
Robotics and Electronics Cooperative FPGA Seminar IAP 1998 1

REC FPGA Seminar IAP 1998

Session 3:
Advanced Design Techniques, Optimizations, and Tricks

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 2

Outline

• Focus on Xilinx 4000E-style FPGA (one of the
most common FPGAs)

• Thinking FPGA

• Black box optimizations

• Counter design

• Distributed arithmetic

• One-hot state machines

• Miscellaneous tricks

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 3

Thinking FPGA
• When starting a design, consider the implementation technology

• Architect your design to fit into an FPGA

– memory granularity (16x1, 16x2, 32x1)

– 4 or 5 input logic functions / 4 + 4 and 2-1 mux

• fewer inputs per logic function is wasteful

• more inputs is slower

– routing limitations

• limited number of tristate buffers and longlines

• limited number of clock buffers

– I/O cell features

• flip flops in I/O cells

• special delays and slew rate control

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 4

“Black Box” Optimization

• Most basic of FPGA design optimizations
– Essentially performing manual hardware mapping

• Procedure:
– break down design into combinational logic black

boxes
• inputs and outputs with stuff inbetween

• arbitrarily complex logic inside the box, but CLB doesn’t care
since it is a LUT anyways

– adjust the “level” of black-boxing until you have
mostly 4 or 5 input functions or 4+4 input and 2-1 mux
functions

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 5

“Black Box” Example

• ALU
– implements a 32-bit wide 2-input AND, OR, XOR,

pass-through

• Example worked through on chalkboard
– obvious implementation

• 3 32-bit wide 2-input devices feeding into a mux or a tri-state
bus

– optimized implementation
• 32 4-input devices: 66% or more savings in area; roughly 30-

50% speed increase

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 6

Counter Design

• Counters have many design options depending
upon the application
– basic ripple counter

– ripple-carry

– lookahead-carry

– Johnson (mobius)

– linear feedback shift register (LFSR)

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 7

Ripple Counter

QD

R

QD

R

QD

R

QD

R
CLK

RESET

Count out

• Ripple carry counter is not recommended in FPGA designs due to their
asynchronous nature

• However, ripple carry counters are very efficient in terms of area

• k*O(n) delay growth with the number of bits, k is large (poor
performance)

• Max counting states is 2N

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 8

Ripple-Carry Counter

• Synchronous design

• k*O(n) delay growth with n bits, k small

• this is the basic counter provided in Xilinx libraries

• good area efficiency

• Max counting states is 2N

• Loads or sync clears come for free in terms of area and speed

QD

R

XOR

AND

QD

R

XOR

AND

QD

R

XOR

AND

CE

CLK
RESET

TC

Count out

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 9

Carry-Lookahead counter

• Like ripple-carry but carry input to nth counter element is computed
using a full sum-of-products of the previous (n-1) bits counter state

• Can have near O(1) delay growth up to a few bits

• Good performance

• Requires a lot of gates

• Combinations of carry-lookahead and ripple-carry can be used to get
the best of both worlds

• Max counting states is 2N

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 10

Johnson or Mobius Counter

• O(1) delay growth for most applications

• Well-suited for clock division or count-limit only applications

• Non-binary counter

• Counts to 2 * n, where n is the number of flip flops

• Excellent area and speed characteristics

• Near toggle-rate speeds

QD

R

QD

R

QD

R

QD

R

CLK
RESET

Count out

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 11

LFSR Counters

• O(1) delay growth for most applications

• non-binary counter

• 2N-1 states in a pseudorandom sequence

• excellent area and speed characteristics

• near toggle-rate speeds

• ideal for applications where count sequence is irrelevant (FIFO, timers)

QD

R

QD

R

QD

R

QD

R

CLK
RESET

Count out

XNOR

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 12

LFSR application

• FIFO application
– Count sequence doesn’t matter

• just need to address unique memory locations

• last count value and half-full count values can be
predetermined and logic created to detect these conditions

– Saves area, increases performance
• no carry look-ahead structures, O(1) delay growth with

increasing FIFO depth

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 13

Distributed Arithmetic

• Parallel multipliers are expensive to implement in
FPGAs
– requires very wide logic functions or the use of carry-

chains

– hardware and delay growth O(n2)

• Distributed arithmetic serializes multiplies using
partial products
– partial products can be computed in parallel

– serialized multiplies fit well into FPGA architectures

– can achieve same throughput as parallel multiplier
silicon macros but with longer latency

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 14

Distributed Arithmetic
• DA takes advantage of associative and commutative properties of

addition

In base 10:

Digit nomenclature: A = an an-1... a2 a1

A * B = Pn + Pn-1+ ... P2 + P1 where Pn = A * bn * 10 n -1

So 42 * 121 = 42 * 1 * 100 + 42 * 2 * 10 + 42 * 1 * 1

In base 2:

A * B = Pn + Pn-1+ ... P2 + P1 where Pn = A * bn * 2n -1

So 101 * 1101 = (101 * 1) << 3 + (101 * 1) << 2 + (101 * 0) << 1 + (101 * 1) << 0

multiply operator breaks down to AND operation in one-digit binary; be
careful of sign extensions for signed numbers!

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 15

Distributed Arithmetic

• Looking at the relation

101 * 1101 = (101 * 1) << 3 + (101 * 1) << 2 + (101 * 0) << 1 + (101 * 1) << 0

• One sees a basic functional unit- the scaling multiply. This, combined with
an accumulator and bit-serial input stream (via “time skew buffer”), is the
essence of the DA multiplier

• Note that the DA implementation discussed here works best for constant *
variable expressions, which is ideally suited for applications such as
convolutions and DSP filters

• replace the (A * bn) multiply kernel by a lookup-table instead of several
AND gates

• LUTs in some architectures are more efficient than AND gates

• Time to compute = number of bits in input * time to do scaling multiply

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 16

Distributed Arithmetic
• Implementation for variable * C0; computes result in N clock cycles

– diagram courtesy Xilinx

X0

SAMPLE DATA

N BITS WIDE

A

B

Scaling
Accum.

R
E
G
I
S
T
E
R

FILTERED
DATA OUT

(2 -1)

+ -

LOOK
UP

TABLE

ADRS

DATA

...000000

C0

2 WORD BY X BIT
LOOK UP TABLE

A0

A[0]
0

1

1

• PSC, LSB First

x

x+1
SE

SE

x

MSBs

shift register

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 17

Distributed Arithmetic
• so what?

– the real power of DA comes in when you try to do
multiple-tap FIR filters

y[1] = x[0] * h[1] + x[1] * h[0]
 Example: 101 * 011 + 110 * 100
 = (101 * 0) << 2 + (101 * 1) << 1 + (101 * 1) << 0 +
 (110 * 1) << 2 + (110 * 0) << 1 + (110 * 0) << 0

= ((101 * 0) + (110 * 1)) << 2 +

 ((101 * 1) + (110 * 0)) << 1 +

 ((101 * 1) + (110 * 0)) << 0

y[n] = Σ x[k] * h[n - k]

These boxes are about as complex
as the boxes used in the one-tap case!

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 18

-23 22 21 20

1 0 0 1 (-7)
0 1 1 1 (7)X

 (1 0 0 1
 (1 0 0 1
 (1 0 0 1
 (0 0 0 0
1 1 0 0 1 1 1 1 (-49)

-23 22 21 20

0 1 1 0 (6)
0 1 0 1 (5)X

 0 1 1 0
 0 0 0 0
 0 1 1 0
 0 0 0 0
0 0 0 1 1 1 1 0 (30)

 0 0 0 1
 1 0 1 1
 0 0 0 1
 0 0 0 0
 = 1 1 1 1 1 0 1 1

(-5)

+
+
+
+

Distributed Arithmetic for a 3-Tap Filter

• Partial Products of equal weight are added together
before being summed to next higher partial product
weight.

-23 22 21 20

0 0 1 0 (2)
0 1 1 1 (7)X

 0 0 1 0)
 0 0 1 0)
 0 0 1 0)
 0 0 0 0)
1 1 0 0 1 1 1 1 (14)

+
+
+
+

= Sign Extension

(slide courtesy Xilinx)

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 19

Distributed Arithmetic

X0

SAMPLE DATA

N BITS WIDE

A

B

Scaling
Accum.

R
E
G
I
S
T
E
R

FILTERED
DATA OUT

+ -

LOOK
UP

TABLE

ADRS

DATA

...000000

C0

8 WORD BY X BIT
LOOK UP TABLE

C1

C1 + C0X1

000

001

010

011

100

101

110

111

C2

C2 + C0

C2 + C1

C2 + C1 + C0

X2

A0

A1

A2

A[210]

• LUT contains the sums of
all the partial products.

x

1

1

1

• PSC, LSB First

SE

SE

MSBs

(2 -1)

x

x+1

(slide courtesy Xilinx)

Shift registers

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 20

Distributed Arithmetic

• k O(2n) + j O(1), k is relatively small (for area)

• very close to O(1) performance scaling

• DA can be parallelized and pipelined to gain even
more performance
– Each bit can have its own LUT and adder

– All bits computed in parallel

– One result per clock cycle max throughput

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 21

8-Tap Symmetric Slice
(8-Bit Example)

+

+

+

+

A[7:0]

B[7:0]

C[7:0]

D[7:0]

A7
B7
C7
D7

C0
C1
C2
C3

A6
B6
C6
D6

C0
C1
C2
C3

A1
B1
C1
D1

C0
C1
C2
C3

A0
B0
C0
D0

C0
C1
C2
C3

X1/2

X1/2

X1/4

X1/4

X1/16

+

+ = ROUNDING ADDER

= SIGN EXTENDED ADDER

+

+

+

+

(courtesy Xilinx)

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 22

Distributed Arithmetic

• Performance

– Serial Distributed Arithmetic (SDA), 10-tap FIR

• 7.8 Msamp/s for 8 bit samples @ 42 CLBs

• 4.1 Msamp/s for 16 bit samples @ 50 CLBs

• old numbers; probably 50% faster now

– Parallel Distributed Arithmetic (PDA), 8-tap FIR

• 50-70 Msamp/s for 8 bit samples @ 122 CLBs

• pipelined, hand-optimized

– For reference, the XC4008E has 324 CLBs (18 x 18 array)

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 23

One-Hot State Machines
• Conventional state machines use log2(states) bits to implement

function

– output is decoded from state number

– next state is a combinational function of states

– state transition rate limited by state number decoding and next
state logic delays

• One-hot state machines use as many bits as there are states to
implement function

– only one flip flop storing “1” at any time

– output is decoded as an OR of appropriate state FFs

– state transition rate limited only by next state logic delays, which
in many cases is zero

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 24

Miscellaneous Tricks

• Tri-state mux

– saves on area, especially for wide muxes

– may have better or worse performance depending on architecture
and device characteristics

– not shown in illustration is decoder for tri-state buffers

Robotics and Electronics Cooperative FPGA Seminar IAP 1998 25

Miscellaneous Tricks
• Use IOBs to register inputs

– gives faster setup/hold times (eliminates routing delays from setup
time)

– introduces additional latency

– can save on logic array flip flop usage

• Inverters come for free in most architectures

• Use longlines for timing-critical signals

– use sparingly since this is a precious resource in Xilinx 4K
architectures

– all wires in Altera “Fast Track” architecture are longlines so routes
are always “fast”

• Use pipeline stages to improve pin-locked routing in Altera 8K designs

• When you can afford it, pipeline your design

– latency versus clock speed tradeoff

• Double-wide half-rate logic (area versus speed)

