REC FPGA Seminar IAP 1998

Session 2:

Design Tools, Configuration, and other Practical Considerations

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

1

Design Tools: Process

Design description (HDL, schematic)

FPGA

Bitstream

Timing Analysis

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

2

Design Tools: Design Entry

- HDL
 - Verilog, VHDL or proprietary language (AHDL, etc.)
 - verilog is like C with multithreading and strict typing
 - VHDL stands for VHSIC HDL; intended for detailed simulations; commissioned by the military; very complex
 - Ideal for large designs because of well-defined scoping and instantiation rules; top down design
 - Also ideal for state machines, decoders/encoders, and odd or awkward busses
 - Hardware mapping is difficult
 - very easy to make inefficient designs; subtle semantics choices can lead to drastic perfomance variations
 - hard to specify hardware-specific features such as carry chains
 - · hard to specify placement and routing info

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

3

Design Tools: Design Entry

- Schematic entry
 - more intuitive, easier to observe design flow
 - helpful when trying to optimize designs for speed or area
 - difficult when implementing large amounts of miscellaneous logic (state machines)
 - heirarchical schematic tools help make large designs more manageable
 - global changes difficult (hard to change global mistakes)
 - hardware mapping is much easier
 - · schematic primitives for special hardware features
 - · schematic attributes for routing info
 - · WYSIWYG design entry

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

Design Tools: Hardware Mapping

- Many options for HDL to hardware mapping
 - vendor-specific options
 - third party tools
 - EDIF is the most common intermediate language
- When using HDLs, good hardware mapping tools are critical for perfomance and device utilization
- Deep understanding of HDL is also useful
- Schematic hardware mapping is much easier very close to WYSIWYG editing
- Hardware mappers often perform aggressive logic optimizations - watch your assumptions! (hazards)

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

-

Design Tools: Place and Route

- Place and route tools are always vendor-specific
- Much progress remains in place and route tools
 - typical P&R times for a reasonably complex design is around 30 minutes to an hour
 - device utilization and performance still well below that of hand-placed and routed designs
- Many vendors offer hand-placement or tweaking tools for speed and area critical applications
- Partial compilation of macros in the works

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

Design Tools: Timing Analysis

- Especially important for path-dependant delay devices
- Designs often iterate at this point critical path is extracted and optimized
- Timing analysis tools also have a ways to go
 - difficult to analyze designs with multiple clock domains
 - impossile to analyze designs with combinational loops

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

7

Design Tools: Bitstream management

- Bitstreams can be merged
 - daisy-chained devices

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

Configuration

- Applies to ISP devices only
- Many options
 - serial ROM
 - master mode with standard ROM
 - slave of intelligent host or another FPGA in a daisy chain
- serial ROM
 - very popular in ASIC-style applications
 - low pin and parts count, but sometimes slower

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

c

Configuration

- Master mode with parallel ROM device
 - FPGA drives a ROM's address bits and reads data from ROM
 - expensive in terms of pins, but pins can be reused in some designs
 - sometimes faster than serial methods
- Slave modes
 - intelligent host configures FPGA
 - host can be a PC or another FPGA in master mode
 - most flexible method
 - many FPGA architectures allow daisy chaining

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

Other Considerations

- Design for the future
 - vertical migration
 - largest FPGA for your budget
- Be wary of logic interface levels and new low voltage devices
- Pin-locking
 - some FPGA architectures perform very poorly under pin-locking (Altera 8K in particular)
 - all architectures experience some performance loss under pinlocking
- I/O count
 - many designs are I/O limited, not logic limited
- System performance, not just logic performance
 - includes I/O times and routing times, clock skew
 - compare to FF toggle rates often quoted by vendors

Robotics and Electronics Cooperative FPGA Seminar IAP 1998