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Vector Space Decomposition of Reactive
Power for Periodic Nonsinusoidal Signals

Niels LaWhite and Marija D. Ilíc

Abstract—A vector space is used to represent periodic volt-
age and current signals in a single port electrical network.
This representation is convenient for expressing time average
power quantities, such as average power, apparent power, and
certain definitions of reactive power. The vector representation
for reactive power provides insight into the difficulty of finding
a consistent definition for a scalar measure of reactive power
when harmonics are present. Instead, a reactive power vector is
defined and shown to obey conservation according to Tellegen’s
theorem. Projections of the reactive power vector are shown to
obey conservation and can be used as signed, scalar measures of
reactive power.

I. INTRODUCTION

CONFUSION over reactive power for periodic signals
with harmonics dates to 1927, when Budeanu introduced

an orthogonal decomposition of apparent power into active,
reactive, and distortion power components [1]. While these
components were observed to add in quadrature to equal
the apparent power neither reactive nor distortion power
components could be assigned any physical significance. Fur-
thermore, unlike the active and reactive components, distortion
power disobeys conservation, making it counterintuitive as a
measure of energy transfer.

Seeing the limitations of Budeanu’s two-component de-
composition, Fryze introduced a reactive power definition
for a single component [2]. Here, reactive power is the
single orthogonal component accounting for the difference in
apparent and average power. The magnitude ofwas seen
as a useful quantity, because corresponds to ,
or unity power factor. was also given a sign convention to
account for the difference between capacitive and inductive
reactive power. Despite the sign convention, however, Fryze’s
definition does not obey conservation, meaning that a circuit
with does not, in general, compensate a circuit with

.
Many other authors [3]–[10], have proposed decompositions

of reactive power quantities, but none have succeeded in
defining a decomposition that not only accounts for the total
inactive power but also satisfies conservation. The
reason for the difficulty becomes apparent when the problem
is mapped to a vector space. If the periodic voltage and current
are represented as orthogonal components, the inactive
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power can be shown to consist of orthogonal
components. Linear combinations of these components obey
conservation but only represent one of the underlying
dimensions. Quadrature, or rms combinations of these com-
ponents can reflect the magnitude contribution from multiple
dimensions but violate conservation.

II. V ECTOR REPRESENTATION OFPERIODIC SIGNALS

We begin by considering periodic voltage and current wave-
forms of an arbitrary single port circuit element. If the voltage
and current waveforms are periodic with period, such that

and , the waveforms can be
considered members of the function space with a scalar
product and induced norm given in (1):

(1)

This function space is convenient for expressing time average
power components into the port. The average poweris a
scalar product, and the apparent poweris a product of norms.

(2)

The function space is then mapped to anvector space
by expressing the periodic signals as a linear combination

of orthonormal basis functions .

(3)

This expression is written in vector notation by stacking
the coefficients, into a constant vector , and the basis
functions, into a vector of time functions .

(4)

where denotes the transpose of.
The constant vector then fully represents the signal

waveform, , in the vector space associated with a
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particular basis . The orthonormality of is expressed
in the function space.

(5)

or in vector notation

(6)

where is the identity matrix.
The most common orthonormal basis for representing peri-

odic signals is the Fourier basis. Here, the basis functions are
a constant followed by sine and cosine pairs at multiples of
the fundamental frequency .

...

(7)

While the length of this basis is infinite, for band-limited sig-
nals, can be truncated to an odd length,, with sufficient
accuracy. The resulting vector space is and has coordinate
axes corresponding to rms frequency components. Using this
vector space, a periodic waveform is represented by
the constant, -length vector . has an odd number of
elements, the first of which is the d.c. or average value of

. Subsequent elements are in pairs of rms components for
each harmonic frequency in the basis.

Another useful basis consists of a set of delayed periodic
sync functions. As above, an odd lengthis chosen as one plus
twice the number of the highest harmonic to be represented.
The basis can then be written as

...

(8)

where

Fig. 1 shows an example of the periodic sync function basis,
which has the desirable property that atevenly spaced points
in time during a single period, only one of the basis functions is
nonzero. According to (3), if at one of these points, onlyis

Fig. 1. Periodic sync functions for use as a vector basis.

nonzero, then the constant coefficientmust be proportional
to the value of sampled at that instant. The coordinate
axes in this vector basis, then, correspond to rms-normalized
time samples, and a vector consists of evenly spaced
samples of the corresponding waveform .

The periodic sync function basis is the time domain equiv-
alent of the Fourier basis above. The transformation between
these bases is performed by a matrix multiplication that is
equivalent to the discrete Fourier transform. The constraint
used to choose can be viewed as a result of the Nyquist
Sampling Theorem [11].

Regardless of the choice of basis, the orthonormal property
of provides an equivalence between the scalar product
in the function space and the vector space. Substituting
the vector expression (5) into (2) gives

(9)

The function-space induced norm in (2) is then equivalent to
the vector-space 2-norm

(10)

This norm equivalence applies to any orthonormal basis and
allows the expressions for time average and apparent power
in (2) to be written in terms of the vector representation of
voltage and current

(11)

Here, and are constant -vectors, is a signed scalar
quantity, and is a nonnegative scalar. The power expressions
in (11) are independent of the orthonormal basis . These
vector expressions can also be applied to multiphase circuits,
as shown in the Appendix.
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III. V ECTOR REPRESENTATION OFREACTIVE POWER

Fryze’s definition of reactive power in periodic nonsinu-
soidal systems is given in [2]

(12)

This equation defines as orthogonal component to time
average power comprising apparent power according to
the Pythagorean Theorem. As the sign convention in (12) is
arbitrary and misleading, only the positive instance is used.

, then, is a nonnegative scalar quantity, which can also be
expressed in terms of the vectorsand

(13)

The vector equation (13) can be written in terms of the
elements of and , leading to a scalar equation for

(14)

where and are the th elements of the vectors and .
In the Fourier basis, (14) expressesin terms of the rms

values of the orthogonal cosine and sine frequency components
of and . Equations (13) and (14), however, are general
and hold for any orthonormal decomposition.

While it is not immediately obvious, (14) suggests thatis
the norm of a vector product of and . This vector product,
or cross product, of the two-dimensional vectors is formed
by cross multiplying voltage components with current
components for each unique permutation of . Each
componentwise cross product is projected in an orthogonal
direction according to an arbitrary rule, such as the right-
hand-rule commonly used for three dimensions

(15)

The form of this cross product is called a two-form and is
the exterior product of two 1-forms, as discussed in detail in
[12]. For the purposes of this paper, however, the cross product
has orthogonal elements given by equal to
the projected area of the parallelogram ( ) on coordinate
axes and . , corresponding to the unique
permutations of . These elements appear in the upper
triangle of an antisymmetric matrix, , which will be referred
to as the reactive power matrix.

(16)

As is antisymmetric, there are zeros on the main diagonal,
and the negative of the upper triangle appears in the lower
triangle.

in (14) is the root mean square of the orthogonal
elements of the cross product, and can be written as a norm.
In matrix form, is the Frobenius norm of divided by .
Alternately, for mathematical convenience, theelements of

cross product can be assembled into an-vector called the
reactive power vector, and is the two-norm of .

Regardless of the notation, the cross product maps the-
vectors and to an -dimensional space, and is a norm
in this space. Each component represents the interaction of two
orthogonal frequency components of voltage and current. Each
pair of orthogonal frequency components does not contribute
to average power, but does contribute, orthogonally, to.
While each component of is signed, according to the rule
(15), cannot have a single sign convention, because it is the
norm of orthogonal signed components.

For the special case of sinusoidal signals, voltage and cur-
rent waveforms can be expressed as two-dimensional vectors
or phasors. In this case, , so , and the cross
product has a single component. This component is signed and
corresponds to the classical definition of reactive power for
sinusoidal signals. The single sign convention is only possible
when and is not possible when harmonics are present.

IV. CONSERVATION OFREACTIVE POWER COMPONENTS

Conservation of power implies that the sum of the power
into all elements of a network is zero.

(17)

where is the power at element.
Conservation of energy implies that instantaneous power is

conserved at each instant of time. As the time-average operator
is linear, it commutes with the summation in (17), so average
power is also conserved

(18)

Other power definitions, however, may not obey conservation.
and , for example, are nonnegative by definition and

cannot, therefore, sum to zero unless all are zero. Tellegen’s
theorem can be used to prove conservation for a set of power
definitions called generalized powers. As shown in [13]–[15],
a particular power is a generalized power and will obey
conservation if it can be expressed in the following form

(19)

where and are the voltage and current at theth circuit
element, and and are linear operators, or more generally,
Kirchhoff voltage and current operators. As in (18), applying
a linear operator to (19) preserves conservation and leads to
a more general form for generalized powers

(20)

The definition for in (17) cannot be written in the form
(20), and Fryze’s definition for does not obey conservation.
Each of the elements of the cross product, however, do take
the required form, because the elements of the vectorsand
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can be expressed as linear transforms of the voltage and
current waveforms.

(21)

Each element in the reactive power vectoris a component-
wise cross product, , which is a linear combination
of products of transformed voltage and current, as in (20).
Therefore, the components of the cross product are generalized
powers and obey conservation. Equation (18) can then be
written in vector form

(22)

where is the zero -vector. This classification is independent
of the specific decomposition of voltage and current, and will
hold for any orthonormal basis .

V. COORDINATE ROTATION

We now consider an arbitrary single port network with
specific periodic voltage and current waveforms, and
at the port. For the analysis, and are assumed to be
nonzero and not proportional, so . Choosing a truncated
Fourier basis of dimension, we can express the port voltage
and current as constant-vectors, and . Using the same
basis, we can express the voltage and current across theth
network element as the vectors and .

The average power into the portand into the th element
can be expressed using the vector-space inner product, as

in (11)

(23)

Time average power is a generalized power and obeys conser-
vation, so . Thus there is an intuitive mechanism
for showing where power flowing into the circuit is being
dissipated. However, is not a generalized power, and

. It is not obvious how at each element contributes
to the total at the port.

The following section shows how a simple coordinate
rotation provides an alternate vector decomposition ofsuch
that of the port has only one nonzero element,, which
is positive, by definition. As the other elements are zero,

, but while does not obey conservation,
is an element of and is a generalized power. Conservation,
then, implies that , where is the same
element of , the reactive power vector of theth circuit
element. As with the classical definition of reactive power in
sinusoidal systems, this single signed component of reactive
power provides a measure that obeys conservation and can be
used to indicate where the port reactive power flows in the
circuit.

The coordinate rotation is performed using a symmetric
matrix , which is orthonormal in that .

The port voltage waveform, , can be expressed as

(24)

can be recognized as a rotated orthonormal
basis, and is the vector representation in the
rotated vector space.

The first column in is chosen as a unit vector in the
direction of . The second column is chosen as the orthogonal
unit vector closest to in the plane of and .

(25)

The other columns of are not important to this analysis
and can be generated by a Gram–Schmidt orthogonalization
procedure.

The coordinate rotation matrix selects the first basis
function proportional to the port voltage waveform
and the second basis function proportional to orthogonal,
or nonpower producing, component of the port current. In the
new vector space, the port voltage vectorwill be nonzero
only in the first element . The port current vector will be
nonzero only in the first two elements and . Because of
the choice of unit vectors and are positive.

Expressed in the new vector space, average power into the
port is the scalar product . The port reactive
power vector has only one nonzero element

(26)

is positive, because and are positive and is zero.
Consequently, , the reactive power of the port.

The definition for is a projection of in a particular
direction. of the port is the projection of in the direction
of , and is therefore equal to the norm of, which equals

. However, of the th circuit element is the projection of
in the direction of the port .

(27)

This projection has a sign and can be interpreted as a general-
ized measure of how the elementcontributes to the total
at the port. The sign convention is such thatis positive if
element contributes to the total and negative the element
helps compensate. is always zero for resistive elements,
because resistor voltage and current are proportional. Energy
storage elements can have either positive or negative,
depending on whether the energy transfer happens to increase
or decrease the at the port.

The expression for can be simplified by expressing the
projection in the nonrotated vector space. In terms ofand

, the first two columns of , (26) and (27) become

(28)

(29)

Substituting and from (26) yields an expression for
in terms of and of element , and , , and ,
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Fig. 2. Example circuit.

of the port.

(30)

where is the reactive power matrix for the port
normalized by the reactive power at the port.

Equation (30) can be mapped to the time domain by
expressing the inner product as a definite integral, as in (9)

(31)

where , , , and , are the voltage and current waveforms
of the th element and of the port.

VI. CIRCUIT EXAMPLE

Fig. 2 shows a one-port circuit example consisting of a
linear R-L-C circuit in parallel with a switched resistive load.
The triac switch is self commutating with a 90firing angle,
so it is on for the latter half of each half-cycle. The voltage
at the circuit port is given and contains a 1 Hz fundamental
component as well as small components of the third and
fifth harmonics. The port current contains these harmonics
as well as additional harmonics introduced by the switching
discontinuity.

For the analysis, the voltage and current waveforms are
decomposed with a Fourier basis consisting of normalized
cosine and sine pairs of only the odd harmonics. For this

Fig. 3. Example compensation circuit.

example, the basis is truncated to length .

...

(32)

For the linear circuit elements, the voltage and current
relationships can be expressed as an impedance relationship
analogous to Ohm’s law

or (33)

where is an impedance matrix for the linear element. for
resistive elements is the resistancetimes the identity matrix.
In the Fourier basis and for inductive and capacitive
elements are block diagonal, antisymmetric matrices with
zeros on the main diagonal and
where and are the inductance and capacitance, and

The impedance matrix for the linearR-L-C circuit is
calculated as a parallel combination

, and the current vector is then calculated from
(33).

To calculate the current in the switched resistive load, the
vector for the voltage is calculated using the Fourier
transform. . The current is
then calculated from (33) using .

Fig. 3 shows the steady state voltage and current waveforms
of the circuit port. Fig. 3 also shows current waveforms of
the R-L-C load and the switched resistive load. The vector



LA WHITE AND ILI Ć: VECTOR SPACE DECOMPOSITION 343

TABLE I
VECTOR REPRESENTATION OFVOLTAGE AND CURRENT

representation of the voltage waveform is given in Table I,
along with the vectors for the linear and switched load current
components and the total load current. The linear load current
contains only those frequencies that appear in the voltage,
while the switched load current contains all frequencies, as
generated by the switching discontinuity. For the
basis used here, the reactive power vector has length
corresponding to all possible cross product terms between the
voltage and current.

Table II summarizes the power in the circuit, listing,
, , and , for each element in the circuit and for the

port. Average power is dissipated in the resistive elements,
with a small dissipation in the switch introduced by errors in
truncating the Fourier basis. Unlike and , is conserved,
so the average power into the port equals the total dissipation
in the circuit. As shown in the data, is also conserved,
because it is a projection of the reactive power vector.

Specifically, is the projection of reactive power in the
direction of the port reactive power, soprovides a measure
of the contribution of each circuit element to theseen at the
port. For this example, the capacitor is contributing to the port
reactive power, while the inductor is providing compensation.
While the resistive elements do not contribute reactive power,
the triac switch does. Even though the switch is not an
energy storage device, it generates reactive power, because the
nonlinear switching characteristic generates current harmonics.

VII. OPTIMIZATION EXAMPLE

The next example shows how a projection of the reactive
power vector can be used to optimize a compensation circuit
for maximum power factor. Using the previous circuit example
as a load, the problem is to find the value of inductor
that when placed in parallel with the load, maximizes the
power factor seen by the voltage source. This example is a
constrained optimization in that compensation with a single
inductor can improve the power factor but cannot achieve
unity power factor.

TABLE II
AVERAGE, APPARENT, AND REACTIVE POWER, AND THE PROJECTIONq

The power factor is defined as the magnitude of average
power divided by the apparent power.

(34)

Because the compensator is lossless, and the voltage source
is constant, is not affected by compensation and remains
constant. Maximizing the power factor, then, corresponds to
minimizing at the port.

is not a generalized power and does not obey conser-
vation, so the port is not simply the sum of load reactive
power, , and compensator reactive power, . The reactive
power vector, however, is a generalized power, so the port
vector is the sum of and , and the port is the norm
of this vector sum

(35)

and are, in general, neither collinear nor orthogonal,
but (35) can be simplified by decomposing the vectors
into collinear and orthogonal parts. For this example, is
decomposed into and , which are collinear with and
orthogonal to , respectively. This decomposition yields a
quadrature decomposition of the compensator reactive power

(36)

For the total seen by the source, adds linearly with
, and the sum adds in quadrature with

(37)

Equation (37) can be simplified by expanding the square and
substituting from (36)

(38)

where is the constant load reactive power, is the
projection of in the direction of , and is the
total compensator reactive power. The projection, , can
be expressed in terms of the load reactive power matrix
as in (30)

(39)

As the compensator is lossless, , and

(40)
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Fig. 4. Example circuit waveforms.

Fig. 5. Optimum compensation.

Using the impedance relationship, (33), can be expressed in
terms of the impedance matrix for the compensator inductance.
This impedance matrix is proportional to , the inductance.

(41)

Now substituting (39)–(41) into (38) yields a scalar quadratic
equation in .

(42)

Inserting the values for the example circuit gives.

(43)

This equation has a single minimum, at , where
. Fig. 5 shows the port reactive power and power

factor as a function of in the vicinity of this minimum.
The compensated power factor is 0.885, improved from

0.877 by . Due to the extreme harmonic content of the
waveforms, the power factor can not be improved beyond
0.885 without a more complicated compensator designed to
better match harmonics in current to those in voltage. The
third and fifth harmonics, which exist in the voltage, could

be adjusted by a linear network of tuned circuits, but nulling
the higher harmonics in current would require a nonlinear or
active compensator. In any case, (38)–(40) would still apply,
but in (41) would be a complicated function of control
parameters. As (42) would no longer be quadratic, finding the
global minima in closed form would be difficult. Still, for a
small number of control parameters, the global minimum could
be found numerically from (38)–(40).

VIII. C OMPARISON TOOTHER REACTIVE POWER DEFINITIONS

The expression of as the norm of a cross product leads to
a decomposition of into orthogonal elements. As with the
vector decomposition of the voltage and current, the reactive
power vector depends on the choice of basis functions, but the
dimensionality is fundamental to the cross product. Many
other reactive power decompositions have been suggested, but
the definitions suffer because they attempt to represent the
orthogonal conserved power components with fewer than
quantities.

Some definitions consist of linear combinations of the
elements of , which, like , are projections of and obey
conservation. Each projection accounts for only one of the

dimensions in ; the other components must be
accounted for if the total decomposition is to reflect the
total inactive power. Other definitions combine orthogonal
projections of in quadrature, thus representing the magnitude
contribution from several of the components. The sign
convention, however, is lost when components are combined
in quadrature, and the resulting definition is not conserved.

The original Budeanu definition of reactive power is given
in [1]

(44)

where , , and are the rms voltage and current and the
phase angle difference of theth harmonic. In the Fourier basis,
each harmonic is represented with a cosine/sine pair, and each
term in (44) represents the interaction of the cosine and sine
components at a particular frequency. These terms appear as
every other entry in the first upper diagonal in the reactive
power matrix, . Equation (44) adds these terms linearly and
ignores all other components, so Budeanu’s definition is a
projection of in a fixed direction, and this projection has a
sign and obeys conservation. The direction of the projection,
however, is arbitrary and does not reflect any particular useful
quantity, such as power factor or .

In order to account for the other components of, Budeanu
introduced Distortion Power.

(45)

, then, is the norm of orthogonal projections of ,
which are also orthogonal to the projection in (44). As

adds components in quadrature, the definition does not
obey conservation. Because the direction of the projec-
tion is arbitrary, the component has no generally useful
interpretation.
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Perhaps Budeanu intended that reflect the individual
interactions of the frequencies, and that represent the
cross terms between different frequencies. If so, should
have been defined as the projection of in the direction
pointed by the components in the first upper diagonal
of , and should have been the projection of in the
direction pointed by the all the other elements in. The other

orthogonal projections would then have been zero, so the
definition would have properly decomposed the total inactive
power with two conserved quantities.

The Fryze reactive power, shown in (13), represents the total
inactive power in a single signed quantity. The magnitude is
the norm of all the elements of , which is useful because
minimizing minimizes , maximizing power factor. The
sign definition, however, is misleading in that the definition is
a norm and is not conserved. Presumably, the sign was added
to reflect the sign of fundamental reactive power component,
which would be dominant in the nearly sinusoidal case. If the
intention was to obtain a single conserved quantity to represent

, the definition should have been the projection of
in the direction of , which is positive and equal to .
This is, in fact, the definition of given in this paper.

Page, in [5], defined capacitive reactive power and inductive
reactive power, and , the two components of that
could be compensated by a parallel capacitor and inductor.
These powers are, in fact, projections of thevector in the
directions of and , the reactive power vectors of a
pure capacitance and pure inductance. Page correctly noted
that these quantities can have a sign and are conserved, so
a negative can be compensated by adding a capacitor
in parallel. Page also noticed that the and are not
generally orthogonal or parallel, and introduced a refinement
to account for the cross terms.

Page’s projections failed to account for the other
orthogonal components of that must be considered if the
compensation is to minimize the total. His projections help
to solve for the best parallel and , but do not adapt to
other compensation topologies, such as a seriesand ,
or a linear network of ’s and ’s. As shown in Example
2, a single element parallel compensator does not necessarily
provide substantial power factor improvement.

Wyatt and Ilíc, in [9], discusses the merits of an instanta-
neous expression of reactive power.

(46)

The time average of this quantity can also be interpreted
as a measure of reactive power, and can be expressed in
vector notation. In the Fourier basis, ,
where is the block diagonal, antisymmetric matrix given
in Example 1. As in (9), the time average of (46) simplifies
by taking the constants outside the integral.

(47)

While (47) is not normalized, it has the form of in (30)
and is proportional to a projection of. Like Budeanu’s ,

the projection contains only interactions between the sine and
cosine components of individual harmonics, but unlike,
each component is scaled by its frequency.

In linear sinusoidal systems, reactive power can also be
interpreted in terms of average stored electric and magnetic
energy.

(48)

Because and both oscillate as but are
180 out of phase, (48) can also be written in terms of the total
stored energy, .

rms (49)

This expression has the nice interpretation that, in the
sinusoidal case, is an rms measure of the oscillatory transfer
of stored energy. This fact, however, is a result of the
180 phase difference between and , and no
such relationship holds when harmonics are present or when
nonlinear circuits are considered.

IX. CONCLUSIONS

The work in this paper uses an-dimensional vector-
space decomposition of periodic nonsinusoidal voltage and
current waveforms to show that reactive powerconsists
of orthogonal conserved components. If these
components are stacked into the-vector , then the scalar
is the norm of and does not obey conservation. Projections
of , however, do obey conservation and can provide useful
measures when analyzing or compensating a circuit. One such
measure is , the projection of in the direction of , which
is positive and equal to . While this definition seems trivial,
Example 1 shows how such a projection can be used to analyze
flow of reactive power in a circuit. Example 2 shows how a
similar projection is used to solve a constrained power factor
optimization problem.

The vector-space expressions for voltage and current pro-
vide a convenient notation for solving minimization problems,
but the dimensionality does not arise purely from the notation.
The underlying dimensionality arises from the terms in the
expression . is the product of two -
term equations and has terms. is the square of one

-term equation and has terms. The difference has
terms, but cancel, leaving

terms. These remaining terms are group in triples to form
perfect squares, corresponding to the

orthogonal components of .
The components of , then, do not correspond to the

orthogonal frequency components of instantaneous power, but
instead arise from the definition of. , then, is not a quan-
tity bearing physical interpretation in terms of instantaneous
power, but is simply the remaining orthogonal components
of not contained in . Similarly, the usefulness of is not
as a reflection of actual circulating powers, but as a measure
of the overall useless component of.
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APPENDIX

VECTOR REPRESENTATION FORMULTIPHASE CIRCUITS

Multiphase periodic waveforms can also be represented
as vectors given an appropriate set of basis functions. By
combining the vectors representing voltage and current in each
phase into collective vectors, the entire set of waveforms can
be represented as two constant vectorsand . While the
results are general, this analysis will focus on the three phase
case.

The set of phase voltage waveforms is assembled as a row-
vector, and expressed in terms ofand the basis functions.

(50)

Here is length , and is a matrix of basis
functions.

(51)

Where is the -vector of zeros. Although is a rectangular
matrix, the basis is still orthonormal.

(52)

The total instantaneous power is the sum of instantaneous
power in each phase.

(53)

Because is orthonormal, the time average total power
simplifies to a single scalar product, as in the single phase
case.

(54)

Similarly, the multiphase rms value is again the two-norm,
and the definition for total apparent power
is the same as in the single phase case.
has the same form as (14), and can be interpreted as the
norm of a cross product vector. Therefore, it is possible
to construct a reactive power measure,, that is a projection
of specific to the set of phase voltage and current waveforms
at the port. This measure is signed, obeys conservation, and
indicates how circuit elements contribute or compensate for
the reactive power at the port.
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