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REC FPGA Seminar IAP 1998

Session 3:
Advanced Design Techniques, Optimizations, and Tricks
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Outline

• Focus on Xilinx 4000E-style FPGA (one of the
most common FPGAs)

• Thinking FPGA

• Black box optimizations

• Counter design

• Distributed arithmetic

• One-hot state machines

• Miscellaneous tricks
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Thinking FPGA
• When starting a design, consider the implementation technology

• Architect your design to fit into an FPGA

– memory granularity (16x1, 16x2, 32x1)

– 4 or 5 input logic functions / 4 + 4 and 2-1 mux

• fewer inputs per logic function is wasteful

• more inputs is slower

– routing limitations

• limited number of tristate buffers and longlines

• limited number of clock buffers

– I/O cell features

• flip flops in I/O cells

• special delays and slew rate control
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“Black Box” Optimization

• Most basic of FPGA design optimizations
– Essentially performing manual hardware mapping

• Procedure:
– break down design into combinational logic black

boxes
• inputs and outputs with stuff inbetween

• arbitrarily complex logic inside the box, but CLB doesn’t care
since it is a LUT anyways

– adjust the “level” of black-boxing until you have
mostly 4 or 5 input functions or 4+4 input and 2-1 mux
functions
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“Black Box” Example

• ALU
– implements a 32-bit wide 2-input AND, OR, XOR,

pass-through

• Example worked through on chalkboard
– obvious implementation

• 3 32-bit wide 2-input devices feeding into a mux or a tri-state
bus

– optimized implementation
• 32 4-input devices: 66% or more savings in area; roughly 30-

50% speed increase
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Counter Design

• Counters have many design options depending
upon the application
– basic ripple counter

– ripple-carry

– lookahead-carry

– Johnson (mobius)

– linear feedback shift register (LFSR)
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Ripple Counter
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• Ripple carry counter is not recommended in FPGA designs due to their
asynchronous nature

• However, ripple carry counters are very efficient in terms of area

• k*O(n) delay growth with the number of bits, k is large (poor
performance)

• Max counting states is 2N
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Ripple-Carry Counter

• Synchronous design

• k*O(n) delay growth with n bits, k small

• this is the basic counter provided in Xilinx libraries

• good area efficiency

• Max counting states is 2N

• Loads or sync clears come for free in terms of area and speed
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Carry-Lookahead counter

• Like ripple-carry but carry input to nth counter element is computed
using a full sum-of-products of the previous (n-1) bits counter state

• Can have near O(1) delay growth up to a few bits

• Good performance

• Requires a lot of gates

• Combinations of carry-lookahead and ripple-carry can be used to get
the best of both worlds

• Max counting states is 2N
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Johnson or Mobius Counter

• O(1) delay growth for most applications

• Well-suited for clock division or count-limit only applications

• Non-binary counter

• Counts to 2 * n, where n is the number of flip flops

• Excellent area and speed characteristics

• Near toggle-rate speeds
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LFSR Counters

• O(1) delay growth for most applications

• non-binary counter

• 2N-1 states in a pseudorandom sequence

• excellent area and speed characteristics

• near toggle-rate speeds

• ideal for applications where count sequence is irrelevant (FIFO, timers)
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LFSR application

• FIFO application
– Count sequence doesn’t matter

• just need to address unique memory locations

• last count value and half-full count values can be
predetermined and logic created to detect these conditions

– Saves area, increases performance
• no carry look-ahead structures, O(1) delay growth with

increasing FIFO depth
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Distributed Arithmetic

• Parallel multipliers are expensive to implement in
FPGAs
– requires very wide logic functions or the use of carry-

chains

– hardware and delay growth O(n2)

• Distributed arithmetic serializes multiplies using
partial products
– partial products can be computed in parallel

– serialized multiplies fit well into FPGA architectures

– can achieve same throughput as parallel multiplier
silicon macros but with longer latency
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Distributed Arithmetic
• DA takes advantage of associative and commutative properties of

addition

In base 10:

Digit nomenclature: A = an an-1... a2 a1

A * B = Pn + Pn-1+ ... P2 + P1 where Pn = A * bn * 10 n -1

So 42 * 121 = 42 * 1 * 100 + 42 * 2 * 10 + 42 * 1 * 1

In base 2:

A * B = Pn + Pn-1+ ... P2 + P1 where Pn = A * bn * 2n -1

So 101 * 1101 = (101 * 1) << 3 + (101 * 1) << 2 + (101 * 0) << 1 + (101 * 1) << 0

multiply operator breaks down to AND operation in one-digit binary; be
careful of sign extensions for signed numbers!
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Distributed Arithmetic

• Looking at the relation

101 * 1101 = (101 * 1) << 3 + (101 * 1) << 2 + (101 * 0) << 1 + (101 * 1) << 0

• One sees a basic functional unit- the scaling multiply. This, combined with
an accumulator and bit-serial input stream (via “time skew buffer”), is the
essence of the DA multiplier

• Note that the DA implementation discussed here works best for constant *
variable expressions, which is ideally suited for applications such as
convolutions and DSP filters

• replace the (A * bn) multiply kernel by a lookup-table instead of several
AND gates

• LUTs in some architectures are more efficient than AND gates

• Time to compute = number of bits in input * time to do scaling multiply
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Distributed Arithmetic
• Implementation for variable * C0; computes result in N clock cycles

– diagram courtesy Xilinx
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Distributed Arithmetic
• so what?

– the real power of DA comes in when you try to do
multiple-tap FIR filters

y[1] = x[0] * h[1] + x[1] * h[0] 
 Example: 101 * 011 + 110 * 100
 = (101 * 0) << 2 + (101 * 1) << 1 + (101 * 1) << 0 +
    (110 * 1) << 2 + (110 * 0) << 1 + (110 * 0) << 0

= ( (101 * 0) + (110 * 1) ) << 2 +

   ( (101 * 1) + (110 * 0) ) << 1 +

   ( (101 * 1) + (110 * 0) ) << 0

y[n] =  Σ x[k] * h[n - k]

These boxes are about as complex
as the boxes used in the one-tap case!
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Distributed Arithmetic for a 3-Tap Filter

• Partial Products of equal weight are added together
before being summed to next higher partial product
weight.
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Distributed Arithmetic
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Shift registers
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Distributed Arithmetic

• k O(2n) + j O(1), k is relatively small (for area)

• very close to O(1) performance scaling

• DA can be parallelized and pipelined to gain even
more performance
– Each bit can have its own LUT and adder

– All bits computed in parallel

– One result per clock cycle max throughput
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8-Tap Symmetric Slice
(8-Bit Example)
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Distributed Arithmetic

• Performance

– Serial Distributed Arithmetic (SDA), 10-tap FIR

• 7.8 Msamp/s for 8 bit samples @ 42 CLBs

• 4.1 Msamp/s for 16 bit samples @ 50 CLBs

• old numbers; probably 50% faster now

– Parallel Distributed Arithmetic (PDA), 8-tap FIR

• 50-70 Msamp/s for 8 bit samples @ 122 CLBs

• pipelined, hand-optimized

– For reference, the XC4008E has 324 CLBs (18 x 18 array)
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One-Hot State Machines
• Conventional state machines use log2(states) bits to implement

function

– output is decoded from state number

– next state is a combinational function of states

– state transition rate limited by state number decoding and next
state logic delays

• One-hot state machines use as many bits as there are states to
implement function

– only one flip flop storing “1” at any time

– output is decoded as an OR of appropriate state FFs

– state transition rate limited only by next state logic delays, which
in many cases is zero
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Miscellaneous Tricks

• Tri-state mux

– saves on area, especially for wide muxes

– may have better or worse performance depending on architecture
and device characteristics

– not shown in illustration is decoder for tri-state buffers
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Miscellaneous Tricks
• Use IOBs to register inputs

– gives faster setup/hold times (eliminates routing delays from setup
time)

– introduces additional latency

– can save on logic array flip flop usage

• Inverters come for free in most architectures

• Use longlines for timing-critical signals

– use sparingly since this is a precious resource in Xilinx 4K
architectures

– all wires in Altera “Fast Track” architecture are longlines so routes
are always “fast”

• Use pipeline stages to improve pin-locked routing in Altera 8K designs

• When you can afford it, pipeline your design

– latency versus clock speed tradeoff

• Double-wide half-rate logic (area versus speed)


