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This online appendix provides the MATLAB code for the simulation results in the paper.

A Overconfidence through Disagreement on the Expected Value

The following is the MATLAB code that was used to derive the results in Table 1 ‘Hitrate for 90%
Confidence Interval in function of the Ratio of Standard Deviations’:

% This program simulates the amount of overconfidence generated by
% disagreement about the mean value.

clc;
clear all;
delete md1.out;
diary md1.out;

% I assume that
% 1) The beliefs themselves have a normal distribution.
% 2) The means of these beliefs are distributed standard normal. I will
% indicate these means as u and v.

% I will have u and v be randomly drawn (with n * m datapoints) and then
% see how much confidence one places in the other’s 90% interval

% Let \sig be the std dev of each player’s belief,
% i.e., the player’s uncertainty. (This is measured relative to the
% std dev of the means distribution, which I normalized to 1.)

% Let \gam denote how many std dev you need (in each direction) to get the 90%
% confidence interval.

n=50
m=50
sigvec = [.5 1 2 3]

for i = 1:4
sig = sigvec(1,i);
% The simulation considers four values for the ratio of std dev’s. The
% ratio here is the inverse of that in the paper.
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gam = norminv(.95,0,1);
% gam is the point (on the X-axis) at which the std norm cum distri equals 95%
% The 90% confidence interval runs from \gam to the left of 0
% to \gam to the right of 0.

OneMat=ones(n,m);
ZeroMat=zeros(n,m);
U = normrnd(0,1,n,m);
V = normrnd(0,1,n,m);
L = min(U,V)
H = max(U,V)
% Without loss of generality, I will denote the lower one of u and v as "l"
% and the higher one as "h" and work with these

BigSig=sig*OneMat
% This is a matrix with the standard deviation

BigDev=sig*gam*OneMat
% This is a matrix with the \gam interval scaled by the std dev

ValueAll=normcdf(H+BigDev,L,BigSig)-normcdf(H-BigDev,L,BigSig)
% ValueAll calculates how much confidence the L distribution puts
% on the 90% confidence interval of H
% which is [H-BigDev, H+BigDev]

AvgHitRate=mean(mean(ValueAll))
ValueNorm=ValueAll./.9
AvgVal=mean(mean(ValueNorm))

MFinal(i)=AvgHitRate;
MFinalRel(i)=AvgVal;
end

MFinal
MFinalRel

B Endogenously Generated Overconfidence

The following is the MATLAB code that was used to derive Figure 3 ‘The hitrate for 90% confidence
[...] Chi-squared distribution with mean ν.’:

% This program shows how the hitrate changes in function of the
% number of data points and other parameters.

% The model assumes that all beliefs are mean-zero normal.
% It calculates the hitrate by normalizing the observer player’s (O) variance to
% standard normal. (The reason is that O’s variance is typically the
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% larger.) Note that the hitrate may be larger than 90% in the cases
% where F is (relatively) underconfident.
%
% The program calculates the 90% confidence interval of the focal player (F). It then
% calculates the likelihood of that interval according to the standard normal. That is the
% hitrate of F. The hitrate divided by .9 gives the degree of overconfidence.

clc;
clear all;
delete hr1.out;
diary hr1.out;

% Definition of basic parameters

n = 50000;
m = 20;

for k=1:3
nu = 1.*k; % Chi-squared parameter

gam = norminv(.95,0,1)
% gam is the point (on the X-axis) at which the std norm cum distri equals 95%
% The 90% confidence interval runs from \gam to the left of 0 to \gam
% to the right of 0.

% Iteration
% I will use F and O for Focal player and Observer

for i=1:m
HR(k,i)=0; % i is the number of signals (from 1 to m=20)

for j=1:n
Sz = random(’chi2’,nu); % This is the variance for the commmon prior
SsF = random(’chi2’,nu,1,i+1); % These are the var’s of the i data points for F
SsO = random(’chi2’,nu,1,i+1); % These are the var’s of the i data points for O
SsF(1,1) = Sz(1,1); % The Ss vector has the prior var and all data point var’s
SsO(1,1) = Sz(1,1); % The Ss vector has the prior var and all data point var’s
Ts = 1./SsF; % This is the resulting vector of precisions (i.e., the squared taus)

VF = (Ts.^2 * SsF’)/(Ts * ones(1,i+1)’)^2;
% This if F’s variance.
% Note that Ts[k]/(Ts * ones(1,i+1)’) is the weight put on data point k.
% The contribution to variance must square this (both numerator and denominator).

VO = (Ts.^2 * SsO’)/(Ts * ones(1,i+1)’)^2;
% This is what F’s variance should be acc to O
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Vrat = sqrt(VF./VO);
% For the confidence interval, you need to convert to std dev
Len = gam.*Vrat;
% Len is half the 90% confidence interval of the focal player F
hr = 2.*(normcdf(Len,0,1)-.5);
% FINALLY "hr" is the relative hit-rate

HR(k,i) = HR(k,i)+hr;
end

HR(k,i) = HR(k,i)/n;
% This is now the average hitrate over all n simulations

end

HRb(k,1)=0.9;
% HRb will be the matrix with the curve data. The .9 initializes for no data points.

for i=1:m
HRb(k,i+1)=HR(k,i);

end
end

% The rest just plots the graphs.
X=linspace(0,m,m+1);
CalLine=.9 .* ones(1,m+1)
figure(1)
plot(X, CalLine,’--k’,X,HRb(1,1:m+1),’-k’,X,HRb(2,1:m+1),’-k’,X,HRb(3,1:m+1),...

’-k’,’LineWidth’,2)
axis([0,m,0,1])
xlabel(’Number of Observed Data Points (or Signals)’)
ylabel(’Hitrate for 90% Confidence Interval’)
text(3,.45,’\nu=1’)
text(6,.5,’\nu=2’)
text(11,.55,’\nu=3’)
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