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1. Introduction

Transmission provision for the electric power industry under restructuring has become one
of today’s hottest topics. System users are concerned with grid availability as they establish
power trades in the electricity markets. System providers, on the other hand, are concerned
with transmission system reliability. A transmission provider is asked to provide short-
term access to the power spot market participants at the rate at which these markets evolve,
typically only one day ahead. In addition, new power plants often request longer-term use
of a transmission network. The problem of transmission system expansion necessary to
serve probable market requests which evolve at different rates is a very difficult theoretical
and practical problem. At the same time, the main responsibility of a transmission provider
remains keeping the system intact continuously.

This need to simultaneously serve short-term market requests and to make commitments
-to new entrants for future system use is hard to meet with presently available computer
methods. At present, industry tools for transmission system planning do not allow a view
of the problem as one of dynamic optimization under uncertainties with well-posed long-
term performance objectives. Most of the methods are either useful only for short-term
optimal use of the network, like deterministic optimal load flow, or are long-term p]anmng
methods not capable of optimal scheduling in short-term operations.

This paper concerns several fundamental problems related to transmission system op-
erations and planning in a competitive power industry. The network plays a basic co-
ordinating role in this otherwise decentralized industry. Coordinating signals could be
implemented as technical- and/or price-feedback over various time horizons from short-
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term operations to time horizons over which physical, financial and planning processes are
interwined. ,

In the first part of this paper; we pose the composite problem of operations and planning
for the regulated electric power network as a single stochastic optimal control problem.! The
decomposition of this complex problem into more manageable subproblems is introduced
next. Transmission architectures which enable partial coupling of these subproblems lead
to near-optimal long-term transmission system provision.

In the second part of this paper, we pose the problem of transmission provision in the
competitive industry arid review the objectives of a transmission provider. We introduce a
transmission provision and pricing scheme which relaxes commonly made assumptions of
short-term perfect market conditions and grants a coordinating role to an independent grid

- operator. The operator allocates non-firm transmission capacity on a long-term basis and
manages short-term.use of the grid, based on the operator’s estimation of the arrival process
of requests for transmission capacity. In this dynamic allocation of non-firm transmission
capacity, a provider uses knowledge of existing transmission contracts to optimally invest
in transmission capacity. :

Finally, the paper re-visits the composite operations/planning problemin light of possible
algorithmic approaches to transmission provision under open access. In particular, amethod
for predicting long-term system conditions using a probabilistic optimal power flow-based
approach is introduced as an essential tool for long-term decision-making. Next, we show
how this method could be used by a system provider to design menus for selling priority
service of different firmness for next season use. Once the menus are in place, it becomes
necessary to make short-term decisions concerning the iradeoff between denying new short-
term requests for using the system or paying back the owners of priority service for not
being served. This problem is posed as a dynamic programming problem that needs to
be solved, keeping in mind the cumulative effects of short-term decisions over the entire
season.

2. Transmission System Operations and Planning as a Single Stochastic. Control
Problem '

As the industry restructures, it has-become necessary to start by formulating the coupled
operations and planning problem. While it may appear that it is sufficient for a system
operator to manage only short-term transactions optimally and not have -any systematic
decision-making approach to expanding a transmission system, we argue in this paper
that the uitimate longer-term benefits of electricity users will be hard to ensure in the new
industry without an approach which links short-term transmission operations:and investment
decisions. In this section, we consider the problem of optimal transmission provision as a
single stochastic control problem comprising short-term decision-making and planning.
As a rule, any real-life transmission network is likely to be congested for some load
patterns and certain equipment outages. A theoretical formulation of transmission system
operations and planning as a single decision-making problem capable of quantifying the
cost tradeoffs between using more expensive generation to supply load demand under the
transmission constraints or enhancing the system design is not available at present.



DYNAMICS OF TRANSMISSION PROVISION ‘ 353

In this section, we propose one possible formulation of the composite operations and
planning problem for the regulated electric power industry. The problem is posed as a
stochastic optimization problem with the system-wide objective of minimizing the total
expected operating and investment cost of meeting the uncertain demand.

Notation:
K ,T(t) is the amount of installed transmission capacity for line [,
K S (#) is the amount of installed generation capacity at node i.
I,T (¢) is the rate of investment in transmission capacity for line .
I,G (¢) is the rate of investment in generation capacity at node i.
cl 7y, l,i, 1) is the cost of investment in line /.
CP(KE, 1Z, 1) is the cost of investment at node /.
P;(#) is the production at node: i,attimet; Pg(t) =[Pit): - Po(1)}
¢;(r) is the cost of this production, excluding capacity costs.
Py, (1) isthe uncertain (uncontrolied) load at node j attime?; Py, (f) = [PLi(t) -+ P, (D))

Fi(Pg(t), PL(t)) represents the flow on line. as a function of generation and demand
system inputs. : :

A(r) is the spot electricity market price at time 7.

p is a discount rate.

2.1. Problem Formulation

Consider an electric power system with n nodes whose net generation/demand is control-
lable and the remaining ad nodes whose power injections are uncertain load demands.

Historically, utilities have viewed load demand as uncertain system input; various fore-
casting methods have been developed for forecasting hourly, daily, weekly, seasonal and,
to a lesser extent, annual cycles in load demand changes. Power system operations and
planning were carried out with the main objective of supplying this forecasted demand.
Without loss of generality, we formulate the control problem by representing the uncon-
trolied portion of the load as an uncertain disturbance P.(#), and the controllable portion
of the Joad demand (including its responsiveness to-change in the price of electricity) as a
negative, controllable, generation.? The representative load demand characterization and its
periodicities are shown in Figure 1 (FERC, 1999). The corresponding cumulative proba- -
bility (load duration-curve) is shown in Figure 2. Based on these figures, one can observe at
1east three periodicities relevant for our problem formulation. Depending on the optimiza-
tion period T of interest, one can model demand as a diffusion-type process characterized
with different load duration curves (probability distribution curves).
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Figure 2. The load duration curve constructed from NEPOOL data of 1997.

For instance, if one is, interested in the short run demand, e.q., honrly load fluctuation
Plow_ the Joad demand model could be represented as a diffusion process of the form
(Delebecque et al.; 1978; Delebecque et al., 1981):

dPI°"" = B(z, P} )dt + o dW, )

Similarly, the diffusion model for seasonal demand-could be modeled as:

d P = éﬁ (E, szwn) dr + " %o' dw, 2

where & = .
The coordinated operations and planning problem is a combined problem of short-term

generation scheduling and investment in new generation and transmission to balance load
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demand deviations mnging from hourly thiough seasonal and long-term, and do this at the
lowest cost. A possible mathematical formulation is as follows: '

T
i 8{21 / e (e, @)+ CE(KE W), I5(®), ) dt
i Yh
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The optimization period, T, corresponds to the Jonger of two time intervals over which
the generation or transmission investments are valued. A(t), KS() and K[ (1) are state
variables. The control variables are the rate of investment in transmission capacity 7@,
the rate of investment in generation capacities /Z(), and the injection of power at each
node Pg(t). The uncertain portion of the load at nodes j is disturbance inputs PL(f) =
(Py, @)+ Pp,,(#)). The control is bounded by the set of constraints described above. A
set of Lagrange multipliers is associated with each set of constraints.

Note: In this formulation, the process of balancing total generation and demand is rep-
resented with consideration of evolving electricity spot markets, and it assumes that the
market clears at the (economic) equilibrium. In this sense, (5) represents a sequence of
daily spot market equilibria, This highly simplified formulation is used o stress the fact that
even the daily market-clearing process should be viewed as a dynamic process in composite
operations and planning decision-making, see (Visudhiphan et al., 1999). The effect of
longer-term bilateral transactions taking place outside daily spot markets is modeled as a
more slowly evolving process, as described in the later part of this paper devoted to the
more complex industry forms under restructuring.

This problem formulation, in spite of its apparent complexity, captures many well-known
trade-offs relevant for the efficiency of the power industry. First, the discount rate reflects
the time value of money. Everything being equal, it is better to spend money now than later. .
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Thus, the investment timing balances the trade-off between the costs and benefits over time.
Second, this formulation shows that different technologies at different locations can be used
to produce power. Thus, for a given load duration curve, the ratio between variable costs
and capacity costs for each of these generation resources determines the optimal pattern
and mix of generation. Third, generation capacity can be substituted for transmission
cdpacity. The main trade-off, of interest in this paper, between saving on generation costs
and investing in transmission capacity is also encapsulated in the problem. The level of
transmission capacity is not based on the maximum yearly flow. A trade-off between the
costs of congestion and the costs of transmission capacity must be considered. Finally, the
problem stated above is an uncertain problem. The stochastic formulation reflects the value
of flexible investment under uncertainties.

22 Temporal Decomposition of the Problem

Possibly one of the most difficult tasks in developing effective software tools for transmission
provision in the future is thinking about the problem as a stochastic dynamic problem
evolving at vastly different rates. The very question of conditions under which the single
problem can be decomposed into simpler subproblems when the objective is the long-
term optimization under uncertainties subject to-short-term operating constraints makes
this problem a singularly perturbed stochastic control problem (Bensoussan, 1981; Khalil
et al., 1984). Establishing this formulation is potentially helpful to define these conditions.

The relevance of particular subproblems of interest could be understood by addressing
questions discussed by the industry and the regulators. The anticipated load pattem is
met differently depending on which industry structure is in place. For example, in an
industry which allows long-term bilateral contracts between load and power suppliers,
real-time operations concern only adjustments of power produced and consumed around
these patterns, so that short-term load variations are compensated; this is done without
violating transmission system constraints.> On the other hand, in a power market in which
all power supplied and consumed must be traded on daily basis, short-term -operations
concern generation scheduling to meet the entire demand, including its Jonger-term trends
and short-term deviations simultaneously.

In this paper, we discuss transmission provision problems under the: assumption that
a portion of the load is supplied through longer-term, pre-committed bilateral contracts
(since at present there are no mature long-terin markets for. trading electricity; they are
being formed), while faster variations are managed through daily electricity spot markets.
In this case, the long-term bilateral system users often require an' ex anie guarantee (a
transmission “right””) that they will be able to use the system in the future according to
pre-specified conditions and independent from actual system conditions.

The coupled operations and planning formulation is obviously complex because it poses
operations and planning as a single optimization problem evolving at the same time ¢. In
reality, however, the process of scheduling supply to meet demand in operations typically
happens much faster than the rate at which investment decisions are made.

"This observation is the basis for solving the two subproblems as if they were decoupled.
To formally introduce these two subproblems, assume without loss of generality that the
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short-term (daily or hourly) decisions are made each hour [kTy], and investment decisions
are made each season [n 75}, andk, n = 0,1, ..., where Ty = Iﬁb The problem defined in
(3)~(5) can then be re-stated as an optimization problem subject to multi-rate discrete-time
processes using techniques introduced in (Haddad et al., 1977). The objective function (3)
takes on the form

*
min & Zie""""(cl(kTu.P:[kTu], kTuD
1 inTs), 10 InTs), Pk Ty) raly >

%
+Y ) e TICE (KO inTs), IS InTs), (nTs))
i n=0

% .
+) > e PTICT (KT [nTs), I [nTs), [nTsI)} (6)
I n=0 co
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F(P[kTyl, P, lkTy)) < K[ (nTs): mlkTy)
PlkTy) < KPInTs): oilkTy) =~ (N
n nd
Ak + DTy) = ATyl + Cgor (Z PLkTz) - PL,[km) . ®
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This problem can be interpreted as a stochastic optimal control problem for a dynamic
model in a standard discrete-time singularly perturbed form (Haddad et al., 1977)

ll;ll‘l'i‘g Jr(ug, ug, w) 6]
. éubject to
dx = g\(x,us, w)dt
dz = g(us, w)ds ’ (10
and
h(ug, x,w) <0 ' an

where x = [K[ K1,z = A up = [Pg), us = [I] IF)and /o dw =d Py ~ B, PL) dt.
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Observe that the slow and fast variables are coupled primarily through Joad demand
(disturbance) dynamics. The multiple periodicity of the load demand sets the basis for
separation of planning and operations objectives in the regulated industry. Planning is the
process of controlling the rate of investments in transmission and generation, 7 and I°
respectively, so that load demand evolving over longer-term horizons (seasons and longer)
is served at the lowest possible cost. (This is done assuming that generation/demand
scheduling in operations will be a stable process.) Similarly, controlling use of available
generation Pg in real time operations (hourly and shorter) is done to meet anticipated hourly
demand at the lowest possible cost. The ultimate objective is to minimize the cost of both
investments and operations while meeting the uncertain system load demand Py (t). The
theoretical conditions under which the two subproblems are separable and the implications
on suboptimality of Jr havenever been studied. '

In what follows, we first describe the zero-th order (decoupled) short-term and long-term.
stochastic control subproblems for the regulated industry. Next, in section 2.3 we show
that much-debated nodal pricing as a proposed means of short-term congestion pricing is a
result of solving the fast control subproblem in the near-optimal composite control of the
coupled operations/planning problem.

A computationally simpler version of deciding periodically (once aseason, or once a year)
about pricing for transmission for the next season so that at the end of the period along-term
optimal investment is made is posed in section 2.4 as solving the slow control subproblem
~ of the fully coupled operations/planning problem. We point out that a stochastic peak load

pricing for transmission approach is equivalent to solving this slow control subproblem

(Leotard, 1999). : , -
Much the same way as in any other composite control design for singularly perturbed
"systems, one could study the conditions under which solving two subproblems makes
sense. Moreover, inherent in solving the slow control problem is the optimal solution of
the expected fast control problem over the eatire time horizon.* The point is made that,
by viewing the composite operations/planning problem as one and decomposing it into
simpler dynamic decision subproblems under relatively unrestrictive conditions, a near-
optimal transmission may be possible.’

2.3. Short-Term Coordination: Fast Control Subproblem

The composite operations/planning problem formulation is used next to pose the objec-
tives of short-term transmission operations and planning as two decoupled near-optimal
subproblems evolving at significantly different rates.

Assuming that network and generation are given over the entire T, a zero-th order fast
control subproblem becomes a decision-making process about which units to turn on and
off and how to adjust the power generated in short-term operations.

In this section, we focus on the short-term operations of the daily spot power market. This
sub-problem formulation directly follows from the composite optimization problem under
the assumption that -ng- & 1. The network topology- and parameters, K[ {nTs), as well as

generation plants, K ©[nTs), are given. Assuming furthermore that the daily power market
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is at its moving equilibrium (each day there is enough generation to meet load demand
and power is sold at the optimum clearing price A(¢)), a short-term operating optimization
problem is the problem to:

t=f

Jmin £ }f §c,(ﬂ[kru1, PLIKT4]) (12)
subject to the constraints:
n+nd
D Hu(PlkTy) = PuIkTw) < K[(nTs): pulkTy)
fu=}
- PlkTy) < KCInTs): 0,[kTy) a3
Mk + DTy} = MATy) + Copo (Z PkTy] - Z PL,[an]) 4
im=l J=l

Here, a simplified DC load flow approximation is used to express line flow constraints. H is
the matrix of distribution factors (Kirchmayer, 1985) and transmission losses are neglected

This problem is also a stochastic control problem; a fast control (decision) variable is
the controllable power injected into individual network nodes in response to very fast
random fluctuations in load demand given in equation (1). This problem is a dynamic
control problem which could be solved using various computing methods (Bertsekas, 1995;
Bertsekas et al., 1996).

Presently used tools for short-term operations are deterministic approximations which are
static tools. This problem is typically solved as a static optimization problem each [kTy]
assuming P [(k + 1)Ty] given for the next hour and opnmlzmg generation, Pol(k + )Tyl
to meet it at the lowest possible cost. This problem is known as the optimal power flow
.(OPF) problem. The result of solving the OPF problem is given as:

L
dei(t) _ A = 3" Hyw () (15)

pi(t) = PO 2

The symbol A represents the price of power at the chosen arbitrary (slack) node. The
term Z:,"_, Hyy, where L is the total number of transmission lines, reflects locational
differences in optimal prices. Even though y is always positive by definition, the term
3 Hyy can be positive or negative. The value of A and the distribution factors matrix
depend on the choice of the arbitrary slack bus. However, the value of nodal prices p; and
of gy are independent from this choice. The term u,; represents the marginal value of the
existing transmission capacity of line I. In other words, it represents the increment in total
cost that would result from a unit transmission capacity upgrade. This value is equal to
zero, as long as the line is not congested, and becomes strictly positive when the flow on
line ! is equal to the capacity K;. These formulae provide the basis for the so-called nodal
or locational based marginal cost (LBMC) transmission pricing (Schweppe et al., 1988).
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2.4. Long-Term Coordination Subproblem: Optimal Inve&'tment

Assuming that real~ume optimization can be decoupled from the investment problem, con-
sider the more complex, less studied, issue of optimal investments. Generally speaking, the
notion of investment is inherently inter-temporal (Caramanis, 1981). By investing a fixed
amount of money today, the centralized utility reduces its costs over time. For this reason,
uncertainty issues are at the heart of investment theories. The basic existence of risk is taken
into account through the choice of the discount rate p: the more uncertain future pay-offs
are, the higher the discount rate and the tower the optimal investments.

To pose the investment problem as an-active risk management problem, we view it here
as a slow optimal control subproblem of the coupled operations/planning problem given in
equations (3)~(5) as follows:

§ Pl’;T] :
I,’lkT?ll.lI',“’IkTslg [ IZ 2 e (c:[kTp}, AIkTED
%
+ 303 e ICE KET, 101nTs), InTsD
»>»

+ZZ§ e=PTICT (K InTs), I InTs), [nTs])] (16)

subject to:

K[+ DT5) = K] [nTs)+ I [nTs)Ts
KPln + DTs) = KPInTs) + IS InTs)Ts

i nTs)
18[nTs)

v

an

v
(=

2.4.1. Relation to Stochastic Peak-Load Pricing for Transmission

" Drawing from the work of Kleindorfer and Crew (Crew et al., 1979), a definition of an
optimal grid in a static and deterministic set-up was introduced in (Lecing, 1996; Lecing et
al., 1997). Knowing the cost functions of generators and demand function in the future, it
is possible to define the cost functions i (¢, P;), as well as the total cost function, as time
dependent functions.

At¢ = 0, investments in transmission capacity are made to minimize both the dnscoumed'
costs of generation over the planning horizon and the initial cost of investments. If T
is a planning horizon and p the appropriate discount rate, then the optimal transmission
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investments K] result from solving the following optimization problem:’

T . - L
min s{f e TCU, K], ..., K])dr + ZC,T(K,T)} (18)
0

T SN ¢4 -

subject to K; > 0 where the total cost function is defined by:

TCW KT,...,KD) *-ml'an,(t P) , (19)
=)

The novel aspect of transmission pricing as a feedback design problem for a-dynamic
system driven by uncertainties evolving at various rates can be interpreted in the context of .
this basic problem formulation. An ex ante probabilistic peak-load pricing for transmission
introduced in (Leotard, 1999) as one possible way of evaluating the tradeoffs between using
more expensive gereration or expandmg the transmission system has the same formulation
as the long-term coordination problem described here. This formulation leadsto a possible
notion of an optimal transmission grid as a system in which the expected cost savings in
long-term generation cost cannot be larger than the cost of investing in the transmission
system upgrades (Lecing et al., 1997),

It is important to notice that this definition is probabilistic even for normal operaung
conditions if the equipment status is as designed. It further depends on the initial conditions,
that is on existing transmission at the time new investment is considered (Lerner et al., 1997).
1t is also a Jong-term notion because, for the expensive transmission equipment to pay off,
the long term savings on the cost of generation must be analyzed. The longer time 7" over
which the investment in transmission is assessed, the more expensive equipment can be
justified. On the other hand, the prediction of load demand trends far into the future as
well as the trends of the fuel costs become less accurate. In addition, the new generation

- investments are highly uncertain over prolonged future periods.

The investment problem is inherently a stochastic control problem. The evolution of the
random variables is modeled through a stochastic process and the investment decisions are
made based on the expected Jong-term costs. Contrary to the stochastic model referred to
in the static optimal grid model, the investment planning problem is now characterized by
inter-temporal considerations. In particular, the tradeoff between reduction of costs and
flexibility of investment is at the center of the following model. This model draws on the
ideas in (Dixit et al., 1994).

3. Unbundling the Power Industry into Transmission Service and Its Users

In the remainder of this paper transmission provision for the newly evolving industry struc-
tures is studied. In a deregulated industry the objectives of newly evolving generation,
transmission and distribution businesses are generally different and often conflicting; this is
in sharp contrast with the principles of transmission provision in a regulated industry, which
have been established to serve system-wide generation/demand patterns, and not individual
users. This requires decomposing the single optimization problem of a regulated industry:
into subproblems with decentralized objectives. The main objectives of power producers
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are introduced in (Guan et al., 1999). This paper stresses the role of transmission. For this
reason, a basic novel formulation of a transmission provider’s objective and the relation of
this objective to the system-wide optimal performance is introduced in this section. The
sub-optimality issues and the minimal coordination of these separate objectives necessary

" for near-optimal system-wide performance need further studies in view of the proposed
industry structures. : '

The basis for creating a power market is that market participants (generators, loads), by
maximizing their individual expected profit or utility, will optimize total cost(social welfare):
in the same way as integrated utilities did. The main guestion to address in this section
is whether the same concept can be developed when transmission capacity constraints are
accounted for. .

To answer this, consider the certainty equivalent problem to the integrated utility problem
(3)=(5). Uncertain parameters are replaced by their expected values first. The solution to
this problem can be formulated by introducing the following Lagrangian:

T
3 / e P+ CEKE @), I° @), D) dt
i t

1’ .
+y f eICT (KT ), If (), D) dt
(R4

T
+ / [Z a)(KS = i) + M0 (Z LHOEDY P:(t))
o i J i .

+ Y mK] = Y Hu(Pi0) - PL,(r»] dt (20)
[} [X'] ' ’

The terms in this Lagrangian can be rearranged in order to decompose this single opti-
mization problem into several simpler optimization sub-problems. If the values of 1)
and A(¢) (transmission and electricity prices) are given, the simpler optimization problem
at node i:

max AR + ) mOHP®) di
(R !

-/ "G P@ + CEKE®, 180, ndt @1y
subject to: )
ﬁ‘%ﬁ = 150) @
1fz0 ' 23) -
P < KF o) 9

The task of a coordinator is to set the trajectories of the investment rate and the dual
variables ; (t) and X(¢) and to ensure that those values are consistent with the the_rmal line
constraint (4) and the balance equation constraint (5). ‘,
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This minimization subproblem can be interpreted very simply. If A(#) is the price of
energy and p4;(¢) is the price of transmission service line by line, then the objective function
in this optimization subproblem is the difference between revenue and costs: profits. Thus,
by imposing the proper prices for energy and transmission services and ensuring that the
investment policy in transmission will be adequate to accommodate the pattern of flows,
the grid operator can control the entire problem and induce the profit maximizing entities
to choose the optimal amount of net injection. :

The variables A(f) and u;(r) act as coordinating variables for the dispatch of power.

At this stage, we are one step away from a true competitive market for generation since
the price of energy A(#) in the above framework is still imposed by the coordinator. We will
assume that this price will result naturally from information exchanges between generators
and consumers and that it will obey the law of supply and demand. The entire optimal control
problem(3)—~(5) then reduces to the choice of transmission prices j4;(t) and capacities K ,T ).
It is important at this stage to consider these two decisions as mutually dependent. Thus, a
transmission pricing scheme cannot ignore the investment policy and the investment policy
should be dependent on the amount of congestion on the grid.

The main issue in this formulation of transmission pricing as a coordinating activity
resides in the information structure of the problem. Not only is a transmission provider
unable to predict with perfect certainty the future values of demand, but he does not know
the cost structure of generators. The transmission industry should thus be structured in a
way that enables the incorporation of this information in the appropriate time frame.

In the short-run, the prices of transmission services must be set in accordance with
existing transmission capacities, whereas in the long-run, capacities are adjusted in order
~ to accommodate the long-trend dynamics of the system at a minimum cost.

"The above decomposition of objectives assumes generation capacity issues are handled
in a decentralized way by profit-maximizing generators. However, transmission constraints
are hard to handle in a decentralized way since they appear in the objective function along -
with the matrix H (equation (4)). The optimization function is no longer separable. This'
explains why these constraints have to be handled through.a coordinating mechanism similar
1o the power price mechanism. Nevertheless, near-optimal transmissijon provision could be
posed (McGuire, 1999), and further work is needed toward such solutions.

4. Static Congestion Pricing as a Means of Short-Term Coordination

Inthe new competitive market for power, each market participant tries to maximize its profit.
The existence of a single price for power, A(¢), seen as a coordinating variable, ensures that
during each period, the forecasted generation output balances the expected load. This market
mechanism performs the minimization of generation costs ina decentralized way. However,
the optimal power flow program performed daily by integrated utilities not only includes
the power balance constraint but also accounts for the transmission capacity constraints.
These additional constraints cannot be handled individually by each market participant and
create the need for new forms of network coordination: i.e., congestion management.

If market participants are ultimately to be responsible for the choice of their generation
output or consumption, short-run prices of transmission services, .(#), are the only control
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variables left to ensure that the system operates within the constraints at the minimum cost.
Ideally, transmission services should be priced in the short-run at their marginal value in
order to achieve this objective. This pricing can be made explicit by charging exogenously
for each transaction on a locational and temporal basis (Hogan, 1992), or it can result from
the interaction of demand and supply for transmission capacity in a competitive way by
auctioning transmission rights (Chao'et al., 1997), or it can be interpreted as an opportunity
value when firm transmission rights are pre-allocated to market participants.

4.1. The Pool-Co Model

The Pool-co pricing scheme was introduced by Hogan (Hogan, 1992). The existing manda-
tory power pool implemented in England and Wales is directly based on this concept.

Market participants bid their supply curves and the market maker simultaneously dis-
patches power and allocates transmission capacity using the same OPF used in a vertically
integrated structure. The one exception is that the costs functions are replaced by market
" bid functions. In this way, power and transmission capacity remain bundled. Competition
among generators gives thém the incentive to bid their marginal cost curve. Likewise, under
the assumption of elastic demand, loads bid their marginal value curve.

4.2. Tradable Transmission Rights

The concept of tradable transmission rights was introduced by Chao and Peck (Chao et
al., 1997). According to this scheme, the ownership of a line is split into transmission
rights. Those rights can be traded freely by their owners. The link between the market for
transmission rights and the market for power at one arbitrarily chosen node is established by
forcing market participants to buy the quantity of transmission rights that corresponds to the
- amount of flow each of their transactions is causing. These trading rules for congestion man-
agement enable the incorporation of the externalities associated with the use of congested
transmission lines. Counterflows create new transmission rights, eligible for trade.

The price of power and the prices of transmission rights evolve in accordance with the law
of supply and demand: the price increases whenever the residual demand is positive and
decreases otherwise. By making the strong assumptions about the shape of the cost func-
tions, the pricing process can be shown to converge toward a unique equilibrium (Wellman
et al., 1998).

" Inthis scheme, the role of the grid operator is limited to making sure that all transactions
comply with the trading rules. He does not play any role in the trading process.

As argued in (Oren, 1997), the active role of the transmission owner could bring the
price of the transmission rights closer to its value and thus mitigate the incentive for market
participants to appropriate the rent.

For interpretation of tradable transmission rights and power as the only components ofa
multi-product economy and general equilibrium dynamics conditions under perfect market.-
assumptions, see (Chao et al., 1997; Leotard, 1999).
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Figure 3. Real-time transmission pricing.

5. TPossible New Dynamic Pricing Schemes for Transmission

In this section, we consider some new models for transmission pricing, recognizing that
. perfect market conditions do not always prevail.

5.1. Real-Time Transmissioﬁ Pricing

This congestion management scheme rests on the interpretation of transmission prices z4;(r)
as control variables and recognizes the existence of dynamics in the market reaction to price
changes. Market participants do not always react immediately to price changes. There exist
some information delays.

Through the setting of transmission prices i (1), a transmission provider controls line
flows, Fy(t), and ensures that they remain below the maximum allowable limits. Thus,
transmission prices are changed in real time in order to influence the energy trading process.
However, as emphasized in the previous sections, parameters for demand functions.are not
known to a transmission provider, making the optimal control even more difficult than when
solving the coupled stochastic control problem in a coordinated industry.

The Objective Function

The objective function of a transmission provider is to minimize the value of unused trans-
mission capacity, while leaving transmission flows below the maximum transmission ca-
pacity value:

7 .
min€ {/ wi(t) (KT (0) = Fi(0) dt} 25)
0

[10)]
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This term is always positive and it can be made equal to zero by either setting a price equal
to zero or adjusting it so that Fi{t) = K| 7 (#). These conditions correspond to the optimal
pricing conditions.

The price-setting problem can then be stated as a stochastic optimal control problem.
Some parameters of the problem, in particular the market dynamic parameters, are unknown
but can be learned by a transmission provider.

Because of the dynamics in market participants reactions, the optimal prices will not
result in transmission flows equal to transmission capacity when prices are strictly positive.
Instead, transmission flows will remain below maximum transmission capacity.

5.2. Dynamic Allocation of Non-Firm Transmission Capacity

We introduce here a new scheme for the dynamic allocation of transmission capacity. Market
participants have expressed the need for the possibility.to secure early transmission rights.
Such concern is taken into account in the concept of tradable transmission rights (Chao et
al., 1997). In contrast with tradable transmission rights, a transmission provider plays a
central role in the scheme we introduce here. He has the responsibility of allocating and
pricing ex-ante transmission rights for each period in the future. These transmission rights
are not tradable on a secondary market.®

We assume that a transmission provider at each period posts prices for the use of the
transmission grid in the future. However, in order to achieve ex-post optimality and to
cope with short-term uncertainties, these transmission rights are not firm. Several classes
of transmission rights co-exist and have to be priced consistently.

Through prices, a transmission provider controls the rate of arrival of transactions on the
system. In real time, the transmission provider controls the use of the system and effects
which transactions have to be modified.

In essence, this transmission scheme proposal builds on both the real-time pricing and
priority service (Chao et al., 1987). The spot price for transmission lines is thus set in
real-time by a transmission provider as a function of real-time requests for the use of the
system and curtailment of non-firm transactions.

This arrival process is represented in Figure 4. At time ¢ several transactions request the
use of the system in the immediate or remote future at different levels of priority firmness.

At time ¢, a transmission provider posts the price for point-to-point service for different
dates T in the future. This price also depends on the level of priority firmness. This

“Jevel is represented by the amount of money a transmission provider will reimburse the
transaction in case of non-implementation. The higher this amount, the higher is the
probability of implementation. Let us denote by Py;(r, T, pij) this price. The price for
multi-period contracts such as these represented in Figure 4 is the sum ],T' Py, T, wiy)dT.
For each period (¢, T) and each class of priority p;j, there is an associated probability r;; of
implementation. Even though a transmission provider does not commit to this probability,
it can be advertised so that transactions can make their choice.
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Figure 4. Typical dynamics of requests for transmission use.

5.2.1. Self-Selection

Similarly to priority service (Chao etal., 1987), a transaction of value v will expect to make
a profit equal to vry + py; (1 — ryy) — Pyy. The optimal choice of the transaction is thus
characterized by: ’

1 dPU dr;, . ) L
V= e | — =ty — | (26)
;',1‘1"'1; (dﬂu iy duy; 4

Thus, from the choice of i, a transmission provider can derive the value of the transaction
v and use it in real-time implementation in order to maximize the values of transaction on
thegrid.

5.2.2. The Arrival Process

The previous self-selection property is valid under any price-reliability menu. However,
this menu has to be designed in order to maximize the value of the transmission grid in
real-time. This result was achieved in static priority service by imposing the condition
v = py; resulting from a static optimization. In this scheme, we do not impose such
a ‘condition but rather consider a dynamic optimization. Prices are considered control
variables and therefore influence the arrival rate of fransaction on the system. Let us denote
© by Sy(t, T, uiy) the total amount of allocated transmission capacity between i and j at
time ¢ for period T with priority ;. We assume that between ¢ and (¢ + dr), this quantity
increases by an uncertain amount:

dSij(t, T, uig) = fiy(PiyCt, Ty iy), Siy(t, T, pig)) dt + 0 dz 2N
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This increment is dependent on the price but also on the amount of allocated transmission
capacity. This formulareflects the fact that for a given price, only a part of the total demand
will be allocated during this period. Thus, through prices, a transmission provider can
influence the rate of arrival of transactions on the system, and as a consequence, can modify
his expectations about the total transmission demand for period 7.

5.2.3.  Real-Time Operations

In real time, a transmission provider sets the spot prices of transmission lines y¢;(T"). This
price represents: '

~ the price at which short-term bilateral transactions can get on the system. Since there
is no uncertainty left in real time, short-term transactions from i to j have to pay the
following price: '

" (Hi ~ Hippua(T) @8)
l .

— these prices also represent cut-off values for the curtailment of non-firm contracts.
Whenever the value of a transaction v from i 10 j is less than the term Y, (Hy; Hy)ui(T),
the transaction is curtailed and the amount of money u; is paid back to the transaction.

Note that this curtailment rule, along with condition (26), sets the structure of price-
reliability menus. In real time valuable transactions will be curtailed as a last resort because
they will pay a higher price. However, there are no explicit formulae for the expression of
prices. They are instead the result of a stochastic optimal control problem.

5.2.4. The Objective Function

As in the real time problem, the objective of a transmission provider is t0 minimize in
real-time the value of unused transmission capacity

m;m(r)(x, F) , (29)

while accepting all real-time requests and remaining below the maximum available trans-
mission capacity.

5.2.5. Similarities with Other Pricing Schemes

Compared to the long-term version of priority service (Chao et al., 1987), the learning
process by a transmission provider is explicitly taken into account. As transaction requests
arrive to a transmission provider, they provide him with valuable information on future
transmission demand. Moreover, this process can be influenced by the transmission provider
through his pricing policy: this is an active learning process.
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5.2.6. Coupling the Pricing-Investment Decisions

As a transmission provider allocates transmission capacity for future use, he aiso has to
make investment decisions. These two problems can be coupled into a single problem in
which pricing decisions depend on the possibility of investment and, inversely, investment
decisions depend on information collected through long-term commitments. For instance,
even though a transmission capacity still does not exist, it can be allocated on a non-firm
basis. The mere possibility of investment has to be incorporated in the pricing decisions.
Conversely, securing long-term transmission contracts will help reduce the information
asymmetries between users of the transmission grid and a transmission provider. Thus,
the additional uncertainties created for the transmission provider by the asymmetries of
transmission and generation are greatly reduced through long-term commitments.

This pricing scheme effectively achieves a centralized form of the long-term coordination
task described in section 2.4. :

6. Computational Aspects of Transmission Provision under Competition

Based on the derivations in this paper, it is possible to identify at least three types of
complex computing tools necessary for assisting a transmission provider in the newly
evolving industry. These are:

1. Tools for projecting long-term (season, year) system conditions; this is essential for
predicting locations and amounts of transmission constraints.

2. Tools for optimizing short-term decisions so that long-term performance is improved.
For example, given that a transmission provider is obliged to sell transmission rights to
system users ahead of time, once this is done, lie needs to evaluate in short-term opera-
tions the tradeoff between denying short-term requests by the spot market participants
and curtailing Jong-term system users, so that over the long period he is better off.

3. Tools for long-term optimal decisions, such as periodic optimal investment or pricing
long-term users of the grid. These long-term projections are made assuming optimal
short-term decision-making.

We illustrate possible methods for solving the first two problems. The first method is an
efficient probabilistic optimal power flow and the second problem is an inherent dynamic
programming problem which uses the results of the first problem as a cost function to go.
The last problem is a direct generalization of the second problem.

6.1. A Tool for Predicting Long-Term Transmission Systerh Conditions

The simplest input characterization is to think of load demand as an a priori defined load
duration curve such as that shown in Figure 2 and, based on this, create a coarse pattern for
its probability distribution as well as deviation characterization around each of the coarse
patterns. .
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Over the past several.decades, optimal power flow (OPF) analysis has been adopted
as an efficient tool in power systems planning and operations. As the power industry is
being deregulated, the importance of OPF has increased significantly because of its ability
to determine static economic equilibrium and calculate locational-based marginal prices
(LBMPs) under the perfect competitive market assumptions (Schweppe et al 1988; Hogan,
1992).

Conventional OPF analysis is typically used on a snapshot of time basis, i.e., for ob-
taining optimal generation patterns for average or extreme loading conditions only, and
it does not give any information about the degree of importance or likelihood of each
violation. In actual operating practice, load always deviates away from these snapshot
conditions in a random fashion. Several efforts have been made over the years to introduce
a probabilistic load flow (Borkowska, 1974; Allan et al., 1974; Allan et al., 1981; Sauer,
1982).

In this section, we propose an éfficient Monte Carlo-based method to solve probabilistic
optimal power flow (POPF) which takes into account transmission line flow and generation
capacity constraints (Descamps et al., 1995; Yu, 1999). Recall that the deterministic OPF is
the short-term coordination problem that assumes load demand P, = {Py,,..., P}
to be known, solves for the optimal dispatch of available generation resources P =
[P, » P&

P; = arg mm Zc; (Pg;) 30)
* =] .

subject to load flow equality and inequality constraints on all transmission lines. After the
optimal generation dispatch, P&, is obtained, the corresponding transmission line flows, Fi,
and nodal prices, p; can also be obtained as byproducts of the OPF calculation.

Here, we develop a POPF-based method for projecting system conditions based on our -
knowledge of random load demand, P, = [Py, ..., P.,,] with corresponding joint proba-
bility density functions, fp,(PL,, ..., P1,,), and generation cost functions estimated using
public information. '

Assume that P = [Py, ..., P, ] is arandom load demand vector having a joint prob-
ability density function, fp, (Prys <.+ PL,)-

Let us denote deterministic OPF as asetof nonlinear functions W(.),i.e., [Pg,, ..., P5 ) =
WP, .os Pea)s oo s WalPLys - <oy Pu,,))- Then, the basic POPF problem is the prob-
lemof ﬁndmg the probabn]ny densny dlstnbuuon of PG‘ fea(Pg,s ..., Pgy)yviaa nonlinear
transformation between fp, () and fps(.).

For instance, the probability densny function of opumal generatlon Pg,s fry s, (P§,), can
be obtained by performing the following calculation:

fr,;,(Pé,.)'=/ /_ "'/_wﬂm(h,,--»,h,‘)

|J(PLyy ey PLOV AP, -+ dPE,  dPE, - -dPS @3n
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where J is the determinant of the Jacobian matrix

v Y. AV,
J(Puysers PLy) = det mt "_”t m‘: (32)

However, it is not possible to carry out analytically the above integration exactly or even
to numerically approximate it within a given accuracy because of the complexity of load
flow equations and the large number of variables. Furthermore, functions Wy, ¥, ..., v,
usually do not have continuous partial derivatives everywhere because of the inequality
constraints imposed; therefore, the above integration has to be carried out in a piecewise
continuous manner. This makes the computation even more difficult.

6.1.1. Monte Carlo Simulations

One possibility is to approximate the solutions by means of simulation. Forinstance, one can
generate asample load vector P = [P{, ..., P{>]and calculate the corresponding OPF

solution P.". Next, one can generate ancther sample vector P> correlated to the first one
in the way sgeciﬁed by its probability distribution and, again, compute corresponding OPF
solution P2, This process repeats until an identically distributed random variable has been
generated. Therefore, we can use the distribution of based on (Pg™,n = 1,..., N) asan
estimate of the exact answer. By the strong law of large number, when the number of sample
points is large enough, N — 00, the simulation results converge to the exact solutions. This
approach is called.the Monte Carlo simulation approach (Rubenstein, 1981; Ross, 1980).

Next, we give an example illustrating the use of a Monte Carlo simulation for solving a
POPF problem. A simple 3:bus system shown in Figure 5 consists of two generators andone
load. All transmission lines are Jossless and have the same parameters. The marginal cost
curves for Gy and G, are ¢;(Pg,) = 10+0.05P¢, and ¢z(Pg,) = 204-0.1 Pg, respectively.
Thus, the real power generation of G| is less expensive than that of G». '

Assume that demand at bus L exhibits a probability distribution following a normal
distribution with a 1000 MW mean and a 200 MW variance. The load duration curve, i.e.,
the cumulative distribution function of Py, of this distribution is shown in Figure 5. Note
that, for the purpose of graphical illustration, we plot the complement of the cumulative
distribution function, G p, (PL). i.e., . .

. v o4
Gp(P) = / Sfr(x)dx
P

= 1-Gp(PL) (33)

For example, the values read from the Y-axis of Figure 5 indicate the probability of demandat
L exceeding corresponding X-axis value., e.q., 50% probability of load exceeding 1000 MW.

In the first case, the system is assumed without any transmission line constraints. In
this study, we generate 1000 sample load points and solve the OPF result for each point.
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Figure 6. Monte Carlo simulation—Case 1: No line flow constraint.
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Figure 7. Monte Carlo simulation—Case 2: Imposing 600 MW line flow constraint on line Gy-L.

Then we plot the distributions of the corresponding OPF solutions as shown in Figure 6.
Figures 6(a), 6(b) and 6(c) show the probability distributions of the two generator outputs,
the line flow on line G -L and nodal prices at three buses respectively. Since the system is
lossless and unconstrained, as expected, all three nodal prices are identical.

In the second case, the flow on transmission line G,-L is bounded by a 600 MW limit.
Figure 7 show the Monte Carlo simulation results. As illustrated in Figure 7(c), the nodal

price at the load bus L has some probability of reaching as high as 200 $/MW due to the
congestion.
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6.1.2. Two-Stage Approach for Monte Carlo Simulations

When applying the Monte Carlo method to large power systems, an immediate problem is
the difficulty-of constructing probability density functions fp,. Because of the metenng
problems, electricity demands at individual load buses are usually not measured in real-
time; instead, usually only the total system demand is recorded. These historical total load -
data for different systems are public information and can be downloaded via the Internet
(FERC, 1999). Therefore, one can assume that the probability density"function f,.m(P”' ) .
of total system demand is available. .

As the system becomes larger, the number of vanables increases (generators and loads)
so that more sample points are needed for the Monte Carlo method to converge. In addition,
longer simulation time is needed to obtain the OPF solution for each sample case. Therefore,
applying the traditional Monte Carlo technique to solve large network cases is apparently a
very-time-consuming process. Even though some efficient ways to solve an OPF problem
in large power systems have been proposed (Baldick et al., 1998), it is still not plausible
to use brute-force Monte Carlo simulations. In order to get around these problems, we
propose a two-stage approach to efficient Monte Carlo simulations.

6.1.2.1. Basic Assumptions. The proposed two-stage approach is based on the obser-
vation that at each load level, there usually exists a nominal load pattern, which represents
system load conditions, for example, peak load pattern, off-peak pattern ezc. These load
patterns describe how total system demand is distributed at each load bus. A nominal pattern
can also be interpreted as the mean value of random load conditions at a specific load level.
Of course, there are deviations from the nominal pattern at all load buses. The actual system
loads are the sum of nominal patterns and zero-mean random perturbations at individual
load buses. In order to further simplify the problem, it is assumed that congestion is caused
by the nominal patterns and not by the random deviations.

At the first stage a set of discrete load patterns that represent nominal system load con-
ditions at different levels of the cumulative load duration curve is used. Detailed OPF
solutions are calculated based on these nominal patterns. These OPF solutions give arough
approximation of generation probability distributions. At stage two, random deviations
from the nominal load patterns are taken into account. By using incremental linearized
OPF solutions, a large number of simulation sample points can be obtained efficiently.

6.1.2.2. Stage One: Coarse Computations. First, we identify several basic load patterns
in the system, for instance, peak load pattern, normal load pattern and off-peak pattern, and
ranges of system load levels for which these patterns are most likely to occur. Based on
these, a fuzzy set representing the typical load patterns at different system load levels and

" their membership functions 7 are obtained (Pedrycz, 1993; Klir et al., 1995). As shown
in Figure 8, if the total system load is larger than P14, it follows peak load distribution;
if system load falls between P12) and PP, it follows the normal load distribution; and if
system Joad is less than P, off- 2peak load pattern is used to depict the load distribution.
The load pattern between P!1, P12 or P13}, P14 can also be obtained by combining the two
adjacent patterns weighted by their membership functions.
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Figure 9. Discretized Joad duration curve.

Next, we discretize the system load every h MW starting from PY MW, i.e., PP'(k) =
P,‘f + kh, Figure 9. Thus, the typical patterns of different load levels can be computed by
using the following equation:

) " P!N] PIOPI PIPK]
P = perry { ot 'IT;,N,M‘O” b + PRI —L 34
L L :

The probability of each discrete Joad pattern occurrence is
Prob{PM} = Prob{P{ + kh < P} < P} + (k + 1)h}
G pior (P + (k + 1Dh) = G por (P + k)

il

Pl k+ Dk '
= [ frmpoar, 35)

0
Dk

Thus, we have computed OPF solutions for each load level. Based on the corresponding
probabilities calculated in (35), the cumulative distribution curves for these OPF solutions

can be constructed. :
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Figure 10. A 5-bus system and the load duration curve for the simulation case.

o

6.1.2.3. Stage Two: Refined Computations. ‘The objective of refined computations is
to improve coarse solutions to a better approximation by including perturbations at each
discrete load pattern Jevel. Fn'st, we generate a set of zero-mean random deviation, AP,
around a nominal pattern, P,_ and use this to compute the incremental changes of OPF
solutions. It can be shown that if generation cost curves are approximated by quadratic
functions (i.., linear marginal cost curves) under the assumption made, the incremental
OPF solution is simply a linear function of Joad deviations (Yu, 1999), i.e.,

AP, =VHAP, ' (36)

The matrices V¥ canbe obtamed when computing kth coarse solution. Therefore, arefined
solution is

Po=PH4+vHaAP, v (37

Since refining computations are just linear transformations, it is possible to handle a
large number of simulation points. By combining coarse and refined solutions, we can
approximate the continuous load distribution functions within a reasonable computing time.

6.1.3. Numerical Example

To illustrate the idea of the two-stage approach, we have simulated a simple five bus system
with three generators and two loads shown in Figure 10.7 Next, we assume the distribution
of the total system demand to be normal with a 1000 MW mean and a 200 MW variance
exhibiting two basic load patterns: (1) peak load pattemn, Ls 60% and Ls 40% of total
demand, and (2) off-peak load pattern, L4 50% and Ls 50% of total demand. A fuzzy
membership function of the occurrence of the two basic load patterns at different Joad
levels is shown in Figure 11.

In this example, we assume that there are two inexpensive generators, G, and G2, with
a generator marginal cost function, 9%%@ = 0.1Pg + 10, and one expensive generator G3



376 YUETAL.

=

S

g off peak peak load

5 .

;

8

g -
0 800 1200 ™MW)
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Figure 12. Probability distributions of three generator outputs,

with a marginal cost function, 3—‘5‘,509-1 = 0.2P; + 20. Also, we assume that a transmission
line Gy — Ly is the one most likely to be congested and its maximum capacity is Fg2, =
350 MW.

At a coarse computation stage, we discretize the total system load every 50 MW starting
from 500 MW to 1500 MW. We use (34) and (35) to find the typical patterns corresponding
to the discretized load levels and the probability of the occurrence of each load pattern.
Next, we generate a set of zero-mean random deviations for L4 and Ls around each load
pattern. These random load deviations could be any type distributions and also could be
independent or correlated. In this case, random deviations are assumed to be independent
and normally distributed with a 2% variance around the nominal values.

Figures 12, 13, and 14 show the probability distributions of all generator outputs, trans-
mission line flows, and nodal prices respectively.” As illustrated in Figure 12, generation
of G is limited by the transmission flow constraint. Figure 13 shows that the probabil-
ity of the system being congested is around 32%. Furthermore, the constraint causes the

%



DYNAMICS OF TRANSMISSION PROVISION

Transmission Line Flows
1 - ;
o8l t G\ . }:;
V\: ©2-4
£o6 - W\ 23
: w - 4.5
04 : “|=- 3-8
0.2
0
Y 800

Figure 13. Probability distributions of six transmission line flows (line G1-L4 is the one constrained).
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Figure 14. Probability distributions of nodal prices.
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nodal price at L4 to reach as high as 200 $/ MW, while the nodal price at G; is always the

lowest.

Next, we take the differences of the nodal prices to evaluate the value of each transmission
path. Figure 15 shows the probability distributions of the values of six possible node-to-
node transactions. The result shows that these transmission paths have non-zero values only
when system is congested. As expected, the link between G and Ly is the most valuable
one. However, an interesting fact is that the link between G; and Ls has the lowest value

even though it is the most distant path in the system.
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Figure 15. Probability distributions of nodal price differences for different node-to-node transactions.

6.1.4.  Uncertain Generator Cost Curves

In the previous derivations, we assumed that all cost functions of generators are given.
However, in a competitive energy market, a generator cost curve is usually confidential.
It is possible, however, to estimate the cost curve of a generator using public knowledge
concerning the generation technology, the fuel used, the current fuel prices, etc.; still,
estimation errors are unavoidable. As shown in Figure 16, by applying fuzzy theory, an
uncertain marginal cost curve can be characterized by its upper and lower bounds and a
most likely band. Therefore, given any possible nodal price, there will be a corresponding
uncertain generation output with the same distribution shape, Figure 16. This way, the
uncertain cost curves are mapped into uncertain generation.

Assume that the membership function of uncertain generation and the corresponding
probability function have the same shape. In other words, 7 = #; implies f;.= f;. Next,
we use PE” to indicate the uncertain generation output deviating from its nominal value
PG, ie., Pg = PE™ + PE". By inspection, the probability distribution of PZ" can be
calculated by the following formula, Figure 17:

PUE
f,,cfa n(Pg)dPg
Note that this kind of uncertainty results from the imperfect human knowledge of the

marginal cost curves. Introducing this kind of uncertainty in the POPF computation will
decrease the accuracy of the results.

ferr(P(t;") = (38)

6.2. A DEDS Model for Congestion Management of Bilateral Transactions

The congestion management of bilateral transactions can be viewed as a discrete event
supervisory control problem (Ramadge et al., 1987). First, each bilateral transaction is
discretized into several bilateral transaction units.  These transaction units are associated
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Figure 17. Uncertain generation output deviation from the nominal value.

with different levels of firmness and can be denied (curtailed) by a system operator if the
transmission system is congested. In other words, each of these transaction units could
be viewed as controllable events; therefore, a system operator could “enable” or “disable”
some of these transactions to maintain line flows within constraints. _

A simple 3-bus example is used to illustrate this idea, Figure 18. Assume that a trans-
mission line between bus 2 and bus 3 is the most likely congested line (bottleneck) and the
three transmission lines have the same parameters. With a transaction between bus 1 and
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bus 2, $12, 1 unit of power will flows through the transmission line whose congestion is
in question. With a transaction between bus 3 and bus 2, 832, 2 units of power will flow
through the bottleneck of interest. Now, let us define all possible trading events §;; between

i and j, shown jn Table 1.

Next, the power flow on transmission line 2-3 conld be modeled as a queue with a N-unit
capacity limit, as shown in Figure 19. Thus, the objective of congestion management is to

keep the line flow on the suspected bottleneck within
~Nunits < Fyow < Nunits

Table 1. Possible bilateral trading events in the 3 bus

example.

p12,831 - +1lunit  line flow increase

p13, B21 - 1 unit line flow decrease
B32 -  +2units line flow increase
‘B23 - -2 units line flow decrease

(39)
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This mode! could be used to develop DEDS methods for curtailing when necessary so
that the entire transmission network is operated in the most efficient fashion.

6.3. Priority Service-Based Menus for Bilateral Transactions

Next, the idea of priority insurance contracts introduced by Wilson, Chao and Peck, (Chaoet
al., 1987; Wilson, 1989; Wilson, 1997) is applied for managing transmission for long term
bilateral transactions. Unlike these previously proposed schemes, this priority insurance
contract is used exclusively while acquiring transmission services and it is completely
separated from the energy contracts. The feature of this type of pricing scheme is that it
specifies an order in which customers requiring transmission services are served. Therefore,
instead of giving a single price for transmission service, aprice meny that lists a set of prices
corresponding to different levels of firmness is provided. A customer indirectly reveals the
value of the bilateral transaction to the grid operator by selecting a priority level for the
transmission service. This information helps a system operator manage congestion more
economically.

6.3.1.  The Optimal Menu Design Problem

Variable u; ; is used here as the index of different priority Jevels. Each uy, ; value requests
random nodal price difference between buses i and j under different load and generation
conditions; namely, it represents the random value of a transmission path. The definition
of y,; is:

Hig=pj—pi _ : (40)

where p; is the nodal price at bus i.
" The value of a transmission path is very volatile in real time operations. It varies with the
system congestion condition, which is dependent on uncertain loading, generation market
and network outages. The value of each node-to-node transmission path u; ; is modeled
as a random variable with certain probability density distribution f; ;(u4,;). One way to
obtain these probability density functions is to apply the probability optimal power flow
(POPF) technique described above.

A price menu, M, j, for the priority insurance service corresponding to a transmission
path from bus i to bus j consists of the following three components:

= Rij(uiy): The probability of the bilateral transaction being implemented. This is a
function-of u;,; for different levels of firmness.

- Py (;L,; 7): The price for network users to subscribe to level p;,; transmission service.

_-‘ Ii.j(ui5): The insurance payment to a network user when the subscribed level u; ;
bilateral transaction is curtailed by a system operator due to congestion.

If a customer selects a priority level u? j» the associated marginal willingness-to-pay,
" from a menu, then he expects the insured transaction to be implemented when the random
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spot transmission value y; ; falls in the region €, ,(uﬁ =gy < uﬂ ;) and to be
curtailed when the spot transmission value falls in &; ) )+ the complement region of
Q1 ;)- In other words, if the spot value of transmission is higher than the profit made
by implementing the bilateral transaction, the grid user is willing to be curtailed rather than
pay for access.

Therefore, the probability of implementation with respect to priority level Il«?, ; can be
derived as follows: - ,

Ryl = Problu;; < i)}

[l

")
(33
S g) dpg

-00
G(ﬂ?, ) 41)
where G(u ;) is the cumulative distribution function of the random variable p; ;. Note
that R;,; is nondecreasing in u; ; since G(uy, ;) is nondecreasing, i.e.,
O pfysull then Riyul) < Riywlh 42)

Next, consider the insurance payment I; ;. This payment is designed to partially or fully
compensate the losses of customers when their insured contracts are curtailed. Therefore,
when a customer chooses p,}" ; as.a desired level of priority, the insurance payment is

Lyl =apd; (43)

where « is the percentage of loss recovery, i.c., @ = 100%, 90%, or 80% etc. Here we
considér the fully insured cases. Thus, equation (43) becomes

L)) =ud; (44)

Therefore, the expected total charge for a system user to require transmission service is
Py j (i ;) = (1 = Ry j (s, )1, j (. 5)- For proper menu design, the incremental expected
charge should equal the incremental gain/losses incurred when a customer selects higher/
lower priority, i.e.,

. ”'2’
Py ) = (1 = Ry y(ud Dby () = / M, AR,y (e, g) (45)
o0

'fhis yields the price for priority insurance service

uy,
Pyl = ] 1.y ARy (o) + (1 = R g8 D1y 2,) @6)
- .

Note that if a customer signs up for a 100% firm transmission service, the price for this
service is

. | |
Py = / T @)
-0

Epy) (48)
The customer is willing to pay the expected spot transmission price.

il
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Figure 20. The cumulative probability distribution curve of 12,4 and the corresponding reliability levels.

6.3.2. A Numerical Example

i
1l
]
» 100
e
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In this example, we use the same 5 bus system shown in Figure 10. Assﬁming that the
random load condition follows the same distribution as in the POPF example above, we use

the results of the probabilistic optimal power flow calculation as a starting point.

Here we consider the problem of designing an effective pricing menu for bilateral trans-
actions between nodes 2 and 4. First, we use the distribution curve of nodal price difference
between nodes 4 and 2 to obtain 2,4 values corresponding to different levels of reliability,

Figure 20.

Next, by using (42), (44) and (46), one can compute the transmission prices and insurance
payments of the bilateral transaction from nodes 2 to 4 with respect to different levels of

reliability, Figures 21 and 22. The optimal menu design is listed in Table I1.

Table 1. The price menu for bi-
lateral transactions from bus 2 to

bus 4.

Priority Price Insurance
Level ($MWh)  ($/MWh)
99% 15.4989  155.4658
95% 14.6582 96.3301
90% 12,7578 68.1500

- 85% 10.2656 46.5161
80% 7.3804 29.0937
75% 4.1895 14.6701
70% 1.3544 4.3608
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Figure 21. The transmission prices for bilateral transactions from bus 2 to bus 4 for different levels of reliability.

ey

160| 0% 4

140

Figure 22. The insurance payments of bilateral transactions from bus 2 to bus 4 for different levels of reliability.

6.4. Hybrid Bilateral/Spot Real-Time Congestion Management As a Dynamic Pro-
’ gramming Problem ‘

Assume that priority insurance services for transmission are sold seasonally to long-term
bilateral customers and the short-term spot market is cleared hourly. As the transmission
system becomes congested, a system operator will have to relieve the constrained situation
in an efficient way based on the energy bids on the spot market and the economic values of
each bilateral transaction. In addition, since the priority insurance contracts are committed
ex ante, a system operator will have to manage this process dynamically without violating
the contracts over the entire season, Figure 23. :
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season

random load (MW)

Ts
f‘igure 23. Time line of the real-time congestion management.

Here we choose the state vaiiable x;[k] to represent the number of hours remaining
for bilateral transaction i to be curtailed by a grid operator without violating the priority
contract. For example, if a customer subscribes to a 90% firm transmission service over
a season, then there is total of 216 hours during which this transaction is allowed 1o be
curtailed. Therefore, x;[0] = 216. Let the control variable u; [k} represent the curtailment
decision made by a transmission system operator, i.¢.,

1 if the transaction is curtailed
il = {0 if the transaction is implemented “9
The state transition equation is simply:
xilk + 11 = x; (k] = w; (k] (i (k] = 0) (50)

Recall that when a bilateral transaction i is curtailed, the transmission provider has to pay
back the insurance I;[k]. Therefore, the total insurance paid is " Norans gy, (k11;[k) where
Nirans is the total number of bilateral transactions. Nex, let M Sy be the merchandise
surplus of hour k which indicates the congestion revenue collected from the real-time spot
market (Hogan, 1992; Cadwalader et al., 1998).

At each stage, we define the social welfdre loss function:

Nirans ‘
Lig= E’T w [k TKY + M Sy (ulk], PLIKD) : Sn
f=1

The objective function of the dynamic programming is to minimize the cumulative welfare
loss Ly over the N total stages. Thus, the DP algorithm becomes
JmxIND = Limy(xIND (52)

JkD) = rzﬂ?e{Lm(x[k],u[k], PLIKD) + Ju+n(fin(xTk), ulk], PLIAD)}

k=0,1,...,N-1 . (53)

Since the amount of merchandise surplus will also depend on the generator bids in a spot
market, a perfect competition assumption is made in order to make the DP problem solvable.
In other words, a generator will submit its bid based solely on the remained capacity that is
not yet committed in the bilateral deals, and its marginal cost curve.
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7. Conclusions

We have stated in this paper that the general problem of dynamic transmission provision
for the newly evolving industry cannot be tackled without re-visiting this problem in the
coordinated industry. The general lack of dynamic decision-making tools under uncertain-
ties for the coordinated industry is taking on new importance under competition. Tools for
long-term network use and investments are of critical importance. This paper attempts to
formulate the basis for developing such tools.

The most novel aspect of the transmission provision under restructuring is the idea of
giving economic signals (prices for using transmission) to the transmission system users so
that they can evaluate their requests and adjust to the system conditions. Thisis an alternative
to the operator only taking technical actions, such as using suboptimal generation to supply
anticipated demand, or even not serving portions of load demand, in order to keep system
variables within the acceptable technical limits.

Different transmission pricing possibilities have a common characteristic in that, as soon
as congestion appears on the grid, power does not have the same value at each node but it
is traded on the power market as if it did. The congestion management scheme, whichever
it is, thus is required to incorporate these differences. The transmission rent will appear,
under one form or another, in all congestion schemes as an economic reality. This rent could
serve as a basis for developing a uniform approach to long term transmission investment
incentives.

A definition of the value of transmission capacity is not straightforward. In the short-
run, demand and cost functions can be considered deterministic. However, a transmission
provider has no exact knowledge of their value. The main issue in setting the value of
the coordinating variables p, therefore, is in the information asymmetries. Many diverse
mechanisms have been proposed to price transmission based on its market-value. Most
of them are based on information exchanges between the coordinating entity and market
participants. Not surprisingly, strategic behavior issues and convergence issues are the most
often quoted issues associated with these pricing schemes.

Also unsurprising is the fact that all congestion management schemes lead in theory to
the same dispatch of generation resources. We cannot differentiate between them at the
equilibrium or under the assumptions of perfect market conditions. The most suitable
structure for value-based transmission pricing should, on the contrary, be judged on its
ability to mitigate market power, to handle uncertainty in demand, and to converge toward
equilibrium prices.
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Notes

1. Throughout this paper we assume no stability problems in moving from one system equilibrium to the next.

2. This amounts to replacing the social welfare criterion with controllable cost; it is easy to include price-elastic
demand as an active decision variable if desired (W et al., 1994),

3. The basis for defining these constrainis for a given sysiem is outside the scope of this paper.

4.. Insection 6.1 an approximate computing method for obtaining the expected short-term optimum is introduced
by means of solving a probabilistic optimat power flow (Yu, 1999).

5. In this formulation, only transmission investment is: of interest; generation is assumed given.” For optimal
generation/transmission investment see (Leotard; 1999).

6. - A similar approach could be used to define access charges for new power plants.
7. The detailed system data and large system simulations can be found in (Yu, 1999).
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