is quite large (order of magnitude 10,000
classes). We have (so far) represented in DAML+OIL a relevant
fragment amounting to a small percentage of its content. Only
some of that fragment is shown in this paper, however. For the
full details, see the first author’s website.

6. CONTRACT ONTOLOGY
In this section, we describe our development of an additional
process ontology specifically about contracting concepts and rela-
tions, again giving examples in DAML+OIL. This contract on-
tology extends and complements the PH process ontology. We
give it the URI http://xmlcontracting.org/sd.daml, where “sd”
stands for “SweetDeal”. For the current file version of this ontol-
ogy, and pointer to the xmlcontracting.org site when it is indeed
up, please see the first author’s website.
Again we begin with some DAML+OIL header statements. No-
tice that we import the PH process ontology:
<?xml version='1.0' encoding='ISO-8859-1'?>

<rdf:RDF

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns ="http://xmlcontracting.org/sd.daml#"
><daml:Ontology rdf:about="">

 <daml:imports
rdf:resource="http://www.daml.org/2001/03/daml+oil
"/>

 <daml:imports
rdf:resource="http://xmlcontracting.org/pr.daml"/>

</daml:Ontology>

We view a contract as a specification for one or more processes.
Accordingly, we define the Contract class and a specFor relation
that links a contract to its process(es):
<daml:Class rdf:ID="Contract">

 <rdfs:subClassOf>

 <daml:Restriction daml:minCardinality="1">

 <daml:onProperty rdf:resource="#specFor"/>

 </daml:Restriction>

 </rdfs:subClassOf>

</daml:Class>

<daml:ObjectProperty rdf:ID="specFor">

 <rdfs:domain rdf:resource="#Contract" />

 <rdfs:range
rdf:resource="http://xmlcontracting.org/pr.daml#Pr
ocess" />

</daml:ObjectProperty>

To represent the common special case of contracts that specify
only one process, we define ContractForOneProcess, using a
daml:cardinality restriction to limit the specFor relation to
exactly one process:
<daml:Class rdf:ID="ContractForOneProcess">

 <rdfs:subClassOf rdf:resouce="#Contract"/>

 <rdfs:subClassOf>

 <daml:Restriction daml:cardinality="1">

 <daml:onProperty rdf:resource="#specFor"/>

 </daml:Restriction>

 </rdfs:subClassOf>

</daml:Class>

A contract represents the “terms and conditions” that the parties
have agreed upon (typically) before performing the contract. E.g.,
they have come to agreement during a negotiation before their
contract commitments actually come due. We define a separate
concept, ContractResult, to represent the state of how the contract
was actually carried out. For example, ContractResult could de-
scribe the actual shipping date, the quality of the received goods,
the amount of payment received, etc.
<daml:Class rdf:ID="ContractResult"/>

<daml:ObjectProperty rdf:ID="result">

 <rdfs:domain rdf:resource="#Contract" />

 <rdfs:range rdf:resource="#ContractResult" />

</daml:ObjectProperty>

The process ontology provides the hasException relation to indi-
cate that a process could have a particular exception. How do we
indicate that an exception has occurred during contract execution?
We define the exceptionOccurred relation on ContractResult to
denote that the exception happened as the contract was being car-
ried out:
<daml:ObjectProperty rdf:ID="exceptionOccurred">

 <daml:domain
rdf:resource="http://xmlcontracting.org/pr.daml#Co
ntractResult"/>

 <daml:range
rdf:resource="http://xmlcontracting.org/pr.daml#Ex
ception"/>

</daml:ObjectProperty>

Finally, we introduce some relations to specify the purpose that an
exception handler fulfills. A DetectException handler is intended
to detect certain exception classes, an AnticipateException handler
is intended to anticipate certain exception classes, etc. We want to
identify exception classes, not exception instances. We thus make
the range be the class Class.7
<daml:ObjectProperty rdf:ID="detectsException">

 <daml:domain
rdf:resource="http://xmlcontracting.org/pr.daml#De
tectException"/>

 <daml:range
rdf:resource="http://www.daml.org/2001/03/daml+oil
#Class"/>

</daml:ObjectProperty>

<daml:ObjectProperty
rdf:ID="anticipatesException">

 <daml:domain
rdf:resource="http://xmlcontracting.org/pr.daml#An
ticipateException"/>

7 This is based on the interpretation that an instance of class Class

is a class, something which we could not find explicitly ad-
dressed in the DAML+OIL reference manual. Also, ideally, we
would restrict the range to subclasses of Exception, but we did
not see a straightforward way to do this in the current version of
DAML+OIL.

 <daml:range
rdf:resource="http://www.daml.org/2001/03/daml+oil
#Class"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="avoidsException">

 <daml:domain
rdf:resource="http://xmlcontracting.org/pr.daml#Av
oidException"/>

 <daml:range
rdf:resource="http://www.daml.org/2001/03/daml+oil
#Class"/>

</daml:ObjectProperty>

 <daml:ObjectProperty rdf:ID="resolvesException">

 <daml:domain
rdf:resource="http://xmlcontracting.org/pr.daml#Re
solveException"/>

 <daml:range
rdf:resource="http://www.daml.org/2001/03/daml+oil
#Class"/>

</daml:ObjectProperty>

There are a number of other interesting concepts and ontological
statements about contracts that we have developed in our Sweet-
Deal Contract Ontology, but space prevents us from detailing
them further here.

7. INTEGRATING DAML+OIL
ONTOLOGIES INTO RULEML RULES
In this section, we briefly describe the technical representational
approach for the integration of the DAML+OIL ontologies into
the RuleML rules, in which the RuleML rules are specified “on
top of” the DAML+OIL ontology. In the next section, we give
examples of RuleML contract rules that make use of DAML+OIL
process ontologies.
A DAML+OIL class is treated as a unary predicate. A
DAML+OIL property is treated as a binary predicate. Assertions
about instances in a class are treated as rule atoms (e.g., facts) in
which the class predicate appears. Assertions about property links
between class instances are treated as rule atoms in which the
property predicate appears. RuleML permits a predicate symbol
(or a logical function symbol) to be a URI; we make heavy use of
this capability since the names of DAML+OIL classes are URI’s.
To our knowledge, ours is the first published description and ex-
ample of such integration of DAML+OIL into RuleML, and one
of the first two published descriptions and examples of combina-
tion of DAML+OIL with a non-monotonic rule KR -- the other
being [19] which was done independently.8
A natural question arises: how to define formally the semantics
of such integration, i.e., of the hybrid KR formed by combining
LP rules on top of DL ontologies (or, similarly, by combining
Horn FOL rules on top of DL ontologies). One might view this
through the lens of the rule KR’s semantics and/or through the
lens of the ontology KR’s semantics. Knowledge specified in a
set of premise rules R1 together with a set of premise DL axioms
O1 may entail knowledge O2 expressible in DL that goes beyond
what was entailed by O1 alone, and likewise may entail knowl-

8 We (first author) gave oral presentations of this approach in

communal design discussions about DAML and about RuleML
since when those discussions began in summer 2000. The
overall goal of rules on top of ontologies has, indeed, been a
communal goal in those discussions since then.

edge R2 expressible in LP that goes beyond what was entailed by
R1 alone. It is also possible, in general, for inconsistency to arise
from the combination of R1 with O1, even though each is consis-
tent in itself. Such O2, R2, and potential inconsistency can all be
avoided by suitably expressively restricting the ontologies (or the
rules) -- to be Description Logic Programs (DLP). Elsewhere
[27] we give details about DLP. A somewhat similar hybrid KR
is addressed in [19].

8. RULEML CONTRACTS WITH
EXCEPTIONS USING THE PROCESS AND
CONTRACT ONTOLOGIES
In this section, we newly show how to use the DAML+OIL proc-
ess ontology, including about contracts and exceptions, as the
predicates etc. of RuleML rules, where a ruleset represents part or
all of a (draft or final) contract that has exceptions and exception
handlers.
We illustrate by giving a long-ish example of such a contract rule-
set whose rule-based contingency provisions include detecting
and penalizing late delivery exceptions, thus providing means to
deter or adjudicate a late delivery.
RuleML, like most XML, is fairly verbose. For ease of human-
readability, as well as to save paper space, we give our RuleML
examples in a Prolog-like syntax that maps straightforwardly to
RuleML. More precisely, this syntax is IBM CommonRules V3.0
“SCLPfile” format, extended to support URI’s as logical predicate
(and function) symbols and to support names for rule subsets (i.e.,
“modules”). “<-“ stands for implication, i.e., “if”. “;” ends a rule
statement. The prefix “?” indicates a logical variable. “/*…*/”
encloses a comment line. “<…>” encloses a rule label (name) or
rule module label. “{…}” encloses a rules module. Rule labels
identify rules for editing and prioritized conflict handling, for ex-
ample to facilitate the modular modification of contract provi-
sions. Module labels are used to manage the merging of multiple
rule modules to form a contract.
In the examples below, DAML+OIL classes and properties, taken
from the PH process ontology and contract (process) ontology, are
used as predicate symbols.
Let’s begin with an example draft contract co123 where Acme is
purchasing 100 units of plastic product #425 from Plastics Etc. at
$50 per unit. Acme requires Plastics Etc. to ship the product no
later than three days after the order is placed 9. We specify this
draft contract as the following rulebase (i.e., set of rules):
http://xmlcontracting.org/sd.daml#Contract(co123);

http://xmlcontracting.org/sd.daml#specFor(co123,co
123_process);

http://xmlcontracting.org/sd.daml#BuyWithBilateral
Negotiation(co123_process);

http://xmlcontracting.org/sd.daml#result(co123,co1
23_res);

buyer(co123,acme);

seller(co123,plastics_etc);

product(co123,plastic425);

9 Here we use a relative date (e.g. 3) rather than an absolute date

(e.g. 2002-04-02), for sake of simplicity and because the rule
engine that we are using in our prototype (IBM CommonRules)
does not (yet) provide convenient date arithmetic functions.

shippingDate(co123,3); /* i.e. 3 days after the
order is placed */

price(co123,50);

quantity(co123,100);

/* base payment = price * quantity */

payment(?R,base,?Payment) <-

http://xmlcontracting.org/sd.daml#result(co123,?R)
AND

 price(co123,?P) AND quantity(co123,?Q) AND

 Multiply(?P,?Q,?Payment) ;

Continuing our example, suppose the seller wants to include a
contract provision to penalize late delivery – so as to reassure the
buyer. First we add some rules to declare that this contract has an
exception instance e1 that is an instance of the LateDelivery class
from the process ontology:

http://xmlcontracting.org/pr.daml#hasException(co1
23_process,e1);

http://xmlcontracting.org/pr.daml#LateDelivery(e1)
;

Note that the actual occurrence of an exception is associated with
a contract result, as opposed to its potential occurrence which is
associated with the contract (agreement)’s process. hasException
specifies the potential occurrence. We will see below more about
the actual occurrence.
 Next, we give a rules module (i.e., a set of additional rules to
include in the overall draft contract ruleset) that specifies a basic
kind of exception handler process – to detect the late delivery.
In our approach, exception handler processes themselves may be
rule-based (in part or totally), although in general they need not be
rule-based at all. The exception handler detectLateDelivery is
rule-based in this example. Below, the variable ?CO stands for a
contract, ?R for a contract result, ?EI for an exception in-
stance, ?PI for a process instance, ?COD for a promised contract
shipping date, and ?RD for a contract result’s actual shipping date.

<detectLateDelivery_module> {

/* detectLateDelivery is an instance of
DetectPrerequisiteViolation (and thus of
DetectException, ExceptionHandler, and Process) */

http://xmlcontracting.org/pr.daml#DetectPrerequisi
teViolation(

 detectLateDelivery) ;

/* detectLateDelivery is intended to detect
exceptions of class LateDelivery */

http://xmlcontracting.org/sd.daml#detectsException
(detectLateDelivery,

 http://xmlcontracting.org/pr.daml#LateDelivery);

/* a rule defines the actual occurrence of a late
delivery in a contract result */

<detectLateDelivery_def>
http://xmlcontracting.org/sd.daml#exceptionOccurre
d(?R, ?EI) <-

http://xmlcontracting.org/sd.daml#specFor(?CO,?PI)
AND

http://xmlcontracting.org/pr.daml#hasException(?PI
,?EI) AND

http://xmlcontracting.org/pr.daml#LateDelivery(?EI
) AND

http://xmlcontracting.org/pr.daml#isHandledBy(?EI,

detectLateDelivery) AND

 http://xmlcontracting.org/sd.daml#result(?CO,?R)
AND

 shippingDate(?CO,?COD) AND shippingDate(?R,?RD)
AND

 greaterThan(?RD,?COD) ;

}

Then we add the following rule to the contract to specify detect-
LateDelivery as a handler for e1:

<detectLateDeliveryHandlesIt(e1)>
http://xmlcontracting.org/pr.daml#isHandledBy(e1,detectLateDeli
very);

Merely detecting late delivery is not enough; the buyer also wants
to get a penalty (partial refund) if late delivery occurs. Continuing
our example, we next give a rules module to specify a penalty of
$200 per day late, via an exception handler process lateDelivery-
Penalty. Again, this handler is itself rule-based.
lateDeliveryPenalty_module {

// lateDeliveryPenalty is an instance of
PenalizeForContingency (and thus of
AvoidException, ExceptionHandler, and Process)

http://xmlcontracting.org/pr.daml#PenalizeForConti
ngency(

 lateDeliveryPenalty) ;

// lateDeliveryPenalty is intended to avoid
exceptions of class LateDelivery.

http://xmlcontracting.org/sd.daml#avoidsException(
lateDeliveryPenalty,

 http://xmlcontracting.org/pr.daml#LateDelivery);

// penalty = - overdueDays * 200 ; (negative
payment by buyer)

<lateDeliveryPenalty_def> payment(?R,
contingentPenalty, ?Penalty) <-

http://xmlcontracting.org/sd.daml#specFor(?CO,?PI)
AND

http://xmlcontracting.org/pr.daml#hasException(?PI
,?EI) AND

http://xmlcontracting.org/pr.daml#isHandledBy(?EI,
lateDeliveryPenalty) AND

 http://xmlcontracting.org/sd.daml#result(?CO,?R)
AND

http://xmlcontracting.org/sd.daml#exceptionOccurre
d(?R,?EI) AND

 shippingDate(?CO,?CODate) AND
shippingDate(?R,?RDate) AND

 subtract(?RDate,?CODate,?OverdueDays) AND

 multiply(?OverdueDays, 200, ?Res1) AND
multiply(?Res1, -1, ?Penalty) ;

}

We add a rule to specify lateDeliveryPenalty as a handler for e1:
<lateDeliveryPenaltyHandlesIt(e1)>
http://xmlcontracting.org/pr.daml#isHandledBy(e1,l
ateDeliveryPenalty);

During contract execution, if Plastics Etc. ships its product 8 days
after the order is placed (i.e. 5 days later than the agreed-upon
date), then the rules detectLateDelivery will declare that
late delivery exception has occurred, which will trigger
lateDeliveryPenalty to impose a penalty of $200 per day
late, totaling $1000.
More precisely, suppose we represent the contract result as the
ruleset formed by adding (to the above contract) the following
“result” fact:
shippingdate(co123_res, 8) ;

Then the contract result ruleset entails various conclusions, in par-
ticular
http://xmlcontracting.org/sd.daml#exceptionOccurre
d(co123_res,e1) ;

payment(co123_res, contingentPenalty, -1000) ;

Our SweetRules prototype system, which implements SCLP
RuleML inferencing, can generate these conclusions automati-
cally.
Next, we (relatively briefly, due to space constraints) illustrate
how to use prioritized conflict handling, enabled by the courteous
feature of SCLP RuleML, to modularly modify the contract provi-
sions, e.g., during bilateral negotiation. The seller might like to
specify that the late delivery exception should be handled by the
handler lateDeliveryRiskPayment, which imposes an up-front in-
surance-like discount to compensate for the risk of late delivery,
basing risk upon a historical average probability distribution (de-
fined separately) of delivery lateness. First, we define a rules
module for the risk payment handler:
lateDeliveryRiskPayment_module {

/* lateDeliveryRiskPayment is an instance of
AvoidException (and thus of ExceptionHandler, and
Process) */

http://xmlcontracting.org/pr.daml#AvoidException(

 lateDeliveryRiskPayment) ;

/* lateDeliveryRiskPayment is intended to avoid
exceptions of class LateDelivery. */

http://xmlcontracting.org/sd.daml#avoidsException(

 lateDeliveryRiskPayment,

 http://xmlcontracting.org/sd.daml#LateDelivery) ;

/* penalty = - expected_lateness * 200 (negative
payment by buyer) */

<lateDeliveryRiskPayment_def>

payment(?R, contingentRiskPayment, ?Penalty) <-

http://xmlcontracting.org/sd.daml#specFor(?CO,?PI)
AND

http://xmlcontracting.org/sd.daml#hasException(?PI
,?EI) AND

http://xmlcontracting.org/pr.daml#isHandledBy(?EI,

lateDeliveryRiskPayment) AND

 http://xmlcontracting.org/sd.daml#result(?CO,?R)
AND

historical_probabilistically_expected_lateness(?CO
, ?EOverdueDays) AND

 Multiply(?EOverdueDays, 200, ?Res1) AND
Multiply(?Res1, -1, ?Penalty);

}

Then we add a rule to specify lateDeliveryRiskPayment as a han-
dler for e1:
<lateDeliveryRiskPaymentHandlesIt(e1)>

http://xmlcontracting.org/pr.daml#isHandledBy(e1,

lateDeliveryRiskPayment);

Next, we give some rules that use prioritized conflict handling to
specify that late deliveries should be avoided by lateDeliv-
eryRiskPayment rather than any other candidate avoid-type
exception handlers for the late delivery exception (here, simply,
lateDeliveryPenalty). We specify this using a combination of a
MUTEX statement and an overrides statement that gives the lat-
eDeliveryRiskPaymentHandlesIt(e1) rule higher priority than the
lateDeliveryPenaltyHandlesIt(e1) rule.
/* There is at most one avoid handler for a given
exception instance. */

/* This is expressed as a MUTual EXclusion between
two potential conclusions, given certain other
preconditions. */

/* The mutex is a consistency-type integrity
constraint, which is enforced by the courteous
aspect of the semantics of the rule KR. */

MUTEX

http://xmlcontracting.org/pr.daml#isHandledBy(?EI,
 ?EHandler1) AND

http://xmlcontracting.org/pr.daml#isHandledBy(?EI,
 ?Ehandler2)

GIVEN

http://xmlcontracting.org/sd.daml#AvoidException(?
Ehandler1) AND

http://xmlcontracting.org/sd.daml#AvoidException(?
Ehandler2) ;

/* The rule lateDeliveryRiskPaymentHandlesIt(e1)
has higher priority than the rule
lateDeliveryPenaltyHandlesIt(e1). */

overrides(lateDeliveryRiskPaymentHandlesIt(e1),

 lateDeliveryPenaltyHandlesIt(e1)) ;

Now suppose the probabilistically expected lateness of the deliv-
ery (before actual contract execution) is 3 days. I.e., suppose the
contract also includes the following fact.
historical_probabilistically_expected_lateness(co1
23, 3) ;

If upon execution the modified-contract’s result facts are as be-
fore – i.e., delivery is 5 days late – then the modified-contract’s
result entails as conclusions that the late delivery will be handled
by the up-front risk payment of $600 = (3 days * $200).
payment(co123_res, contingentRiskPayment, -600) ;

The modified-contract’s result does not entail that late delivery is
handled by the penalty of $1000 – as it should not. The courteous
aspect of the rules knowledge representation has properly taken
care of the prioritized conflict handling to enforce that the new
higher-priority contract provision about risk payment dominates
the provision about penalty.

9. CONCLUSIONS
To recap, this work makes novel contributions in several areas:

• Represents process knowledge from the MIT Process Hand-
book (PH) using an emerging Semantic Web ontology KR
(DAML+OIL). This is the first time PH process knowledge
has been represented using XML or powerful KR.

• Extends our previously existing SweetDeal approach to rule-
based representation of contracts in SCLP/RuleML with the
ability to reference such process knowledge and to include
exception handling mechanisms. (The SweetDeal approach
enables software agents to create, evaluate, negotiate, and
execute contracts with substantial automation and modular-
ity.)

• Enables thereby more complex contracts with behavioral
provisions.

• Provides a foundation for representing and automating con-
tractual deals about Web Services (and e-services more gen-
erally), so as to help search, select, and compose them.

• Gives a new point of convergence between Semantic Web
and Web Services – thereby newly fleshing out the evolving
concept of Semantic Web Services.

• Gives a conceptual approach to specifying LP/RuleML rules
“on top of” DL/DAML+OIL/OWL ontologies (for the first
time to our knowledge). Moreover, this is for the highly ex-
pressive SCLP case of RuleML. And this is one of the first
two published descriptions and examples of combination of
DAML+OIL (or OWL) with a non-monotonic rule KR — the
other being [19] which was done independently. Our ap-
proach to rules on top of ontologies is described here concep-
tually and by examples, but only informally, however, in that
we lack space here to give a formal semantics (or proof the-
ory) for it.

• Combines (SC)LP/RuleML with DL/DAML+OIL (i.e.,
emerging Semantic Web rules with emerging Semantic Web
ontologies) for a substantial business application domain
scenario/purpose (for the first time, to our knowledge).

A prototype is running. We intend to make it publicly avail-
able in the near future.

For more discussion of conclusions, and of the larger SweetDeal
effort, see the Introduction.

10. FUTURE AND RELATED WORK
One interesting research direction is to develop more and longer
example scenarios and test them out by running them using
SweetRules together with tools for DAML+OIL/OWL and, later,
tools for reasoning specifically about process knowledge. In par-
ticular, we are investigating aspects specific to Web Services. We
are focusing on relating our SweetDeal approach and its elements
(rules, ontologies, process knowledge) to the Web Services area’s
standards (e.g., WSDL [24]), techniques (e.g., SOAP invocations
[23], UDDI [25]), and exploratory application areas. A second in-
teresting direction is how to incorporate legal aspects of contract-
ing into our approach, including to connect to the Legal XML
emerging standards effort [26].
Other interesting directions involve ontologies. One is to further
develop the DAML+OIL/OWL ontology for business processes,
e.g., by drawing on the Process Handbook. A second is to further
develop the contract ontology. Currently, we are investigating
how to formalize more deeply the relationship between a contract
rulebase and a rule-based handler process.
An important aspect of ontologies, mentioned earlier, is to de-
velop the theory of combining rules on top of ontologies, includ-
ing expressive union and intersection, semantics, proof theory, al-
gorithms, and computational complexity. Our development of
this theory is in progress [27]. This will also provide a principled
basis for unifying the syntax of the rules with that of the ontolo-
gies, e.g., using RDF for both.
Yet other directions for future work include tying in to agent ne-
gotiation strategies: to emerging standards for general-purpose e-
business/agent communication, e.g., ebXML [20], LegalXML
eContracts [34], Web Services Choreography Interface [35], and
FIPA’s Agent Communication Language [21]; to more general ef-
forts on combining Semantic Web and Web Services, e.g.,
DAML-S and Web Service Modeling Framework (WSMF) [28];
and to efforts on ontology translation and knowledge integration
for relevant tasks/domains such as financial information, e.g.,
ECOIN [36].
Finally, there is the challenge of how to cope with the issue of de-
fault inheritance in regard to DAML+OIL/OWL and also to the
Process Handbook. In current work, we are taking an approach to
default inheritance using the prioritized conflict handling capabil-
ity provided by the courteous feature of SCLP.

11. ACKNOWLEDGEMENTS
Thanks to our MIT Sloan colleagues Mark Klein, Chrysanthos
Dellarocas, Thomas Malone, Peyman Faratin, and John Quimby
for useful discussions about the Process Handbook and represent-
ing contract exceptions there. Thanks to anonymous reviewers on
a previous version for helpful comments. Partial funding support
was provided by the Center for eBusiness @ MIT, and the
DARPA Agent Markup Language program.

12. REFERENCES
[1] Grosof, B.N., Labrou, Y., and Chan, H.Y., “A Declarative

Approach to Business Rules in Contracts: Courteous Logic
Programs in XML”. Proc. 1st ACM Conf. on Electronic
Commerce (EC-99), 1999.

[2] Reeves, D.M., Wellman, M.P., and Grosof, B.N., “Auto-
mated Negotiation From Declarative Contract Descriptions”.
Computational Intelligence 18(4), special issue on Agent
Technology for Electronic Commerce, Nov. 2002.

[3] Rule Markup Language Initiative, http://www.ruleml.org and
http://www.mit.edu/~bgrosof/#RuleML.

[4] Grosof, B.N., “Representing E-Business Rules for Rules for
the Semantic Web: Situated Courteous Logic Programs in
RuleML”. Proc. Wksh. on Information Technology and Sys-
tems (WITS ‘01), 2001.

[5] DAML+OIL Reference (Mar. 2001).
http://www.w3.org/TR/daml+oil-reference/

[6] Semantic Web Activity of the World Wide Web Consortium.
http://www.w3.org/2001/sw

[7] Web Services activity of the World Wide Web Consortium.
http://www.w3.org/

[8] DAML Services Coalition (alphabetically A. Ankolekar, M.
Burstein, J. Hobbs, O. Lassila, D. Martin, S. McIlraith, S.
Narayanan, M. Paolucci, T. Payne, K. Sycara, H. Zeng),
``DAML-S: Semantic Markup for Web Services'', Proc. In-
ternational Semantic Web Working Symposium (SWWS),
2001; and more info at http://www.daml.org/services

[9] MIT Process Handbook. http://ccs.mit.edu/ph/

[10] XSB logic programming system. http://xsb.sourceforge.net/

[11] Niemela, I. and Simons, P., Smodels (version 1).
http://saturn.hut.fi/html/staff/ilkka.html.

[12] IBM CommonRules. http://www.alphaworks.ibm.com and
http://www.research.ibm.com/rules/

[13] Common Logic http://cl.tamu.edu/ ; Knowledge Interchange
Format http://logic.stanford.edu/kif and
http://www.cs.umbc.edu/kif/ .

[14] Grosof, B.N., Gandhe, M.D., and Finin, T.W., “SweetJess:
Translating DamlRuleML to Jess”. Proc. Intl. Wksh. on
Rule Markup Languages for Business Rules on the Semantic
Web, held at 1st Intl. Semantic Web Conf., 2002.

[15] Jess (Java Expert System Shell).
http://herzberg.ca.sandia.gov/jess/

[16] DARPA Agent Markup Language Program
http://www.daml.org/rules

[17] Malone, T.W., Crowston, K., Lee, J., Pentland, B., Dellaro-
cas, C., Wyner, G., Quimby, J., Osborn, C.S.., Bernstein, A.,
Herman, G., Klein, M., and O’Donnell, E., “Tools for Invent-
ing Organizations: Toward a Handbook of Organizational
Processes.” Management Science, 45(3): p. 425-443, 1999.

[18] Klein, M., Dellarocas, C., and Rodríguez-Aguilar, J.A., “A
Knowledge-Based Methodology for Designing Robust
Multi-Agent Systems.” Proc. Autonomous Agents and Multi-
Agent Systems, 2002.

[19] Antoniou, G., “Nonmonotonic Rule Systems using Ontolo-
gies”. Proc. Intl. Wksh. on Rule Markup Languages for
Business Rules on the Semantic Web, held at 1st Intl. Seman-
tic Web Conf., 2002.

[20] ebXML (ebusiness XML) standards effort, http://www.oasis-
open.org

[21] FIPA (Foundation for Intelligent Physical Agents) Agent
Communication Language standards effort,
http://www.fipa.org

[22] XSLT (eXtensible Stylesheet Language Transformations),
http://www.w3.org/Style/XSL/

[23] SOAP, http://www.w3.org/2000/xp/Group/ and
http://www.w3.org/2002/ws/

[24] WSDL (Web Service Definition Language),
http://www.w3.org/2002/ws and www.w3.org/TR/wsdl

[25] UDDI (Universal Description, Discovery, and Integration),
http://www.uddi.org

[26] Legal XML, http://www.oasis-open.org

[27] Grosof, B.N. and Horrocks, I., “Description Logic Programs:
Combining Logic Programs with Description Logic”. Work-
ing paper, version of Oct. 17, 2002.
http://www.mit.edu/~bgrosof

[28] Fensel, D. and Bussler, C. “The Web Service Modeling
Framework (WSMF)”. White paper, 2002.
http://informatik.uibk.ac.at/users/c70385/wese/publications.h
tml

[29] Grosof, B.N., Semantic Web Services brief overview,
http://ebusiness.mit.edu/bgrosof/#SWS

[30] OWL (Ontology Working Language), from W3C Web-
Ontologies (WebOnt) Working Group,
http://www.w3.org/2001/sw/webont . Working draft of July
29, 2002.

[31] Joint US/EU ad hoc Agent Markup Language Committee,
http://www.daml.org/committee

[32] Oasis http://www.oasis-open.org

[33] Resource Description Framework (RDF)
http://www.w3.org/RDF

[34] Oasis Legal XML eContracts Technical Committee
http://www.oasis-open.org/committees/legalxml-econtracts
[35] Web Services Choreography Interface, codeveloped by BEA
Systems, Intalio, SAP AG, and Sun Microsystems, available at
each’s site. E.g., http://ifr.sap.com/wsci/
[36] Firat, A., Madnick, S., and Grosof, B., "Knowledge Integra-
tion to Overcome Ontological Heterogeneity: Challenges from Fi-
nancial Information Systems". Proc. Intl. Conf. on Information
Systems (ICIS), Dec. 2002.

