REC FPGA Seminar IAP 1998

Session 3:
Advanced Design Techniques, Optimizations, and Tricks
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Outline

Focus on Xilinx 4000E-style FPGA (one of the
most common FPGAS)

Thinking FPGA

Black box optimizations
Counter design
Distributed arithmetic
One-hot state machines
Miscellaneous tricks
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Thinking FPGA

« When starting a design, consider the implementation technology
« Architect your design to fit into an FPGA
— memory granularity (16x1, 16x2, 32x1)
— 4 or 5 input logic functions / 4 + 4 and 2-1 mux
« fewer inputs per logic function is wasteful
e more inputs is slower
— routing limitations
* limited number of tristate buffers and longlines
* limited number of clock buffers
— /O cell features
« flip flops in I/O cells
« special delays and slew rate control
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“Black Box” Optimization

* Most basic of FPGA design optimizations
— Essentially performing manual hardware mapping

e Procedure;

— break down design into combinational logic black
boxes
* inputs and outputs with stuff inbetween
« arbitrarily complex logic inside the box, but CLB doesn’t care
since it is a LUT anyways
— adjust the “level” of black-boxing until you have
mostly 4 or 5 input functions or 4+4 input and 2-1 mux
functions

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 4




“Black Box” Example

« ALU
— implements a 32-bit wide 2-input AND, OR, XOR,
pass-through
» Example worked through on chalkboard

— obvious implementation

» 3 32-bit wide 2-input devices feeding into a mux or a tri-state
bus

— optimized implementation

» 32 4-input devices: 66% or more savings in area; roughly 30-
50% speed increase
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Counter Design

» Counters have many design options depending
upon the application
— basic ripple counter
— ripple-carry
— lookahead-carry
— Johnson (mobius)
— linear feedback shift register (LFSR)
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Ripple Counter

Count out

DQ DQ DQ DQ

CLK R R R R

RESET i l l

Ripple carry counter is not recommended in FPGA designs due to thei
asynchronous nature

However, ripple carry counters are very efficient in terms of area

k*O(n) delay growth with the number of bits, k is large (poor
performance)

Max counting states is'2
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Ripple-Carry Counter

Count out
A A
AN AND 4 Anp— ¢
CE_¢_|XOR—|D Qf XOR—|D Q XOR—D Qf
R R R
o | [ |
RESET o

Synchronous design

k*O(n) delay growth with n bits, k small

this is the basic counter provided in Xilinx libraries

good area efficiency

Max counting states is\2

Loads or sync clears come for free in terms of area and speed
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Carry-Lookahead counter

Like ripple-carry but carry input td'ncounter element is computed

using a full sum-of-products of the previous (n-1) bits counter state

Can have near O(1) delay growth up to a few bits
Good performance
Requires a lot of gates

Combinations of carry-lookahead and ripple-carry can be used to get

the best of both worlds
Max counting states is\2
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Johnson or Mobius Counter

Count out

SO S
D Q D Q D Q D Q

il sl il
CLK

RESET ® ® ®
O(1) delay growth for most applications
Well-suited for clock division or count-limit only applications
Non-binary counter

Counts to 2 * n, where n is the number of flip flops
Excellent area and speed characteristics

Near toggle-rate speeds
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LFSR Counters

Count out

Lo
XNOR

D Q DQ—o—DQ‘tDQ

AP bl s el il

RESET P P P
0O(1) delay growth for most applications
e non-binary counter
2N-1 states in a pseudorandom sequence
< excellent area and speed characteristics
e near toggle-rate speeds
ideal for applications where count sequence is irrelevant (FIFO, timers
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LFSR application

* FIFO application

— Count sequence doesn’t matter
* just need to address unique memory locations

« last count value and half-full count values can be
predetermined and logic created to detect these conditions

— Saves area, increases performance

 no carry look-ahead structures, O(1) delay growth with
increasing FIFO depth
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Distributed Arithmetic

» Parallel multipliers are expensive to implement in
FPGAs

— requires very wide logic functions or the use of carry-
chains

— hardware and delay growth GXn
« Distributed arithmetic serializes multiplies using
partial products
— partial products can be computed in parallel
— serialized multiplies fit well into FPGA architectures

— can achieve same throughput as parallel multiplier
silicon macros but with longer latency
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Distributed Arithmetic
+ DA takes advantage of associative and commutative properties of

addition

Digit nomenclature: A =8, ;... &

In base 10:

A*B=P,+P,_+..RB+Pwhere RB=A*b *10"1

S042*121=42*1*100+42*2*10+42*1*1

In base 2:

A*B=P,+P_+..B+Pwhere RB=A*p *2n1
S0101*1101=(101*1)<<3+(101*1)<<2+(101*0) << 1+ (101 *1) <

multiply operator breaks down to AND operation in one-digit binary; be
careful of sign extensions for signed numbers!
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Distributed Arithmetic

e Looking at the relation

101 * 1101 # (101 * 1) <<[3}+ (101 * 1) <4 4 + (101 * 0) <k [L + (101 * 1) < P

One sees a basic functional unit- the scaling multiply. This, combined with
an accumulator and bit-serial input stream (via “time skew buffer”), is the
essence of the DA multiplier

Note that the DA implementation discussed here works best for constant *
variable expressions, which is ideally suited for applications such as
convolutions and DSP filters
* replace the (A * P multiply kernel by a lookup-table instead of several
AND gates
* LUTs in some architectures are more efficient than AND gates
Time to compute = number of bits in input * time to do scaling multiply
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Distributed Arithmetic

* Implementation for variable * £Zcomputes result in N clock cycles
— diagram courtesy Xilinx

N BITS WIDE shift register
SAMPLE DATA

MSBs

-1
@ )/ ¥ 2 WORD BY X BIT
_ LOOK " Aj0] _LOOK UP TABLE
« PSC, LSB First T/-tJBPLE s . 0 ...000000
A g 1 Co
Scaling
ADRS Accum. IS 7er ™ FILTERED
s + - DATA OUT
7
DATA [ 75 FF; B E
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Distributed Arithmetic

e so what?

— the real power of DA comes in when you try to do
multiple-tap FIR filters

yIn] = 2 x[K] * h{n - K]

y[1] = x[0] * h{1] + x[1] * h[0]

Example: 101 * 011 + 110 * 100

=(101*0)<<2+(101*1)<<1+(101*1)<<O0+
(110*1)<<2+(110*0) << 1 +(110*0) << 0

((101*0) + (110 * 1) ) << P +

((101* 1) + (110 *0) ) <<
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These boxes are about as complex
((101*1) +(110*0) ) <<fL + ;s the boxes used in the one-tap ca

17

Distributed Arithmetic for a 3-Tap Filter

_23 22 21 20 _23 22 21 20 _23 22 21 20

1001 (7) 0110 (6) 0010 (2

0111(7) X 0101(5 X 0111(7)
( 1001 : o110 * 0010 —» 0001
( 1001 N 0000 + 0010 ) —m 1011
(1001 M 0110 + 0010 ) —m %0001
(0000 0000 + 0000 ) —» %0000
1001111 (49 00011110(30 11001111 (14 =11111011

(-5

» Partial Products of equal weight are added together
before being summed to next higher partial product
weight.

--— = Sign Extension

(slide courtesy Xilinx)
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Distributed Arithmetic

N BITS WIDE 8 WORD BY X BIT
SAMPLE DATA A[210] LOOK UP TABLE
MSBs
...000000

@9 / 000

Xo . 7 001
LOOK

uP S 010
TABLE

X A A R 011

Scaling | G 100

ADRS Accum. !S 7 - 101

?-F> *- | 7 |Freren
« PSC, LSB First paTA[7— B E | PATAOUT 110
111
. . * LUT contains the sums of
Shiftregisters all the partial products.
(slide courtesy Xilinx)
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Distributed Arithmetic

« kO(2)) +jO(1), kis relatively small (for area)
 very close to O(1) performance scaling
* DA can be parallelized and pipelined to gain even
more performance
— Each bit can have its own LUT and adder

— All bits computed in parallel
— One result per clock cycle max throughput
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g D o D N

8-Tap Symmetric Slice
(8-Bit Example)

A[7:0]

B[7:0]

; C[7:0]
E D[7:0]

i

}

-

)

T @ = ROUNDING ADDER
.- = SIGN EXTENDED ADDER (courtesy Xilinx)
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Distributed Arithmetic

Performance
— Serial Distributed Arithmetic (SDA), 10-tap FIR
» 7.8 Msampl/s for 8 bit samples @ 42 CLBs
* 4.1 Msamp/s for 16 bit samples @ 50 CLBs
« old numbers; probably 50% faster now
— Parallel Distributed Arithmetic (PDA), 8-tap FIR
» 50-70 Msampl/s for 8 bit samples @ 122 CLBs
* pipelined, hand-optimized
— For reference, the XC4008E has 324 CLBs (18 x 18 array)
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One-Hot State Machines

» Conventional state machines use,(states) bits to implement
function

— output is decoded from state number
— next state is a combinational function of states

— state transition rate limited by state number decoding and next
state logic delays

« One-hot state machines use as many bits as there are states to
implement function

— only one flip flop storing “1” at any time
— output is decoded as an OR of appropriate state FFs

— state transition rate limited only by next state logic delays, which
in many cases is zero
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Miscellaneous Tricks

e Tri-state mux
— saves on area, especially for wide muxes

— may have better or worse performance depending on architecture
and device characteristics

— not shown in illustration is decoder for tri-state buffers

-t
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Miscellaneous Tricks

Use IOBs to register inputs

— gives faster setup/hold times (eliminates routing delays from setup
time)

— introduces additional latency

— can save on logic array flip flop usage

Inverters come for free in most architectures

Use longlines for timing-critical signals

— use sparingly since this is a precious resource in Xilinx 4K
architectures

— all wires in Altera “Fast Track” architecture are longlines so routes
are always “fast”

Use pipeline stages to improve pin-locked routing in Altera 8K designs
When you can afford it, pipeline your design
— latency versus clock speed tradeoff
Double-wide half-rate logic (area versus speed)
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