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Vector Space Decomposition of Reactive
Power for Periodic Nonsinusoidal Signals

Niels Lawhite and Marija D. I

Abstract—A vector space is used to represent periodic volt- power can be shown to consistof = %n(n — 1) orthogonal
age and current signals in a single port electrical network. components. Linear combinations of these components obey
This representatlon is convenient for expressing time average conservation but Only represent one of the underlying

power quantities, such as average power, apparent power, and dimension dratur rrm mbinations of th m
certain definitions of reactive power. The vector representation ensions. Quadrature, 0 S co ations or these com-

for reactive power provides insight into the difficulty of finding Ponents can reflect the magnitude contribution from multiple
a consistent definition for a scalar measure of reactive power dimensions but violate conservation.
when harmonics are present. Instead, a reactive power vector is
defined and shown to obey conservation according to Tellegen’s
theorem. Projections of the reactive power vector are shown to Il. VECTOR REPRESENTATION OFPERIODIC SIGNALS
obey.conservatlon and can be used as signed, scalar measures of We begin by considering periodic voltage and current wave-
reactive power. : ; L
forms of an arbitrary single port circuit element. If the voltage
and current waveforms are periodic with periéd such that
I. INTRODUCTION v(t+T) = v(t) andi(t + T) = i(t), the waveforms can be

CONFUSION over reactive power for periodic signal§onsidered members of thBQ. func_tion space with a scalar
with harmonics dates to 1927, when Budeanu introduc@feduct and induced norm given in (1):
an orthogonal decomposition of apparent power into active,

T
reactive, and distortion power components [1]. While these (x(t), y(t)) :i/ x(t)y(t) dt
components were observed to add in quadrature to equal T Jo s
the apparent powef§ neither reactive nor distortion power (8| = (2(t), =(t))

components could be assigned any physical significance. Fur- 1 /T 1/2
thermore, unlike the active and reactive components, distortion =7 / z2(t) dt] . ()
power disobeys conservation, making it counterintuitive as a 0

measure of energy transfer. . . . . L
. S =) , This function space is convenient for expressing time average
Seeing the limitations of Budeanu’'s two-component de- . .
wer components into the port. The average poWes a

composition, Fryze introduced a reactive power definition_ I duct. and th t DOWd duct of
for a single component [2]. Here, reactive powgris the scaiar product, and the apparent powes a product ot norms.
single orthogonal component accounting for the difference in P :W

apparent and average power. The magnitudé)ofvas seen . p

as a useful quantity, becaugg = 0 corresponds t&6 = P, o <U(t)" i)
or unity power factor() was also given a sign convention to S =Urms trms

account for the difference between capacitive and inductive =|lv@®| |- (2
reactive power. Despite the sign convention, however, Fryze’'s

definition does not obey conservation, meaning that a circuitThe function space is then mapped to &nvector space
with Q@ = +1 does not, in general, compensate a circuit with'* by expressing the periodic signals as a linear combination

Q= -1 of n orthonormal basis functiong;(¢).

Many other authors [3]-[10], have proposed decompositions "
of reactive power quantities, but none have succeeded in z(t) = ij d;(1). (3)
defining a decomposition that not only accounts for the total =1

inactive powery/S2 — PZ but also satisfies conservation. The

reason for the difficulty becomes apparent when the probleHfis expression is written in vector notation by stacking
is mapped to a vector space. If the periodic voltage and curréfg coefficients;z; into a constant vectoX, and the basis
are represented as orthogonal components, the inactivdunctions,¢;(t) into a vector of time functions(z).
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particular basisb(¢). The orthonormality ofb(¢) is expressed
in the L, function space.

Vector Basis Wavetorms

it o0 ={g 12 ®
or in vector notation
1 T
@0, o0y =7 [ emeTar
-1 ©

wherel is the identity matrix.

The most common orthonormal basis for representing peri-
odic signals is the Fourier basis. Here, the basis functions are
a constant followed by sine and cosine pairs at multiples gf; 1. periodic sync functions for use as a vector basis.
the fundamental frequency = 2x /7.

0 05 1 1.5 2
1 ({periods)

nonzero, then the constant coefficiantmust be proportional

(wt) to the value ofz(#) sampled at that instant. The coordinate
p

(wt) axes in this vector basis, then, correspond to rms-normalized

V2 cos (2wt) time samples, and a vecth consists ofn evenly spaced
o(t) = _ ) 7) samples of the corresponding wavefourft).
2 sin (2wt) The periodic sync function basis is the time domain equiv-
V2 cos (3wt) alent of the Fourier basis above. The transformation between
3 sin (3wt) these bases is performed by a matrix multiplication that is

equivalent to the discrete Fourier transform. The constraint
L : ] used to choose can be viewed as a result of the Nyquist
While the length of this basis is infinite, for band-limited sigS@MPling Theorem [11]. .

nals,®(t) can be truncated to an odd length,with sufficient Regardles_s of the ch0|_ce of basis, the orthonormal property
accuracy. The resulting vector spacdis and has coordinate ©f ®(#) provides an equivalence between the scalar product

axes corresponding to rms frequency components. Using thldhe L2 function space and th& vector space. Substituting
vector space, a periodic waveform(t) is represented by the vector expression (5) into (2) gives

the constantn-length vectorX. X has an odd number of 1 (T
elements, the first of which is the d.c. or average value of (z(t), y(t)) = T / XTo)yy o(t)dt
x(t). Subsequent elements are in pairs of rms components for 0 T
each harmonic frequgncy in _the basis. o —x7 1 / o(6)dT (1) dt|Y
Another useful basis consists of a set of delayed periodic T Jo
sync functions. As above, an odd lengtls chosen as one plus —_xTy
twice the number of the highest harmonic to be represented.
The basis can then be written as =X, Y). ©)
i P(t) i The function-space induced norm in (2) is then equivalent to
y <t T) the vector-space 2-norm
N
n
o le(o)ll =VXTX
®(t) = z/)<t - —) (8) =|x]. (10)
n
: This norm equivalence applies to any orthonormal basis and
) 1 T allows the expressions for time average and apparent power
_z/} —(n— )E i in (2) to be written in terms of the vector representation of
voltage and current
where
sin (”_Wt) S =V
P(t) = ——TL L pP=vTI. (11)
V/n sin (Tt>

Here, V' and I are constant.-vectors, P is a signed scalar
Fig. 1 shows an example of the periodic sync function bas@antity, andS is a nonnegative scalar. The power expressions

which has the desirable property thatagvenly spaced points in (11) are independent of the orthonormal basig). These

in time during a single period, only one of the basis functions \&ector expressions can also be applied to multiphase circuits,

nonzero. According to (3), if at one of these points, oplyis as shown in the Appendix.
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[ll. V ECTOR REPRESENTATION OFREACTIVE POWER cross product can be assembled intoxavector R called the
Fryze's definition of reactive power in periodic nonsinuf€active power vector, an@ is the two-norm ofR.
soidal systems is given in [2] Regardless of the notf?\tlon, _the Cross producf[ mapsithe
vectorsV and! to anm-dimensional space, and is a norm
Q==+V52-P2 (12) inthis space. Each component represents the interaction of two
orthogonal frequency components of voltage and current. Each
This equation defineg) as orthogonal component to timepaijr of orthogonal frequency components does not contribute
average powel” comprising apparent powef according to to average power, but does contribute, orthogonallyQto
the Pythagorean Theorem. As the sign convention in (12)\ghile each component af is signed, according to the rule
arbitrary and misleading, only the positive instance is useds), ¢ cannot have a single sign convention, because it is the
@, then, is a nonnegative scalar quantity, which can also Rgrm of m orthogonal signed components.

expressed in terms of the vectdrsand / For the special case of sinusoidal signals, voltage and cur-
Q=1[5%- P2]1/2 rent waveforms can be expressed as two-dimensional vectors
I T 21/2 or phasors. In this case, = 2, som = 1, and the cross
=V — (v product has a single component. This component is signed and
=vTwiIt - vhHiv?2, (13) corresponds to the classical definition of reactive power for

sinusoidal signals. The single sign convention is only possible

The vector equation (13) can be written in terms of thghen,, — 1 and is not possible when harmonics are present.
elements ofl” and I, leading to a scalar equation f&r

W on 1/2 IV. CONSERVATION OF REACTIVE POWER COMPONENTS
Q= 1> Y (Vi - VL) (14)  Conservation of power implies that the sum of the power
J=1 k=j+1 into all elements of a network is zero.
whereV; and I; are theith elements of the vectorg and 1. Z =0 (17)
In the Fourier basis, (14) express@sin terms of the rms &

values of the orthogonal cosine and sine frequency components

k
of v(t) andi(). Equations (13) and (14), however, are gener4iNerép" is the power at elemerit. _
and hold for any orthonormal decomposition. Conservation of energy implies that instantaneous power is

While it is not immediately obvious, (14) suggests theis conserved at each instant of time. As the time-average operator

the norm of a vector product af and . This vector product, is Iinea'r, it commutes with the summation in (17), so average
or cross product, of the twa-dimensional vectors is formed POWer is also conserved
by cross multiplying volta_ge componer_ﬂ[éc yvith current Z Pk — Zpk—(t)
components!; for each unique permutation gf # k. Each " "
componentwise cross product is projected in an orthogonal _
direction faccording to an arbitrary rule, such as the right- Izpk(t)
k

hand-rule commonly used for three dimensions
=0. (18)

[=(GxFk
B U i )7, 15 Other power definitions, however, may not obey conservation.
==(kx). (15) S and @, for example, are nonnegative by definition and

The form of this cross product is called a two-form and isannot, therefore, sum to zero unless all are zero. Tellegen’s
the exterior product of two 1-forms, as discussed in detail fR€0rém can be used to prove conservation for a set of power
[12]. For the purposes of this paper, however, the cross proddéfinitions called generalized powers. As shown in [13]-{15],
hasm orthogonal elements given kI, —VkIj)fequal to @ partlcul_ar power is a generallze_d power an_d will obey
the projected area of the parallelograii ¢) on coordinate conservation if it can be expressed in the following form
axes; an.d k. m = n(n — 1)/2, corresponding to .the unique o = A(o%) Ay(iF) (19)
permutations ofj # k. These elements appear in the upper
triangle of an antisymmetric matri®, which will be referred wherev* andi* are the voltage and current at thth circuit
to as the reactive power matrix. element, and\,, andA; are linear operators, or more generally,

T T Kirchhoff voltage and current operators. As in (18), applying
R=VI -1v7). (16) a linear operatop to (19) preserves conservation and leads to

As R is antisymmetric, there are zeros on the main diagond,more general form for generalized powers

?r?;ngtj?: negative of the upper triangle appears in the lower PF = BlAL (W) A(P)]. (20)

Q in (14) is the root mean square of the orthogonal The definition for@ in (17) cannot be written in the form
elements of the cross product, and can be written as a nof@0), and Fryze’s definition fof) does not obey conservation.
In matrix form, @ is the Frobenius norm d® divided byy/2. Each of the elements of the cross product, however, do take
Alternately, for mathematical convenience, theelements of the required form, because the elements of the vedtoasid
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I can be expressed as linear transforms of the voltage abidt) = MT®(¢) can be recognized as a rotated orthonormal

current waveforms. basis, andV’ = M7V is the vector representation in the
1 /7 rotated vector space.
V=7 / v(t)®(t) dt. (21)  The first column inM is chosen as a unit vector in the
0

direction of V. The second column is chosen as the orthogonal
Each element in the reactive power vectdiis a component- ynit vector closest td in the plane ofV’ and I.

wise cross producl/; I, — Vi I;, which is a linear combination

of products of transformed voltage and current, as in (20). L= v
Therefore, the components of the cross product are generalized VI
powers and obey conservation. Equation (18) can then be <I— VVTI)
i i T
written in vector form My = 1% TV (25)
SR =0 22) HI_M"
% VTV

whereQ is the zeran-vector. This classification is independenThe other columns of\/ are not important to this analysis
of the specific decomposition of voltage and current, and widind can be generated by a Gram—Schmidt orthogonalization

hold for any orthonormal basi®(t). procedure.
The coordinate rotation matrid/ selects the first basis
V. COORDINATE ROTATION function ¢ (¢) proportional to the port voltage wavefora(t)

ynd the second basis functigh(t) proportional to orthogonal,
or nonpower producing, component of the port current. In the

at the port. For the analysis(¢) andi(t) are assumed to be new yector space, the p/ort voltage vectdrwill be /no_nzero
nonzero and not proportional, €2 0. Choosing a truncated only in the first element’/. The port current vectaF’ will be

1 1 !
Fourier basis of dimension, we can express the port voltage'0"#€9 only in the first two element; and I;. Because of

. : p , "
and current as constantvectors,V and I. Using the same theEch0|ce ?jf _un'; vector¥’; and I, are positive. . h
basis, we can express the voltage and current acrosktihe Xpressed In the new vector space, average power into the

network element as the vectord and I* port is the scalar produdt = V11’ = V!I’. The port reactive
) /
The average power into the paftand into thekth element power vector/' has only one nonzero element
P* can be expressed using the vector-space inner product, as q=V/I, - V/I. (26)
in (11)

We now consider an arbitrary single port network wit
specific periodic voltage and current waveformg,) andi(t)

p_yT] q is positive, becaus&, and I; are positive and/; is zero.
‘ =V v Consequentlyg = @, the reactive power of the port.
Pk =V+ I*, (23)  The definition forg is a projection ofR in a particular

Time average power is a generalized power and obeys consd rr(_actlon.q of the port is the projection ak in the direction

vation, soP = EP’“. Thus there is an intuitive mechanism® R, and is therefore equal to the norm Bf which equals

for showing where power flowing into the circuit is beingl%C T:?ﬁgzz’r%kcg;;hgfk:EeC'r%li;;zelemem Is the projection of
dissipated. Howeverg} is not a generalized power, ardgl £ pori.
3T QF. It is not obvious howQ* at each element contributes ¢ =VIk — vk, 27)
to the total@ at the port.

The following section shows how a simple coordinatéhis projection has a sign and can be interpreted as a general-
rotation provides an alternate vector decompositiof)afuch ized measure of how the elementontributes to the total)
that R of the port has only one nonzero elememt,which at the port. The sign convention is such thhlitis positive if
is positive, by definition. As the other elements are zerglementt contributes to the total) and negative the element
Q= \/q_2 = ¢, but while Q does not obey conservation, helps compensatg. ¢* is always zero for resistive elements,
is an element of? and is a generalized power. Conservatioecause resistor voltage and current are proportional. Energy
then, implies that) = ¢ = Y. ¢*, where¢* is the same Storage elements can have either positive or negajfye
element of R*, the reactive power vector of thith circuit depending on whether the energy transfer happens to increase
element. As with the classical definition of reactive power il decrease th€) at the port.
sinusoidal systems, this single signed component of reactivel he expression for can be simplified by expressing the
power provides a measure that obeys conservation and carPEgection in the nonrotated vector space. In termdffand
used to indicate where the port reactive power flows in tHe2, the first two columns of\/, (26) and (27) become

circuit. T Tr T T

The coordinate rotation is performed using a symmetric q_MTl VM?‘; My VAT/Il !
n X n matrix M, which is orthonormal in thaf/M7 = L =V (MiMy — MaMp)I (28)
The port voltage waveformy(¢), can be expressed as q" :VkT(MlMQT — MoyMP)I*. (29)

u(t) =VIMMTo(t) SubstitutingM; and M, from (26) yields an expression for
=V'To'(t). (24) ¢* in terms of V* and I* of elementk, andV, I, and Q,
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Fig. 2. Example circuit. Fig. 3. Example compensation circuit.
of the port. example, the basis is truncated to length- 20.
[ /2 cos(wt) ]
T \WIVIET VIV 2 sin (wf)
_ e (VIE-IVTN V2 cos (3wt)
Q ®(t) = | V2sin(3wt) |, (32)
=y <5) I* (30) :
Q V2 cos (19wt)
| V2 sin (19wt) |

whereR/@ is then x n reactive power matrix for the port
normalized by the reactive power at the port. For the linear circuit elements, the voltage and current

Equation (30) can be mapped to the time domain bglationships can be expressed as an impedance relationship
expressing the inner product as a definite integral, as in (9analogous to Ohm’s law

L ow o V=2zZlorl=2"'v (33)
==k VIV I-V¥ II¥V) o . .
Q whereZ is an impedance matrix for the linear elemefif, for
T T T T resistive elements is the resistad¢d¢imes the identity matrix.
/0 kU dt/o iidt — /0 U“dt/o ivdt In the Fourier basisZ;, and Z¢ for inductive and capacitive
= (31) elements are block diagonal, antisymmetric matrices with

2
T /TUth/Tith B </Tm. dt) zeros on the main diagondl; = L J,, and Z¢ = (C J,,)~!
0 0 0

where L andC are the inductance and capacitance, and

ro w 0 0 0 0 -7
wherewy, i, v, andi, are the voltage and current waveforms -w 0 0 0 0 0
of the kth element and of the port. 60 0 0 3w 0 0
Jo=10 0 =30 0 0 0
0 0O 0 0 0 Sw
VI. CIRCUIT EXAMPLE 6 0 O 0 —5w 0

Fig. 2 shows a one-port circuit example consisting of a o ' ' S
linear R-L-C circuit in parallel with a switched resistive load. The impedance matrix for the lineaR-L-C circuit is
The triac switch is self commutating with a 9@iring angle, calculated as a parallel combinatich = [Z;; +(Zgri+
so it is on for the latter half of each half-cycle. The voltag&z:)~*]~!, and the current vector is then calculated from
at the circuit port is given and contains a 1 Hz fundament&3).
component as well as small components of the third andTo calculate the current in the switched resistive load, the
fifth harmonics. The port current contains these harmonigsctor for the R2 voltage is calculated using the Fourier
as well as additional harmonics introduced by the switchingansform. Vg, = (1/7) ij vre(t)®(¢)dt. The current is
discontinuity. then calculated from (33) usingg-.

For the analysis, the voltage and current waveforms areFig. 3 shows the steady state voltage and current waveforms
decomposed with a Fourier basis consisting of normalized the circuit port. Fig. 3 also shows current waveforms of
cosine and sine pairs of only the odd harmonics. For thise R-L-C load and the switched resistive load. The vector
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TABLE | TABLE I
VECTOR REPRESENTATION OFVOLTAGE AND CURRENT AVERAGE, APPARENT, AND REACTIVE POWER, AND THE PROJECTION¢
|4 IrLC Isw I P S Q q
0.0000 | 0.4853 | -0.3491 | 0.1363 C1 0.0000 | 0.6600 | 0.6600 | 0.3416
1.0000 | 0.4551 | 0.4982 | 0.9533 L1 0.0000 | 0.1471 | 0.1471 | -0.0598
0.0000 | 0.1635 | 0.3109 | 0.4744 R1 0.4577 | 0.4577 | 0.0000 | 0.0000
0.1000 | 0.0265 | 0.0518 | 0.0783 T1 0.0080 | 0.4971 | 0.4970 | 0.2454
0.0000 | -0.0292 | -0.0736 | -0.1028 R2 0.4955 | 0.4955 | 0.0000 [ 0.0000
-0.0100 | -0.0014 | -0.0068 | -0.0082 Total | 0.9612 | 2.2575 | 1.3042 | 0.5272
0.0000 { 0.0000 | 0.0965 | 0.0965 Port | 0.9612 | 1.0963 | 0.5272 | 0.5272

0.0000 | 0.0000 | 0.0018 | 0.0018
0.0000 | 0.0000 | -0.0526 | -0.0526

0.0000 | 0.0000 | -0.0018 | -0.0018 The power factor is defined as the magnitude of average

0.0000 | 0.0000 | 0.0580 | 0.0580 i
00000 | 0.0000 | 00018 | 0.0018 power divided by the apparent power.

0.0000 | 0.0000 | -0.0387 | -0.0387 |P|

0.0000 | 0.0000 | -0.0018 | -0.0018 PF =3

0.0000 | 0.0000 | 0.0413 | 0.0413

0.0000 | 0.0000 | 0.0018 | 0.0018 _ 1P| (34)

0.0000 | 0.0000 | -0.0305 | -0.0305 /P2 12’

0.0000 | 0.0000 | -0.0018 | -0.0018 ) @

0.0000 | 0.0000 | 0.0320 | 0.0320 Because the compensator is lossless, and the voltage source
0.0000 | 0.0000 | 0.0018 | 0.0018 is constant,P is not affected by compensation and remains

constant. Maximizing the power factor, then, corresponds to

. L . minimizing @ at the port.
representation of the voltage waveform is given in Table 1, . . .

: . . @ is not a generalized power and does not obey conser-

along with the vectors for the linear and switched load current . . .

; vation, so the port) is not simply the sum of load reactive

components and the total load current. The linear load curren . ;
. : : ower,(r, and compensator reactive pow€;. The reactive
contains only those frequencies that appear in the voltage . .
. . . . ower vector, however, is a generalized power, so the Rort
while the switched load current contains all frequencies, as

generated by the switching discontinuity. For the= 20 \é??hc:; '\S/;Qt%rSLSJTmORL and fic, and the port? is the norm
basis used here, the reactive power vector has length 190
corresponding to all possible cross product terms between the Q =||Rr + Rc||- (35)

voltage and current. . . .
g Ry, andR¢ are, in general, neither collinear nor orthogonal,

Table Il summarizes the power in the circuit, listing, J I i
S, @, and ¢, for each element in the circuit and for thebUt (35) can be simplified by decomposing tiie vectors

port. Average power is dissipated in the resistive elemen&:l'fo colllneac; _ar:% orthogglal par:'FS.h For thlﬁ_examﬂ_ﬁ; 'Sd
with a small dissipation in the switch introduced by errors ifccCMPOSed INt@icy andfic, WhICh are coflinéar with an

orthogonal toRy, respectively. This decomposition yields a

truncating the Fourier basis. Unlike and (), P is conserved, drature decomposition of th mpensator reactiv wer
so the average power into the port equals the total dissipat%lr’la ature decomposttion of the compensator reactive powe

in the circuit. As shown in the dataj is also conserved, Q% =Q%, +Q%,
becaus_e_|t is a projection qf the reactive power vector. = |Ren|? + || Rea 2. (36)
Specifically, ¢ is the projection of reactive power in the _ .
direction of the port reactive power, soprovides a measure For the total) seen by the sourc&)c, adds linearly with
of the contribution of each circuit element to theseen at the @r, and the sum adds in quadrature wile-»
port. _For this example, thg capacm_)r is co_nt_rlbutlng to the port O = (Qr + Qc1)? + Q2. (37)
reactive power, while the inductor is providing compensation.
While the resistive elements do not contribute reactive powdguation (37) can be simplified by expanding the square and
the triac switch does. Even though the switch is not &substituting from (36)
energy storage device, it generates reactive power, because the 2 _ 2 2 2
; o o : =Q1 +2 + +
nonlinear switching characteristic generates current harmonics. @ Q; Qrlc le @
=0 +2QLQc1 + Q¢ (38)

VII. OPTIMIZATION EXAMPLE where @, is the constant load reactive powép; is the

The next example shows how a projection of the reacti\%ojecuOn of Ro in the_ direction of Rz, ar_1d QC is the
power vector can be used to optimize a compensation circ {al compensz_;ltor reactive power. The _prOJecth;a;l, can
for maximum power factor. Using the previous circuit exampl e gxpressed in terms of the load reactive power mdigx
as a load, the problem is to find the value of induclor as in (30)
that when placed in parallel with the load, maximizes the OQcy = VT Ri I (39)
power factor seen by the voltage source. This example is a L Qr o
constrained optimization in that compensation with a sing| .
inductor can improve the power factor but cannot achie\iS the compensator is lossledy = 0, and Q¢ = S¢

unity power factor. QL =VTVIiic-. (40)
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Port Voitage and Current Waveforms
2 —— T T T —
\

T

.
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Seconds

R-L-C and Switched Load Current Waveforms

Fig. 4. Example circuit waveforms.

Port Reactive Power vs. Compensator Inductance

0.5 2 " L L L L L L
0.5 0.6 07 08 0.9 1 1.1 12 13 14 15

Source Power Factor vs. Compansator Inductance
T T T T T T T

0.8851

0.88+

0.875 L . . v
0.5 0.6 0.7 08 08

Tt

Fig. 5. Optimum compensation.

Using the impedance relationship, (38}, can be expressed in
terms of the impedance matrix for the compensator inductance.
This impedance matrix is proportional o, the inductance.

Ie =Z;'V
1
= J7V.
Lo 7%

be adjusted by a linear network of tuned circuits, but nulling
the higher harmonics in current would require a nonlinear or
active compensator. In any case, (38)—(40) would still apply,
but Z;_ in (41) would be a complicated function of control
parameters. As (42) would no longer be quadratic, finding the
global minima in closed form would be difficult. Still, for a
small number of control parameters, the global minimum could
be found numerically from (38)—(40).

VIIl. CoMPARISON TOOTHER REACTIVE POWER DEFINITIONS

The expression of) as the norm of a cross product leads to
a decomposition of) into 1 orthogonal elements. As with the
vector decomposition of the voltage and current, the reactive
power vector depends on the choice of basis functions, but the
dimensionalitym is fundamental to the cross product. Many
other reactive power decompositions have been suggested, but
the definitions suffer because they attempt to representithe
orthogonal conserved power components with fewer than
quantities.

Some definitions consist of linear combinations of the
elements ofR, which, like ¢, are projections ofR and obey
conservation. Each projection accounts for only one of the
m dimensions inR; the otherm — 1 components must be
accounted for if the total decomposition is to reflect the
total inactive power. Other definitions combine orthogonal
projections ofR in quadrature, thus representing the magnitude
contribution from several of then components. The sign
convention, however, is lost when components are combined
in quadrature, and the resulting definition is not conserved.

The original Budeanu definition of reactive power is given
in [1]

Qv =Y EI sin () (44)

where E;, I;, andg; are the rms voltage and current and the

(41) phase angle difference of thiga harmonic. In the Fourier basis,

each harmonic is represented with a cosine/sine pair, and each

Now substituting (39)—(41) into (38) yields a scalar quadrati€rm in (44) represents the interaction of the cosine and sine

equation inl/Lc.

1
Q* =QF + 2V RISV —
Lc
T 1
T T 7—17 -1y, _*
+VEVVEIDE T VLQC.
Inserting the values for the example circuit gives.

1 1
2
= 0.0256 — — 0.0490 — + 0.2779.
@ Z o

This equation has a single minimum, B¢ = 1.05H, where

components at a particular frequency. These terms appear as
every other entry in the first upper diagonal in the reactive
power matrix,R. Equation (44) adds these terms linearly and
ignores all other components, so Budeanu’s definition is a
projection of R in a fixed direction, and this projection has a
sign and obeys conservation. The direction of the projection,
however, is arbitrary and does not reflect any particular useful
quantity, such as power factor @S2 — P2.

In order to account for the other componentdhfBudeanu
introduced Distortion Power.

() = 0.505. Fig. 5 shows the port reactive power and power Dy =4/52-P?2-Q? (45)

factor as a function of. in the vicinity of this minimum.

The compensated power factor is 0.885, improved fromy, then, is the norm ofn — 1 orthogonal projections oR,
0.877 by L. Due to the extreme harmonic content of thevhich are also orthogonal to th@, projection in (44). As
waveforms, the power factor can not be improved beyord, adds components in quadrature, the definition does not
0.885 without a more complicated compensator designeddbey conservation. Because the direction of &g projec-
better match harmonics in current to those in voltage. Thien is arbitrary, theD, component has no generally useful
third and fifth harmonics, which exist in the voltage, coulihterpretation.
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Perhaps Budeanu intended th@t reflect the individual the projection contains only interactions between the sine and
interactions of thex/2 frequencies, and thd?, represent the cosine components of individual harmonics, but unlile,
cross terms between different frequencies. If g, should each component is scaled by its frequency.
have been defined as the projection &fin the direction In linear sinusoidal systems, reactive power can also be
pointed by thern/2 components in the first upper diagonainterpreted in terms of average stored electric and magnetic
of R, and D, should have been the projection &f in the energy.
direction pointed by the all the other elementdHnThe other

m—2 orthogonal projections would then have been zero, so the Q = 2w [Wy(t) — Wr(t)]. (48)
definition would have properly decomposed the total inactive
power with two conserved quantities. BecausdV, (t) andWg(t) both oscillate agos (2wt) but are

The Fryze reactive power, shown in (13), represents the tot@(® out of phase, (48) can also be written in terms of the total
inactive power in a single signed quantity. The magnitude éored energyW (t) = W (t) + We(t).
the norm of all the elements aR, which is useful because
minimizing ¢ minimizes S, maximizing power factor. The d
sign definition, however, is misleading in that the definition is Q= rms{% [W(t)]}'
a norm and is not conserved. Presumably, the sign was added
to reflect the sign of fundamental reactive power componefthis expression has the nice interpretation thatin the
which would be dominant in the nearly sinusoidal case. If thgnusoidal case, is an rms measure of the oscillatory transfer
intention was to obtain a single conserved quantity to represeifit stored energy. This fact, however, is a result of the
V/§2 — P2, the definition should have been the projectiodiof 18> phase difference betweei,;(t) and Wg(t), and no
in the direction ofR, which is positive and equal t§.5? — P2, such relationship holds when harmonics are present or when
This is, in fact, the definition of given in this paper. nonlinear circuits are considered.

Page, in [5], defined capacitive reactive power and inductive
reactive power(}« and @y, the two components of) that
could be compensated by a parallel capacitor and inductor. IX. CONCLUSIONS
These powers are, in fact, projections of tRevector in the The work in this paper uses an-dimensional vector-
directions of Rc and Ry, the reactive power vectors of aspace decomposition of periodic nonsinusoidal voltage and
pure capacitance and pure inductance. Page correctly naiggtent waveforms to show that reactive powgrconsists
that these quantities can have a sign and are conservedpfg, — %n(n_ 1) orthogonal conserved components. If these
a negativeQc can be compensated by adding a capacitebmponents are stacked into thevector R, then the scalaf)
in parallel. Page also noticed that tida- and Q1 are not s the norm ofR and does not obey conservation. Projections
generally orthogonal or parallel, and introduced a refinemestt R, however, do obey conservation and can provide useful
to account for the cross terms. measures when analyzing or compensating a circuit. One such

Page’s projections failed to account for the other— 2 measure ig, the projection ofR in the direction ofR, which
orthogonal components ak that must be considered if thejs positive and equal t. While this definition seems trivial,
compensation is to minimize the tot@l His projections help Example 1 shows how such a projection can be used to analyze
to solve for the best parallel and C, but do not adapt to flow of reactive power in a circuit. Example 2 shows how a
other compensation topologies, such as a sefieand C, similar projection is used to solve a constrained power factor
or a linear network ofL’s and C’s. As shown in Example optimization problem.

2, a single element parallel compensator does not necessarilyhe vector-space expressions for voltage and current pro-

(49)

provide substantial power factor improvement. vide a convenient notation for solving minimization problems,
Wyatt and IIE, in [9], discusses the merits of an instantaput the dimensionality does not arise purely from the notation.
neous expression of reactive power. The underlying dimensionality arises from the terms in the
d d expressionQ? = $? — P2, S? is the product of twon-
Preact, 2(t) = v(t) %i(t) —i(t) %v(t). (46) term equations and has? terms. P2 is the square of one

. . . . n-term equation and hasn(n + 1) terms. The difference has
The time average of this quantity can also be interpreted n %n(n + 1) terms, but2n cancel, Ieavinggn(n — 1)

as a measure of reactive power, and can be expresse eirrr]ns These remaining terms are group in triples to form
vector notation. In the Fourier basig//dt) ®(t) = JI®(¢), 1 g group In trip
. . ) d SV omo = sn(n — 1) perfect squares, corresponding to the
where J,, is the block diagonal, antisymmetric matrix given 2
orthogonal components af.

in Exa_mple 1. As in (9), the.tlme average of (46) simplifies The components of), then, do not correspond to the.
by taking the constants outside the integral. .
orthogonal frequency components of instantaneous power, but
I T T T instead arise from the definition &f. @, then, is not a quan-
T /0 Preact,2(t) dt =V I = V21 tity bearing physical interpretation in terms of instantaneous
—ovTJ I (47) power, but is simply then remaining orthogonal components

“ of S not contained in”. Similarly, the usefulness af is not
While (47) is not normalized, it has the form ¢f in (30) as a reflection of actual circulating powers, but as a measure
and is proportional to a projection @. Like Budeanu'sy,, of the overall useless component 8f
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APPENDIX

VECTOR REPRESENTATION FORMULTIPHASE CIRCUITS o
Multiphase periodic waveforms can also be represented

as vectors given an appropriate set of basis functions. B[};]
combining the vectors representing voltage and current in eagh
phase into collective vectors, the entire set of waveforms can
be represented as two constant vectgraand /. While the 4
results are general, this analysis will focus on the three phase
case.

The set of phase voltage waveforms is assembled as a roﬁ]-
vector, and expressed in terms¥fand the basis functions. [6]

[v1(2)
[i1(t)

7]
(50)
[8]

Here V is length3n, and @(¢) is a 3n x 3 matrix of basis [g]

functions.

ot) § 0 1ol

@)= 0 @t 0O (51) iy
0 0 o@)

[12]

Where0 is then-vector of zeros. Althougk® is a rectangular [13]
matrix, the basis is still orthonormal.

[14]

T
% /0 ()@Y (t)dt =L (52) 15

The total instantaneous power is the sum of instantaneous
power in each phase.

i1(t)

p(t) =[vi(t) va(t) w3(t)]|i2(t)
i3(t)
(53)

Because® is orthonormal, the time average total powe

simplifies to a single scalar product, as in the single pha# ke

case.

T
P:i/ VI e (t)Idt
T Jo

=V7TL (54)
Similarly, the multiphase rms value is again the two-norn
and the definition for total apparent powsr = ||V |||
is the same as in the single phase ca@e= /52 — P2
has the same form as (14), and can be interpreted as
norm of a cross product vectd®. Therefore, it is possible
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