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ABSTRACT

In this paper, an approach to modeling, analysis,
and deeign of slow distributed voltage control schemee
ie proposed. In partiocular, a dynamical voltage model
governed by the wnder load tap-changing transformers
as control toole is etudied. Rigorous conditions are
derived to predict when the LTC based scheme may be
poorly coordinated and nmot able to maintain voltages
within the limits. The propoeition is that nomcon-
vergence of LTC comtrol echeme is ome of the causes
of a syatemside voltage collapse.

1. INTRODUCTION

Studies of recent voltage collapse related black-
outs throughout the world [1],{2] clearly indicate that
changes in voltage magnitudes after a large contingency
cannot . be neglected. State of the art in security
sssessment [3] is such that the main results pertain
to the active power network under the sssumption that
voltages do not change significantly. Dependirnz on
the topology and composition of the network, this may
or may not be justified. It is true thst because of
the definite time-scale separation between the dynamic
changes in frequency and those in voltage due to
secondary voltage control in the transient stability
analysis, voltages can affect stability regions only
as slowly varying parameters. It is the analysis of
the slower phenomenon of voltage changes due to changes
in the slow voltage controls (undet load tap changing
(ULTC) transformers, capncitorl) on the load side that
we study in this work. In this analysis, voltage
changes must be taken into account; moreover, the fact
that in voltage collapse caused blackouts frequency
did not change appreciably can be used to justify, in
the first analysis, voltage - reactive power changes
due to slow controllers under the commonly accepted
decoupling assumptions between the active power -
frequency and reactive power -~ voltage. Under this
assumption, we formulate a model to study this slow
dynamics of load voltage changes due to local voltage

36 SM 345-3 A paper reconmended and approved
by the IFEE Power System FEngineering Committee of
the IEEE Power Tngineering Society for presentation
at the IEEF/PES 1986 Summer Meeting, Mexico City,
Mexico, July 20 = 25, 1986. Manuscript suhmitted
September 3, 1985; made availahle for printing

Mav 7, 1986.

Printed in the U.S.A.

control and reveal potential difficulties of the pres-
ently utilized schemes. . - 'We show that this mwmodel
belongs to the class of nonlinear discrete type dynam~
ical models. General analytical tools for analysis of
these models are not available.

The main contribution of this paper is in the under-
standing of coordination ‘issues of the LTC based
distributed control. Explicit network configurations
are iatroduced to test when the LTC control scheme
may not be fully reliable and proposals are presented,
on a theoretical level, to improve the performance of
this slow and discrete control layer in power networks.

The approach is qualitatively different from exist-
ing approaches where the voltage collapse is studied on
an oversimplified single generator, single load wmodel.
We claim that it is the improper coordination of dif-
ferent (local) voltage control tools which may be the
major cause of voltage collapse. Theoretical analysis
leading to procedures to prevent voltage collapse in a
given network are suggested based on partial central-
{zed control, i.e., on partial exchange of information
within the network. And finally, a small network
example is discussed together with the simulation
results which illustrate the main theoretical conclu=
sions.

2. BACKGROUND

Under losd tap changing transformers (LTC's) are
control tools used on a large power system to maintain
local voltages within desirable limits. They are
sctivated when a load voltage of the controlled bus
deviates outside the allowable limits. Let the nominal
tap position of the LTC in line connecting nodes 1

and j, controlling bus i, be denoted by ag 3 let the
»

corresponding nominal voltage at node 1 be Vg. and let
the allowable voltage deviation be ‘vi' When the oper-

ating conditions in the system change, each LTC in
the system will change its tap position, if necesssry
to maintain locsl voltages within the given limits.
This change will take the form of discrete equal-valued
changes in the tsp position, separated by the duration
of the LTC operating cycle. At each change, the
resulting bus voltages will be assumed to have settled
in the new operating state which is assumed to satisfy
the decoupled reactive power - voltage relations (4].
Enumerating buses in the pover system so that the first
n buses are the load buses and the remaining k buses
are generator buses (including the slack bus), and
using the notation:
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VerR" - 1s the vector of voltages at the load buses

XeR™ - 1s the vector of voltages at the ULTC con-

trolled load buses

acR” - {s the vector of current tap positions

EcR® - is the vector of voltages at generating

buses

The reactive power - voltage equations at some
nominal operating point (Vo, E, ao) obey

Qi(V, E, a) =0, 1{=1,...,n (1)
0

Ve Vo

a=s

with the controlled voltages given by

0 - cov? , @

where CcRmxn is a matrix of zeros and ones extracting
the controlled load voltages from the vector of load
voltages.

The slow dynamics associated with the changes in
the tap positions of the LTC can, in view of present
practice [5), be expressed by the following set of
discrete equatione:

- . . yref

ai'j(k + 1) ai,J(k) *d, f(x1 X)) 3
where the subscripts i and j indicate that the ULTC
located in the line between nodes 1 and j monitors
and controls voltage at node i, d, denotes the step~
size in the change of the tap sitfon during one
operating cycle of the LTC and f(x1 - xi‘f) is the
control function governing the operating of the LTC
and is given by

I :" A
ref, _ - yref
f(x1 - X ) o, lxi x1 | ¢ &, 4)
S, x - XM
Thus, 1if .
X, - X{*) < wy, (%)

no LTC action results, i.e., tap position of the

ith transformer remains unchanged. If, for some 1,

|X - xref
i 1

to (3). Subtracting the nominal value ag 3 from both
’

sides of (3) and denoting the change in the tap posi-
tion from the nominal by b‘ , and the deviation of

»
voltage at controlled buses from the reference values
by xi, we have

| )*Avi’ the tap ratio is changed according

0
bi,j(k) - '1.j(k) l’”-1 (6)
ref
X xi(k) - xi(k) X1
and (3) can be written in the form
bi,j(k +1) = bi,j(k) + dift(xi) yi=l,eeeym
N
or in vector form
b(k + 1) = b(k) + Df(x) (8)

m
vhere beR™ 1s a vector with components bi 3° xeR" 1s a
*
vector with components X D 1s a diagonal matrix with
components d1 and f(x) 18 a vector function of the

vector variable x with components fi(xi) given by (4).

We wish to study the convergence of the decentral-
1zed control law embodied in (7), subject to the oper=-
ating constraints (l). The problem 1s difficult,
because (1) 1s nonlinear. To proceed, we make the
additional assumption that we may linearize equation
(1) around s nominal operating condition, with the
purpose of understanding the nature of the discrete
dynamic process characterized by (7) in the vicinity
of this nominal operating point. Of course, the larger
the region in which linearization 1is sufficiently
sccurate, the larger the region in which the results
of this analysis would be valid.

Since linearization of the Q-V decoupled equations
after normalization by vg, respectively for i=l,.,.,n,

‘has been reported to hold with good accuracy for a
larger vicinity around that nominal operating point [6)
than the 1linearization of the original power flow
equations, this normalization will be applied first to
(1). The implied assumption is that linearization
around (Vo,ao) will be acceptable in a region A =
(]
{a : |a1” .i,jl <&, 1=1, ..., n} encompassing
the actual tap ratio 1limits and the region V =
{v: |Vi - Vg] <y, le 1,.v0,n} of magnitude greater
than the allowable limits AV1 and sufficiently large
to consider variations of load voltages under the
influence of variations of tap ratios. We will assume

that in addition V0 - vref. Under this assumption,

the linearized Q-V equations at the kth step in the
discrete evolution of the voltage and tap ratio
changes take the form

B (v - %) + 8 a0y - 2% = 0 )

with the asumption that %% and %% can be considered

constant matrices in the considered region of variation

of V and a. It follows, under the assumption that %3
is nonsingular that

-1
v -0 e - & H (a0 - ) a0

and using (2) that

-1
x(k) = X(k) = X = c(vix) - v°) - - c(%%) (%) b(k)
(11)
Now premultiplying (8) by
-1
? L]
amcddh & (12)
we have
Ab(k + 1) = Ab(k) + ADf(x) (13)
and utilizing (11)
x(k + 1) = x(k) - ADf(x) (14)

[ROTSROPy

BV T

. e

ot

Sy e - e

» semapaty

-,

N

-

EIP e

AMMERAWNY LA T D SN e




Equation (1l4) characterizes, in the form of a discrete
system with the specific relay-type nonlinearity with
a dead zone, the essential slow dynamic variation of
voltage at the controlled nodes in function of tap
ratio changes.

3. DISCRETE-TIME ANALYSIS

We nc. study the dynamics of voltage variations in
the vicin.zy of the nominal operating point. Our goal
is to determine the basic conditions under which the
controlled voltages will return to their nominal values,
and conversely, conditions under which some of the con-
trolled voltages will diverge from their nominal values
when vcltages at the controlled buses are perturbed
from the nominal and the control strategy embodied in
(3), and leading to the discrete dynamics (14), is used
to adjust the tap ratios and control the voltages.

Because of (4), we will let X denote the target
set, defined by 8

X, " {x : Ix| < |AV1|? 1= 1,.0.,m} (15)

such that 1if xcxa. then all LTC's will be inactive

since all controlled voltages are within prescribed
limits, and if xéXa, then at least one LTC will oper-

ate because at least one controlled voltage is outside
the prescribed limits. Clearly, given xtXa of interest

is whether x will converge to xa. and if not, what are

the conditions on A and D such that, at least for some
points tha under the action of (14), x will not con-

verge to X .
a

Before proceeding, we formulate certain simplyfing
assump:ions under which convergence will be considered
in this paper. Specifically, we will assume:

(a) All duty cycles are of the same order of magni-
tude;

(b) All step sizes are of the same magnitude {thus
we may take D = I in (14));

(¢) The change in tap ratio is small enough so
that voltage deviations after tap change are
always smaller than the width of the allowable
voltage deviations.

We will discuss subsequently the influence of these
assumptions on convergence. With these assumptions,
we may easily establish the following results:

THEOREM 1: Suppose A is diagonally dominant with all
diagonal elements positive. Then the sequence x(k),
k=1,2,..., generated by (14) converges to X‘.

PROOF: From equation (14) we have

©
x,(k+ 1) - x (k) - jzl ‘1jfj(xj(k)) -
©
= x, (k) - aiifi(xi(k)) - jzl lijfj(zj(k))
3%l
(16)

Invoking the diagonal dominance condition

m
la,. | > Ja, | 7
11 jzl i3

875

and the fact that |fj(xj(k))| « 1 ve see that the sum-

mation term in (16) is of smaller magnitude than the
tern ‘ilfi(xi(k))’ and so the summation cannot change

the sign of the variation of (x,(k + 1) = x,(k)) as
defined by the term ‘11fi(x1(k))° Assumption (¢) guar-

antees that the summstion term will not superimpose on
changes due to the first term in such a way as to cause

a voltage jump over the allowed region. To see this,
observe that from (14)

m
x(k+1) =x (k) +a, = jZi aijfj(xj(k))

for xi(k) > Avt. Therefore

|x1(k + 1) - x (k)¢ .11' -

m ® ®
Ijziaijfj(xj(k))|< 321'.15' fj[Vj(k))‘ < j§i|5“|< 8,

fron which follows
-ay, < xi(k +1) - xi(k) + s, <'.i1
or .
’1(k) - 2:11 < “1(k +1) < xi(k) (18)

Similarly for xi(k) < - v

4 we obtain by repeating
the procedure .

‘i(k) < xi(k + 1) < xi(k) + 2.11 (19)
Therefore,
|x1(k + 1)< |xi(k)! (20)
whenever
111‘< AVl . n

Since this is true for all 1, and since A will retain
the diagonally dominant property if any row and corre-
sponding column are deleted (as must be considered when
for certain j.fj(xj(k)) = 0 because the jth voltage is

vithin prescribed limits), we see that x(k) converges
to X‘. QED

The next theorem shows convergence by utilizing a
Lyapunov function approach to stability of discrete
systems [7]. Let Q be a diagonal matrix with positive
elenents. Then the function

V(x) = £(x) 0x (22)

1s a candidate function for (14).
that

To see this, observe
T »
v(x(k)) = £(x(k)) Qx(k) = zl a , f, (%, (k) )x, (k)
i=

and so in view of (4), we find that V(x(k)) » 0 for
a1l x(k) and V{x(k)) = 0 for x(k)eX .

THEOREM 2:
that

Suppose there exists a diagonal Q > 0 such

ATg+qa=P>0. (23)

Then the sequence x(k), k = 1,2,... generated by (14)
converges to X.. '
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PROOF: The proof of this theorem is rather lengthy
because of the many different cases that have to be
considered. In two consecutive iterations, we may have
the following main cases: (a) f(x(k + 1)) = f(x(k)),
i.e., there is no change in the components of f(x)
in two consecutive steps, (b) only one component of
f(x) changes value in two consecutive iterations, and
(c) more than one component of f(x) changes value in
two iterstions. We now prove that the difference
V(x(k + 1)) = V(x(k)) decreases in consecutive itera-
tions for cases (a) and (b) above and indicate how the
results is shown to hold for case (c).

Consider the difference V(x(k + 1)) - V(x(k)). We
have

V(x(k + 1)) = x(k + DTQE(x(k + 1))

£(x(k + 1)To(x(k) = Af(x(k)))

£(x(k + 1))Tax(k) = £(x(k + 1))T0af (x(%) )
£(x0) )Tax(k) + L£(£Ck + 1))

£(x(1) ) ) Tax(k) - £(xCi + 1)) TQA£(x(K))

(24)

We now consider separately the main cases that occur.
(8) £(x(kx + 1)) = £(x(k)), {.e., no change in the
values of the components of f(x) occurs in two

consecutive steps.

In this case we have from (24)
V(x(k + 1)) = V(x(k)) = = £(x(k))TQAf (x(k))

£(x(k))T(ATQ + QA (x (k) )

L] o N1 P

£(x(0))Tpe(x(%)) < 0
and so the value of V(x(k + 1)) is smaller than V(x(k)).

() £ (x00))=0, £, (x(k + 1))=1, while £, (x(k + 1))=
fj(x(k)), IR

Observe first that £ (x,(k)) =0 and ti(xi(k +1))=
1 implies that xi(k 4+ 1) is negative (i.e., more nega-
tive than -Avi) 80

eix(i + 1) = x(k+1) <0, (25)

where ef = {00 .s0 1 ... 0]. Second, observe that we
may relate f(x(k + 1)) to £(x(k)) as follows:

x x 0
x x 0
f(x(k + D)= | o | oo | +] o] =f(x(k))+ e,
i 0 !
x x 0
x x 0 (26)
Thus,
E(x(k + 1)) = £(x(k)) = ¢, 2n

and substituting (27) into (24) we find

V(x(k + 1)) = v(x(k)) - f(x(k))TQAf(x(k)) + efox(k +1)
= V(x(k)) - 3 £(x(0))T(ATQ + QM (x()) +
+ ejaxlk + 1) (28)

Now, by assumption (23), the second term is negative.
The last term need not be negative for srbitrary posi-
tive definite Q. In fact, since the second term fis
finite while the last term can be made as large as
desired by the choice of x(k + 1), it follows that for
most Q there are points in the state space for which
V(x(k + 1)) = V(x(k)) can be made positive.

The only exceptions are the cases when Q = I, sgs
well as the case when Q is a diagonal matrix, because
then e,Qx(k + 1) = g% (k+ 1) <O . Thus, the dit-
ference V(x(k + 1)) = V(x(k)) 1s negative in this case.

A similar development can be used to show that the

same 1s true for all other possible changes of only
one component of f(x). For example, if fi(x(k)) =0,

and £, (x(k + 1)) = =1, then instead of (26), we have

£, (xk + 1)) = £(x(k)) - e, (29)
and
extk + 1) >0 . (30)

In this case, instead of (28) we have
V(x(k + 1)) = V(x(k)) - § £(xk))T(ATq + Q)£ (x(K))
T
- ex(k+1), an

and, so in view of (30) again for Q diagonal,
V(x(k + 1)) - V(x(k)) 1s negative. Other cases can be
shown to lead to a decreasing sequence of V(x(k)) in
the same manner.

(c) More than one component of f(x) changes in con-
secutive iterations.

In this case we will in general have

E(x(k + 1)) = £(x(k)) + § e, - ] e 32)
icsl j:sz

and by definition of S, and §

i 2

e:x(k +1) <0, for all 1:5l

T (33)
eix(k + 1) >0, for all jcsz .

Then, by a parallel development, we have in this case
that

V(xCk + 1)) = V(x(K)) - 3 £(x(k))T(ATQ + QA)E(x()) +

+ 1 eIQx(k +1) -7 cIQx(k + 1)
ieS tcS2
(34)

1
and in view of (33), we have that V(x(k)) is again a
decreasing sequence, and so that x(k) converges to xa.
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Theorems ! and 2 provide important, practically
verifiable conditions for the assessment of conver-
gence. It is also immediately clear how different
step sizes will affect the results since all that has
to be considered is the matrix AD instead of the
matrix A.

4. CONTINUOUS MODEL ANALYSIS

Consideration of simple exauwples, however, indi-
cates that the class of systems for which convergence
results 1is broader than captured by Theorems 1 and 2.
These experimental indications are in agreement with
convergence results that can be obtained when the
discrete model (14) 1is approximated for purposes of
analysis by a continuous model. We therefore present
a qualitative analysis of the problem by resorting to
an approximation of our discrete dynamic process by a
continuous process.

We recall that (14) arises under the assumption
that operating cycles of all LTC's have the same (or
almost the same) duration. While we do not necessarily
associate the counter k in (14) with time-instants,
the discrete equation (14) can be viewed as a discre-
tization of a continuous dynamic eystem. Because of
the particular form of relay type nonlinearity in
(14), we utilize the following device to construct &
plausible continuous generator equation for (14). To
this end, introduce ¢ and write (14) as

x(k + 1) = x(k) | _ ADE(x) (35)
€

and now let ¢ + 0. We will approximate the result of
this process by defining

x(k + 1) = x(k) _ dx
"D (36)
- and write the result as
e & o - ape(x) (37)
dx ’

where ¢ is a small parameter. The model (37) repre-
sents a totally singular problem in the theory of
singular perturbations, which can therefore be studied
in the so~called fast time scale, by defining

dx dx dx .
R T Te v I (38)
whereupon (18) becomes
x = - ADf(x) (39)

We now use (39) to study the behavior of x(t) given
thXa. To this end, we again assume that D = I, which

in effect implies that the tap ratio changes steps are
the same for all LTC's (or that D is absorbed in A).
This reduces (39) to
% = =~ Af(x) . (40)
It is now easy to show that using (40) we can
recover the results of Theorems 1 and 2. In addition,
we also prove the following stronger results:

THEOREM 3: Suppose A is such that there exists a Q>0
and diagonally dominant such that

ATQ +QA=P>0 (41)

Then (14) converges to Xa.

R
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PROOP: We first show that

V(x) = x(k)TQf (x(k)) (42)

is a candidate Lyapunov function for the discrete
process (14). First we note that if xeX , then f(x) =

0 and V(x) = 0. Second, for all x¢X , we show that
V(x) > 0. We have 8

- T . ° m
V(x) = x(k) Q(x(k)) 121 le xi(k)qufj(xj(k))

(43)
and so because |f1(xi(k))| =1 and
o n
l,ziqiij(”J(k))l < Jzilquluj(xj(k))l <
»
< 3§1|q13| < Hay, | (44)

The last summation over 3 cannot, therefore, alter the
) : n

sign of the expression qlifi(xi(k)) + jz.qijfj(xj(k))

with respect to the sign characterizing the term

ag,f,(x,(k)), and so the sign of each term in the

summation (43) over i {s the same as that of
qilxifi(xi(k)) » 0. Therefore, V(x(k)) > 0, and when

x(k)eX , then v(x(x)) = O.
Now, differentiating (42), we obtain

¥ = £l = - £0TAF() = = 3 £)T(ATQ + QWIE(x)
(45)

and so if condition (41) is satisfied V(x) < 0, and x
converges to x‘. N

S. STABILITY ENBANCEMENT

Our final result again resorts to the continuous
model. Suppose that A is not diagonally dominant, and

(AT + A) is not positive definite or that conditions
in Theorem 3 cannot be established for a given A.
Then we have no proof that x will converge to X‘.

Suppose, however, that instead of the decentralized
control law, a centralized control law is used. More
precisely, suppose

% = - Af(u) (46)

and
u = Qx (47)

where Q 1s as yet unspecified. This of course means
that certain linear combinations of all controlled
voltages is used to define the signal controlling the
LTC.

We now proceed to show that whenever - A is stable
we can select a positive definite matrix Q in (47) and
guarantee stability. Since Q > 0, take the Lyspunov
function to be

V(x) = £(Qx)T0x (48)

This is 8 positive function because f(u)Tu » 0 as shown
in proof of Theorem 3. Then




¢ - f(q”Tq;‘ locally controlling voltages V., and V.. Thus, this

3 5
example 1is .of sufficient complexity to discuss the
= £(Qx)QA£(Qx) main 1issues of ULTC coordination with decentralized
1 T T control strategies.
= -7 £(Qx) " (A'Q + QA)E(Qx)
(49)
@ 03,4
and taking Q such that - - E .
+aTq+qa=+p>0, (50) 3

it follows that 'V ¢ 0, and x converges to X . But
this means that if -~ A is Burwitz, and P {s a p‘ocitlve
definite matrix selected to guarantee a certain rate of

decrease of V(x), then Q in (47) should be taken as
the solution of the Lyapunov equation (50). Thus, the d J-é& 45
s

implications of this result are that if - A is Hurwitz,
even’'if the decentralized control law does not stabilize
the system, a centralized control law can always be
selected to guarantee convergence. If - A is not

Hurwitz, it is not clear whether there are even cen- Pigure 1. Ward-Hale Power System.

tralized control laws that will always guarantee con- -
vergence, and so this is an open Pyrobﬁm for which The standard I section equivalent model fi; tuns_
further research is necessary. In addition, it is mission lines is used [8]. For exnl:ple, i‘ i:e isr‘an
necessary to show that the same results essentislly necting nodes. 4 and 3 has an equivalent circuit g

hold for the actual discrete dynamics, where the in Figure 2.
finite step length is the major impediment to proving

analogous results as for the continuous model. In B - B}-
addition, it will be necessary to consider the effect 4,3 a @
of different duty cycles, which essentially reduce to @ (e - /
different sampling rates of different variables, but B :
it is not clear that these could be reduced to a con- t
tinuous model for qualitative analysis via, for 1
example, multiple time scales in singularly perturbded Bao 3* B(—z- - l) 330’1. =B - =)
models, and so this issue demands more research at the a a
modeling level.
=

6. AN EXAMPLE

Ths six bus Ward-Hale system [8) will be used to
illustrate the implications of our theoretical results. Figure 2. An Equivalent Line Model.
As can be seen from the one-line diagram of this
system, Figure 1, it contains two ULTC transformers,
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Its tap position dependent admittances are

) (s1)
B33
1
By,4 " BUL - ) (52)
11
P0,37 7D CE

Paruluter B represents the admittance of the line when
a = .

The reactive power - voltage constraints (1) in
this example need to be formulated for the load nodes
i = 3,4,5,6 and take on the form [6],[9]

n +k .
(32, - B¥ 2~ ] BV, -5 B VY 4Q =0
Y A AN T A T IEAC
[P (54)

where BU and Bi are the susceptance of transmission
line iJ and the shunt susceptance at bus i, respec-

tively. After the normalization by V, {6), the reac-
tive current becomes 1

. n +k
3 B, - BV, - ] B v-n): B v+Q—1-o
ject bogap 03 a0 80V

j#l (55)
where C is the set of nodes directly connected to node
i. The sensitivity matrix (-:%) required for the con-
trol coordination studies here takes the form

Q
Bl e . - -
(85,8 - = 9 by LY
3
9,
B LV e (R Y LM
x, . 0
wn . . . s .
Bis s (Igy8g = ) Syg
5
q
- - - -8, ==L
N Y Yo . Dyl P
o
(56)

Tap position dependent terms in the matrix (%) -
mij'i’j = l,.s.,m sre all along the main diagonal
except for terms

By, = By, (ay,) and By, = B (ag) .

With the numerical data given for normal operating
conditions [8), this matrix reduces to

r Q -}
3 7.8
(8.192 - ~2r) - 0 . o
Q
- L3 (a.ary o 133 L 2y ° -2
e w17y
3 3
2 Q
(’ig) - 0o - 0 (4.683 "ST’ -\—:'n
v 56
-3.3 3%
-, — o1& -
0 2,323 2 was 0-3-—1- &
56 Ve
- -

(57)

Similarly, the sensitivity matrix (%%)‘o here takes
the form
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Ry ]
ha,, g
o

? by, dag

('i%) 0 - ,QS :Q_:_ - [n“}
ha,, g
B B
a,, dag

with its elements n i = 1,2; § = 1,2,3,4 having

values 13’ ,
0, My, M, By, 1.5,
T el Topid T "7 (38)
3 9y, 9B3g 4 38y, o,
P12 " P22 " U3 "% "0 (39
v
L2185 o 2
ny, """"- 2 (V3 —.-;;) (60)
34 ‘
3,37, 61
n W aev—
2" 2
56
o w233 vy - Py (62)
w2 v
36

For nominal operating conditions a31‘0 = ,909 and
.560 = ,976, with all the other nominal values as
introduced in [8]. Under the decoupling assumption
co-ou = 1 for all 1,5 = 1,...,(n%k).

Matrix C defined in (2) for this system is

Tt oo0o0
c [0 0 1 0:] (63)
Based on thoénuul results presented in Sections
3 and 4, properties o f matrix A = 0(3-9)-‘(33) are
v coa 0

critical for the proper coordination of ULTC controls.

Earlier developed results {9),{10] give conditions
for matrix (-:—3') to be an M matrix (which {s positive
definite and thus - (-:—8‘) is stable). These conditions

are strongly related to the conditions that decoupled
Q-V network has a unique, physically meaningful solu-

tions. FPFrom (57), it is obvious that matrix (%,q) will

lose, for example, diagonal dominance properties
required by Theorem 1, if any loads are capacitive, but
still may be an M matrix, as long as the capacitive
loads are within certsin bounds. Simulations have
shown that this is the easiest way to destroy the
desired properties of the A matrix. Table 1 shows
results of simulations with different reactive power
demand. With an incressing effort in industry to
use more local capacitive control, this situation may
be very realistic. It is important to notice that
when the ULTC scheme does not converge (cases 4 and 5)




PN
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the uncontrolled voltages V6 and V6 are far below

acceptable voltage limits. The value of .50pu indica-
tes that this poorly coordinsted scheme might have led
to the voltage collapse, and confirms our proposition
that the coordination of the LTC controls has to be
carefully designed, to prevent the voltage collapse
phenomenon.

Results developed in Sections & and 5 give Just
sufficient conditions for the ULTC scheme to converge;
1f the conditions sre not satisfied, simulations show
that voltage collapse may occur. The more capacitive
controls implemented, the worse convergence of the LTC
scheme results. Also, Table 2 shows values of the
matrix A for cases presented in Table I. It is easy to
see on this (2 x 2) matrix that conditions of Theorens
1 and/or 2 are violated in cases 4 and 5, and as a
result, the ULTC scheme did not converge. It 1s {mpor-
tant to note that the complexity of checking these
conditions is significantly reduced since only the
nunber of directly controlled loads determines the
order of matrix A, in this case m = 2,

CASE MATRIX A' AT MATRIX A' AT THE |
NUMBER | THE FIRST ITERATION LAST ITERATION

i [ L4152 -.1143 -.0074 =-,1337 ]
~.1617 4883 -.1606 3530

11 .87291 -,0798 .8943 -.0304]
.0024 5480 .0129 5169

111 . .2527  -,0390 .3576  -.0380 ]
-.0789 .3162 -.0675 2932

v 1.416 2550 1.483 .1929 J
23363 1.660 23697 1.460

v .5885 -3,832 "1.2649 -,2733 ]
=2,124 =10.487 -.0941 -,0262

TABLE 2, Simulations Results.

7. CONCLUSIONS

In this paper, conditions are derived for proper
coordination of local voltage control tools, under load
tap changing transformers, in particular. Instability
due to LTC controls 1is shown to lead to the possi-
bilicy of either hunting or voltage collapse. This
paper 1is a drastic departure from typical studies
related to voltage collspse where a simplified single
generator, single load system is analyzed. The effects
of decentralized ULTC control are studied hare for the
first time. Rigorous mathematical conditions are
established which assure LTC operation which main-
tains voltages within the desired limits.

The established theoretical results give easy to
check conditions when capacitive controls may destroy
the LTC convergence scheme. With the conditions on

the matrix G%%) to be an M matrix satisfied, further
in order that the the
product A = C(%%)-l(%%) preserves the necessary prop-

studies are still required,

erties. These studies should lead to & variety of
combinations for controlling load voltages properly.
Further work is pursued in this direction.

Purther research {s necessary to show how the
developed results are affected by different duty cycles
of LIC's, which essentially reduce to different
sanpling rates of different variables.

And finally, simulations or larger realistic size
power systems should be conducted where the effect of
decentralization may be even worse.
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Discussion

Suri Vemuri (Harris Corporation - HCCD, Melbourne, FL): The predic-
tive stability analysis of ULTC is of vital importance in the coordina-
tion of voltage and Var problems. In this respect, the authors have
presented a timely paper of practical importance to academicians and

practiqing engineers. I would appreciate the authors’ comments on the
following points.

1) Matrix A directly depends on (3Q/aV) matrix (which is similar to
B’’ matrix in fast decoupled load flow (FDLF)). For predicting the
stability, matrix A has to satisfy certain conditions of the paper.
For A to satisfy such conditions, (#Q/dV) may have to satisfy similar
conditions. If so, this may explain why FDLF has convergence pro-
blems with low (X/R) ratio lines and long transmission lines with
very high charging susceptance.

2) For voltage control, transmission loss minimization problem may
include phase shifters in addition to reactive resources and ULTC’s.
How does the inclusion of phase shifters affect the predictive stabili-
ty analysis conditions of matrix A?

Manuscript received August 5, 1986,

Yasuo Tamura (Waseda University, Tokyo, Japan): The authors are to
be commended for their fine paper. They have solved slow voltage
dynamics by explicitly taking into account the discrete model of under-
ioad tap-changing transformers and given the theoretical basis for this
type of problem. Indeed, the decentralized scheme of voltage and Var
control has gradually been replaced by the centralized one in order to
avoid possible hunting between tap-changers and capacitor/reactor banks
in some utilities.
I would like to ask the authors several questions.

1) Has any voltage collapse been experienced in the USA, which was
caused by the mechanism described in your paper?

2) In the proof of Theorem 1, the diagonal dominance condition (17)
was used. This condition is part of *‘Gershgorin’s Theorem’* which
is used to roughly estimate the domain of existence of all the eigen-

: m
values on the complex plane. When |aji] > L |ajj| (i.e., less
S j=1

dominant), the accuracy of estimation is quite low.
Is there any trouble of similar nature concerning the convergence
of the sequence X(k), k=1, 2, ... during the solution of Eq. (14)?
3) Could you compare Theorems 1 and 2 from the practical viewpoints,
when the stable operation (or convergence) of local under-ioad tap-
changing transformers are 10 be examined?
4) Is the proposed method promising, when applied to power systems
of reasonably large size?

Again, I wish to commend the authors for their fine work.

Manuscript received August 11, 1986.

R. A. Schiueter (Michigan State University, East Lansing, MI): The
authors have derived a condition for stability using both a continuous
and discrete model for the effects of tap changers on voltage at load buses.
Four different proofs were developed to establish this condition using
the continuous and discrete model.

The condition that dQ/dV be an M matrix is certainly a fundamental
test condition for voltage collapse. If dQ/dV is not an M matrix (a non-
singular matrix with nonpositive off-diagonal entries where the inverse
has all nonnegative entries) then one is either experiencing voltage col-
lapse or one is close to experiencing voltage collapse.

The authors have not referenced a significant body of work that all
support the importance of this fundamental test condition. The paper
{1) derives the identical condition based on a continuous time model for
the effects of tap changers on voltage at load buses and then proceed
to drive operating constraints to assure dQ/dV is an M matrix. The papers
[2-4) show that if a reduced Jacobian SQLV (sensitivity matrix) is an
M matrix then the effects of excitation controls, capacitors, as well as
tap changers will insure stable control of voltage at load buses. The sen-
sitivity matrix [2-4] condition is a stronger condition than the one derived
by the authors and has been applied to several voltage controls and not
just tap changers. A condition similar to dQ/dV being an M matrix was
also presented as one of four voltage stability test conditions presented
in {8].

The paper [6) showed that the condition of SQp v derived in [2-4]
will cause a static bifurcation of the transient stability model and lead

881

to multiple load flow solutions. The paper [7] showed that if a static
bifurcation exists, the region of stability of the transient stability mode!
becomes small or disappears.

Voltage stability and controllability at load and generator buses was
defined in [9] and it was shown that for a system to be voltage controllable
four ungit_ivity matrices must satisfy certain conditions. The conditions
that sensitivity matrix SQL v be an M matrix was one of these conditions
and was shown to be related to the conditions placed on the other three
sensitivity matrices SVE, , and E.

This significant body of work all supports and significantly supplements
the authors’ derivations of the condition on dQ/dV.

It is my belief thai the true fundamental cause of voltage collapse is
the singularity of the Jacobian as indicated in {6} and [9]. The effects
of this singularity will be observed in a dQp /dV| and in sensitivity
matrices SQf V, SQGE. SVE. and 1 where V and E are the voltages
at load and generator buses, respectively, and QG and QL are the reactive
power injections at generator and load buses, respectively. I further believe
the proximity to singularity of the Jacobian is a test for voitage collapse
that can be applied to either a load flow or to a time step within a transient
;ubili;y simulation. | would appreciate the authors’ comments on this

ypothesis.
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J. Medanic, M. Dic-Spong, and J. Christensen: The authors greatly
appreciate all the valuable insights provided by the discussers, We respond
as follows.

Y. Tamura

1) We are not aware that a voltage collapse experienced in the USA
was caused by the mechanism described in the paper. This is not
possible to discern as the documentation on blackouts does not
ensble such verification. However, numerous discussions regarding
voltage “*hunting’’ with engineers from the different utilities sup-
port the belief that the coordination is not always proper and by
extension in more extreme cases could lead to unity with voltage
collapse.

2) Our experience in working with the voltage-var related theoretical
proofs has been that the diagonal dominance condition may be too
restrictive. The existence and uniqueness conditions for the voltage
solutions are primarily based on assuming that the M-matrix con-
ditions are satisfied. With this relaxed condition it is believed that
the convergence of the sequence X(k) does not experience any trou-
ble. However, a rigorous proof for this is not available.
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3) Theorem 2 would be less restrictive from the practical viewpoint.
It is known that the diagonal dominance condition of the reactive
power load flow equations does not hold. More physical insight
needs to be gained regarding conditions in Theorem 2, but it is felt
that they are strongly related to the class of M-matrices.

4) The proposed method is general, for any size of the power system.
More work is needed to develop computer algorithms for testing
the stated conditions on larger systems.

S. Vemuri

The first point relates to the desirable properties of the (decoupled)
Jacobian matrix (3Q/aV) for the coordination scheme to work. It is cor-
rect that the low X/R line ratio and high charging susceptances easily
destroy these properties. Moreover one has to be careful in designing
voltage support with both LTC transformers and capacitor banks. A limit
exists above which capacitors counteract the effect of the transformers.
Much is elaborated on this in, for example, [1}.

Next, the inclusion of phase shifters effects to be studied further for
more than one reason (such as changed properties of (3Q/3V), validity
of the decoupling assumption, and the validity of the linearization of
the load flow equations).

R. A. Schiueter
The discusser lists some of the recent literature on the voltage-related

problems. Ref. [9] was not availabie to the authors. The state of the art
in this area is such that different aspects of complex voltage-related

problems were addressed in separate papers and all actually diffuse the

full picture of what is occurring in the physical system. In this spirit,
in this paper, in order to focus on the slow discrete dynamics due to the
operation of LTC’s (not just their presence) it is assumed that the
continuously operating loops are stable and faster so that a steady state
is reached before the next discrete action caused by LTC operation. As
such, it is different than the work reported in [2).£3).14),(6], or [7],
although this may not be obvious. The results in [6) are relevant. If,
hewever, one considers the slow-dynamics via the coupled active and
reactive power flow equation, then nonsingularity of the full Jacobian
is a necessary condition but not sufficient for convergence, and so for
good coordinated slow voltage control. Therefore, while the discusser
believes that previously obtained results are more general, we actually
believe they are not because the reduced Jacobian need not be an M-matrix
and the fact that it is sufficient for it to be a stable matrix (with negative
diagonal element) as far as we are aware was not known previously.
To sum-up, this paper only offers the conditions under which the decen-
tralized voltage control could destabilize even otherwise stable natural
system’s response—the fact not realized earlier in the literature.

Manuscript received March 17, 1987,
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