REC FPGA Seminar IAP 1998

Session 3:
Advanced Design Techniques, Optimizations, and Tricks

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 1

Outline

Focus on Xilinx 4000E-style FPGA (one of the
most common FPGAS)

Thinking FPGA

Black box optimizations
Counter design
Distributed arithmetic
One-hot state machines
Miscellaneous tricks

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 2

Thinking FPGA

« When starting a design, consider the implementation technology
« Architect your design to fit into an FPGA
— memory granularity (16x1, 16x2, 32x1)
— 4 or 5 input logic functions / 4 + 4 and 2-1 mux
« fewer inputs per logic function is wasteful
e more inputs is slower
— routing limitations
* limited number of tristate buffers and longlines
* limited number of clock buffers
— /O cell features
« flip flops in I/O cells
« special delays and slew rate control

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 3

“Black Box” Optimization

* Most basic of FPGA design optimizations
— Essentially performing manual hardware mapping

e Procedure;

— break down design into combinational logic black
boxes
* inputs and outputs with stuff inbetween
« arbitrarily complex logic inside the box, but CLB doesn’t care
since it is a LUT anyways
— adjust the “level” of black-boxing until you have
mostly 4 or 5 input functions or 4+4 input and 2-1 mux
functions

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 4

“Black Box” Example

« ALU
— implements a 32-bit wide 2-input AND, OR, XOR,
pass-through
» Example worked through on chalkboard

— obvious implementation

» 3 32-bit wide 2-input devices feeding into a mux or a tri-state
bus

— optimized implementation

» 32 4-input devices: 66% or more savings in area; roughly 30-
50% speed increase

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 5

Counter Design

» Counters have many design options depending
upon the application
— basic ripple counter
— ripple-carry
— lookahead-carry
— Johnson (mobius)
— linear feedback shift register (LFSR)

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 6

Ripple Counter

Count out

DQ DQ DQ DQ

CLK R R R R

RESET i l l

Ripple carry counter is not recommended in FPGA designs due to thei
asynchronous nature

However, ripple carry counters are very efficient in terms of area

k*O(n) delay growth with the number of bits, k is large (poor
performance)

Max counting states is'2

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 7

Ripple-Carry Counter

Count out
A A
AN AND 4 Anp— ¢
CE_¢_|XOR—|D Qf XOR—|D Q XOR—D Qf
R R R
o | [|
RESET o

Synchronous design

k*O(n) delay growth with n bits, k small

this is the basic counter provided in Xilinx libraries

good area efficiency

Max counting states is\2

Loads or sync clears come for free in terms of area and speed
Robotics and Electronics Cooperative FPGA Seminar IAP 1998 8

Carry-Lookahead counter

Like ripple-carry but carry input td'ncounter element is computed

using a full sum-of-products of the previous (n-1) bits counter state

Can have near O(1) delay growth up to a few bits
Good performance
Requires a lot of gates

Combinations of carry-lookahead and ripple-carry can be used to get

the best of both worlds
Max counting states is\2

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

Johnson or Mobius Counter

Count out

SO S
D Q D Q D Q D Q

il sl il
CLK

RESET ® ® ®
O(1) delay growth for most applications
Well-suited for clock division or count-limit only applications
Non-binary counter

Counts to 2 * n, where n is the number of flip flops
Excellent area and speed characteristics

Near toggle-rate speeds

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

10

LFSR Counters

Count out

Lo
XNOR

D Q DQ—o—DQ‘tDQ

AP bl s el il

RESET P P P
0O(1) delay growth for most applications
e non-binary counter
2N-1 states in a pseudorandom sequence
< excellent area and speed characteristics
e near toggle-rate speeds
ideal for applications where count sequence is irrelevant (FIFO, timers

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 11

LFSR application

* FIFO application

— Count sequence doesn’t matter
* just need to address unique memory locations

« last count value and half-full count values can be
predetermined and logic created to detect these conditions

— Saves area, increases performance

 no carry look-ahead structures, O(1) delay growth with
increasing FIFO depth

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 12

Distributed Arithmetic

» Parallel multipliers are expensive to implement in
FPGAs

— requires very wide logic functions or the use of carry-
chains

— hardware and delay growth GXn
« Distributed arithmetic serializes multiplies using
partial products
— partial products can be computed in parallel
— serialized multiplies fit well into FPGA architectures

— can achieve same throughput as parallel multiplier
silicon macros but with longer latency

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 13
Distributed Arithmetic
+ DA takes advantage of associative and commutative properties of

addition

Digit nomenclature: A =8, ;... &

In base 10:

A*B=P,+P,_+..RB+Pwhere RB=A*b *10"1

S042*121=42*1*100+42*2*10+42*1*1

In base 2:

A*B=P,+P_+..B+Pwhere RB=A*p *2n1
S0101*1101=(101*1)<<3+(101*1)<<2+(101*0) << 1+ (101 *1) <

multiply operator breaks down to AND operation in one-digit binary; be
careful of sign extensions for signed numbers!

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 14

Distributed Arithmetic

e Looking at the relation

101 * 1101 # (101 * 1) <<[3}+ (101 * 1) <4 4 + (101 * 0) <k [L + (101 * 1) < P

One sees a basic functional unit- the scaling multiply. This, combined with
an accumulator and bit-serial input stream (via “time skew buffer”), is the
essence of the DA multiplier

Note that the DA implementation discussed here works best for constant *
variable expressions, which is ideally suited for applications such as
convolutions and DSP filters
* replace the (A * P multiply kernel by a lookup-table instead of several
AND gates
* LUTs in some architectures are more efficient than AND gates
Time to compute = number of bits in input * time to do scaling multiply

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 15

Distributed Arithmetic

* Implementation for variable * £Zcomputes result in N clock cycles
— diagram courtesy Xilinx

N BITS WIDE shift register
SAMPLE DATA

MSBs

-1
@)/ ¥ 2 WORD BY X BIT
_ LOOK " Aj0] _LOOK UP TABLE
« PSC, LSB First T/-tJBPLE s . 0 ...000000
A g 1 Co
Scaling
ADRS Accum. IS 7er ™ FILTERED
s + - DATA OUT
7
DATA [75 FF; B E

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 16

Distributed Arithmetic

e so what?

— the real power of DA comes in when you try to do
multiple-tap FIR filters

yIn] = 2 x[K] * h{n - K]

y[1] = x[0] * h{1] + x[1] * h[0]

Example: 101 * 011 + 110 * 100

=(101*0)<<2+(101*1)<<1+(101*1)<<O0+
(110*1)<<2+(110*0) << 1 +(110*0) << 0

((101*0) + (110 * 1)) << P +

((101* 1) + (110 *0)) <<

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

These boxes are about as complex
((101*1) +(110*0)) <<fL + ;s the boxes used in the one-tap ca

17

Distributed Arithmetic for a 3-Tap Filter

_23 22 21 20 _23 22 21 20 _23 22 21 20

1001 (7) 0110 (6) 0010 (2

0111(7) X 0101(5 X 0111(7)
(1001 : o110 * 0010 —» 0001
(1001 N 0000 + 0010) —m 1011
(1001 M 0110 + 0010) —m %0001
(0000 0000 + 0000) —» %0000
1001111 (49 00011110(30 11001111 (14 =11111011

(-5

» Partial Products of equal weight are added together
before being summed to next higher partial product
weight.

--— = Sign Extension

(slide courtesy Xilinx)

Robotics and Electronics Cooperative FPGA Seminar IAP 1998

18

Distributed Arithmetic

N BITS WIDE 8 WORD BY X BIT
SAMPLE DATA A[210] LOOK UP TABLE
MSBs
...000000

@9 / 000

Xo . 7 001
LOOK

uP S 010
TABLE

X A A R 011

Scaling | G 100

ADRS Accum. !S 7 - 101

?-F> *- | 7 |Freren
« PSC, LSB First paTA[7— B E | PATAOUT 110
111
. . * LUT contains the sums of
Shiftregisters all the partial products.
(slide courtesy Xilinx)
Robotics and Electronics Cooperative FPGA Seminar IAP 1998 19
Distributed Arithmetic

« kO(2)) +jO(1), kis relatively small (for area)
 very close to O(1) performance scaling
* DA can be parallelized and pipelined to gain even
more performance
— Each bit can have its own LUT and adder

— All bits computed in parallel
— One result per clock cycle max throughput

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 20

g D o D N

8-Tap Symmetric Slice
(8-Bit Example)

A[7:0]

B[7:0]

; C[7:0]
E D[7:0]

i

}

-

)

T @ = ROUNDING ADDER
.- = SIGN EXTENDED ADDER (courtesy Xilinx)

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 21

Distributed Arithmetic

Performance
— Serial Distributed Arithmetic (SDA), 10-tap FIR
» 7.8 Msampl/s for 8 bit samples @ 42 CLBs
* 4.1 Msamp/s for 16 bit samples @ 50 CLBs
« old numbers; probably 50% faster now
— Parallel Distributed Arithmetic (PDA), 8-tap FIR
» 50-70 Msampl/s for 8 bit samples @ 122 CLBs
* pipelined, hand-optimized
— For reference, the XC4008E has 324 CLBs (18 x 18 array)

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 22

One-Hot State Machines

» Conventional state machines use,(states) bits to implement
function

— output is decoded from state number
— next state is a combinational function of states

— state transition rate limited by state number decoding and next
state logic delays

« One-hot state machines use as many bits as there are states to
implement function

— only one flip flop storing “1” at any time
— output is decoded as an OR of appropriate state FFs

— state transition rate limited only by next state logic delays, which
in many cases is zero

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 23

Miscellaneous Tricks

e Tri-state mux
— saves on area, especially for wide muxes

— may have better or worse performance depending on architecture
and device characteristics

— not shown in illustration is decoder for tri-state buffers

-t

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 24

Miscellaneous Tricks

Use IOBs to register inputs

— gives faster setup/hold times (eliminates routing delays from setup
time)

— introduces additional latency

— can save on logic array flip flop usage

Inverters come for free in most architectures

Use longlines for timing-critical signals

— use sparingly since this is a precious resource in Xilinx 4K
architectures

— all wires in Altera “Fast Track” architecture are longlines so routes
are always “fast”

Use pipeline stages to improve pin-locked routing in Altera 8K designs
When you can afford it, pipeline your design
— latency versus clock speed tradeoff
Double-wide half-rate logic (area versus speed)
Robotics and Electronics Cooperative FPGA Seminar IAP 1998 25

