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Localized Response Performance of the
Decoupled Q -V Network

MARUJA ILIC‘-SPONG, MEMBER, IEEE, JAMES S. THORP, AND MARK W. SPONG, MEMBER, IEEE

Abstract —In this paper the assumption of a Jocalized voltage response
due to reactive power disturbances is analyzed. Conditions on transmission
line parameters, given its normal operating point, are stated which ex-
plicitly define directions of voltage changes so that the line is subject to the
localized voltage response. We show that it is not possible to give an
exclusive answer to the question of the localized response (tier-wise) in the
decoupled Q—V network. The answer is network and operating point
dependent. The operating reg in which this property is satisfied even
under large changes in reactive power injections are derived on the S-E
graph based decoupled OV network. We first define a no-gain operating
mode of this network and then claim that the power no-gain operating
mode always implies a localized voltage response.

These results cannot be used to demonstrate a voltage gain. We develop
algebraic type statements to show that a system may have response which is
system wide. More definite answers on the localized response are estab-
lished for the echelon structure of a given network.

. 1. INTRODUCTION

EACTIVE POWER problems arise in power net-

works under a variety of conditions: for lightly loaded
systems too much reactive power may be injected into the
network by the shunt elements with two important conse-
quences: 1) the bus voltages at voltage uncontrolled busses
become overly high; or 2) the extra reactive power has to
be absorbed by the system generators causing potentially
damaging under-excitations. Alternatively under heavy load
conditions there may be insufficient injected reactive power
causing the voltages to drop. This situation may worsen
with the loss of a generator, but the loss of a line has also
an effect on the balance [13].

In this work we study theoretical aspects of the reactive
power imbalance problem in steady state under large load
changes. It is known that the transmission of reactive
power through a power network poses more serious prob-
lems than its generation. This is partly attributable to the
large reactive power losses relative to the transmitted reac-
tive power, the ratio of the loss and transmitted reactive
power being much larger than in the case of active power
flows. A network formulation of the reactive power trans-
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mission is missing even for the linearized version of the
reactive power network, although some work has been
done following a series of blackouts caused by reactive
power transmission problems [1], [2]. Most of the work
done for the nonlinear Q-V network uses the off-line load
flow analysis or nonlinear programming techniques to study
selected sets of critical disturbances [14), [15]. There is still
not much work done for the nonlinear Q—¥ network
which would provide an adequate model for studying
analytical properties of this network without having to use
time consuming tools like [14}], [15]. Our work is intended
to develop specific properties of the Q¥ network which
would make the analysis easier. We comment on the re-
lation of some recent results in this direction [3], [4] to our
work.

The main problem that we address here is the justifica-
tion of the assumption of localized response to changes in
reactive power injection. Here, by a localized response, we

mean a similar phenomenon to the one introduced in [6}-

for the active power-phase angle P -8 network: if a genera-
tor or load outage occurs which causes a change in the bus
voltage magnitudes, then the change is largest at the lo-
cation where the fault has occurred and this change propa-
gates through the system tierwise [7). Here, by tier N we
mean all buses directly conneeted to the buses belonging to
tier (N—1), N=1, 2,---, k, where N=1 indicates the
location where the fault has occurred. In order to define
operating regions in which this property is satisfied even
under large changes in reactive power injections, we pro-
pose to use the S—-E graph based decoupled nonlinear
Q-V network and apply to it some results from the
nonlinear electric network theory [8], [9]. We propose this
network as the only known way to treat the reactive
power—voltage problem as a nonlinear network problem
when the reactive power losses are included. An indirect
approach to this is taken in a sense that we define first a
no-gain operating mode [10] of the nonlinear Q-¥ net-
work. This result is interesting enough by itself for applica-
tions to security monitoring. It states that if there is a
disturbance in a reactive power injection |[AQ,| due to a
generator or load outage, then the change in the reactive
power flow along any transmission line in the system is
smaller than or equal to JAQ,]. This means that if one
knows security constraints and the normal operating point,
then the changes in power flows due to disturbance JAQ,|
can be estimated for all transmission lines and the security
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limits checked without doing time consuming load flow
calculations,

‘ Next we establish relations between the no-gain operat-
ing mode and the localized response performance in the
Q-V network. To discuss the systemwide response we
develop algebraic results for the nonlinear Q -V problem
where we show that the system is not always subject to a
localized response.

In conclusion, we show that it is not possible to give an
exclusive answer to the question of the localized response
in the reactive power-voltage problem. The answer is
~ network and operating point dependent. We state mathe-
-matical conditions under which a localized response is true.
As a consequence of this, a straightforward usage of this
phenomenon is not possible in monitoring or controélling
the power network. This established result is negative in
nature; i.e., it claims that a localized Q-¥ .response (tier
wise) does not generally exist in typical power networks.
Therefore, to state more specific conditions on localized
response for a given network a concept of an echelon is
introduced. Unlike the tier concept, the echelon is defined
independently of disturbance location: echelon 1 of a given
power network consists of a set of all PV buses; echelon 2
is formed by a set of all PQ buses directly connected to
echelon 1 (and not belonging to it); echelon 3 consists of a
set of ‘all PQ buses. directly connected to the buses in
echelon 2 (not belonging to it), etc.

II. THE S~E GRAPH BASED DECOUPLED
Q-V NETWORK

The background on the S-E graph is given in {8}, [9].
Here we consider only the reactive power flows @ and
assume that Q= Q(V) is a function of the bus voltage
magnitudes ¥ with the phase angles 8 (known) constant.
Note: Our work is based on the assumption that Q-V,
P -8 decoupling is justified. In the large disturbance prob-
lem 8 may be very coupled to Q (especially in the voltage
collapse problem) and the developed results under the
decoupling assumption may not always be valid. An esti-
mate of the largest error in a given network due to decou-
pling error can be derived using results of Kaye and Wu
{16]. Similar results have been obtained recently which
include the effect of shunts on the network performance
and estimate of the decoupling error [17]. It should be
noted, though, that since most of the results in the work on
the localized response are expressed in terms of inequalities
rather than equalities, it can be shown that similar mod-
ified results are rather easy to obtain for a physically
meaningful range of phase angles |6, | < n/2 with the cou-
pling taken into-account. We illustrate the modification
process in Section 1V, where the modified results take into
account coupling with the phase angles. In this light, the
decoupling assumption is justified for the techniques devel-
oped in our work, or it can be corrected for in a relatively
straightforward way.

In the S—E graph based Q-V network loads are in-
dependent teactive power sources, generators are indepen-

—
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dent voltage (magnitude) sources (including slack bus)i and
each. transmission element has a well-defined Q =V con-
stitutive relation as :

0fj=1m (S7) = 77(v) ()
E=Im(SE) =rL(v). (2)

ln. particular, for a transmission line ij, a complete model
with shunt capacitances included is 1

Qi(V.V)) =V¥,Bcos6,-V?B,  B>0 (3)
OV V) = (V2 + V=209, c0s 0,)B,  B>0 (4)
Qio=— Vi2Bi.r’ B, >0 5)
Qjo=- ,ij ioo - B> 0. (6)

Note that his model is defined so that reactive power
flows satisfy the flow conservation law [8). The primitive
elements after interconnecting as defined by the one-line-
diagram of a power system form the decoupled g—V
network.. We call this network a Q-¥ network to em-
phasize that it is analogous to the 7— E network, where| the

‘reactive power flows satisfy conservation of flow law in-

stead of currents I in an electrical network. Here ithe
primitive elements of transmission lines belong to the three
terminal type elements for which some interesting network
theory properties are introduced in [10]. We use this work
to establish properties of the nonlinear Q—V* power net-
work. ° . :

III. N0 GAIN OPERATING MODE OF THE Q-V
NETWORK AND I1S LOCALIZED RESPONSE

Most of the results in this section on the no-gain ope‘rat-
ing mode and localized response for the decoupled reactive
power—voltage magnitude Q¥ network are ana]ogou$ to
the results derived in [12] for the active power-phase aiTngle
P —8 decoupled network and we shall therefore omit many
of the details. The interested reader can easily translate| the
results from [12] to present context. ‘

By a localized response in the Q—V network, we mean
the following: if a generator or load outage occurs which
causes a change in the bus voltage magnitudes, then|the
change is the largest at the location where the fault %has
occurred and this change propagates through the system
tierwise [6]. Here by tier N, we mean all buses diréctly
connected to the buses belonging to tier (N—1), N=
1, 2,- - -, where N =1 indicates the location where the fault
has occurred. g

Definition 1: The Q-V (sub)network is said to possess -
the no-gain reactive power (voltage magnitude) property in
some operating region S €& if the magnitudes |AQ]),
|AQF| (voltage magnitudes |AV;, AV)]) of the changej in
transmitted and loss reactive power for each pair of nodes-i
and j (voltage magnitudes of buses i and j) are less than
or equal to the sum XJAQ,| of the magnitudes of |the
changes in reactive power through the independent power
sources, (sum L|AV,| of the magnitudes of change‘ in
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voltage magnitudes across independent voltage sources)
provided AV, €@, i=1, 2,-+-,N.

Definition 2: A three-terminal Q-V element ¢ is said to
be a no-gain element if for any Q-V network possessing
the no-gain property, if ¢ is connected to the network in
any manner there is a nonempty set S C R¥ such that the
new network possesses the no-gain property in S. ,

We then have the following:

Theorem 1: The transmission line i— J is a no-gain ele-
ment in S C R? if -

AV,AQ;>0  if AV, /AV,<1 (7)
AVAQ;>0  if AV, /AV, <1 (8)
(&, + 4¥)(AQ;+40,) >0 i AV,AV,>0. (9)

The proof of this theorem is identical to the proof of
theorem in [10). o

Note: Not all points in the region (AV, AV)) defined by
Theorem 1 satisfy the load flow equations. If disturbance
occurs which causes voltage changes AV, AV, on a given
transmission line to fall in the no-gain area then the line
will possess the no-gain property at a new operating point
V;+ AV, V;+ AV). No claims are made on the sets of
disturbances which make this possible on a given power
network. Some further research is needed to interpret the
no-gain operating regions of separate transmission lines on
a connected power network.

One needs to stress the effect of the parameters of the
transmission line and nominal operating point on the size
and shape of the no-gain operating region. To the author’s
knowledge, this is the first time that a nonlinear analysis of
the Q-V transmission problem has been done in the
literature.

It is possible to check conditions (7)~(9) and find operat-
ing regions for which such transmission line is in the
no-gain operating mode. However, for practical applica-
tions, one would like to have an open set with a certain r
around the normal operating point and then claim that for
any disturbance which causes change in voltages AV, and
AV; such that, for example

AV +AV2 < r?

(10)

the transmission line will be in the no-gain operating mode.
Simulations show that what is more likely to happen for
small transmission lines is that only a certain subset of R2
around the operating point ¥,%, V0 satisfies the no-gain
operating mode conditions. Only transmission lines which
have large |V,° — ¥/°| and/or large B/B, and/or large 8>
will be in the no-gain operating mode for any direction of
change AV, AV,. Chua has introduced a concept of locally
no-gain three terminal elements in [11] which if used on the
O~V network states conditions for the transmission line to
be locally in the no-gain operating mode. It can be shown
that these conditions are very restrictive which implies that
many transmission lines are subject to gains. We have
checked these conditions for the 14 bus AEP system and
shown that none of the transmission lines are locally
no-gain. Only three lines on the 118 IEEE system are

locally in the no-gain mode. Still conditions (7)—(9) show a
larger region around the operating point where lines be-
have as no-gain elements, |

The idea of a localized response in the Q—-¥ power
network is used in practice for computational savings,
although not always justified. Some similar results are
known to power engineers: If we consider a Q-disturbance
at a bus surrounded by voltage controlled buses, in the first
tier no voltage change will take place. In subsequent tiers
_with some voltage uncontrolled buses the voltage will how-
ever change. In addition, power system engineers have a
fairly good feeling from simulation studies of the nonlocal-
ized effect of Q-injection disturbances in general, For
example, the voltage at certain PQ buses is often regulated
by injecting reactive power at nearby PQ buses without
modifying the latter’s voltages by much. It is known that
this is possible if at the buses where Q is being injected
there exists a relatively large shunt capacitance compared
to the series reactance leading to the regulated bus.

Again, analogous to the case in [12] we have

Theorem 2: The power no-gain operating mode in a
power system always implies the localized voltage re-
sponse: the smallest change in tier 1 is larger or equal to
the largest change in tier II, efc. :

IAV] > 1AV lloo > AV lloo > - - - . (1)

Using this approach, one may conclude that most of the
transmission lines of a power network possess the no-gain
property only in a subset of R2. Fuithermore, transmission
lines which have large B and/or 63 at the normal operat-
ing point and small B, will have larger power no-gain
property region in a given power network.

IV. ON A NONLOCALIZED RESPONSE IN THE
O~V NETWORK

Although results in the previous section explicitly define
regions where a transmission line has a localized response,
these results are not applicable to the not no-gain claims;
1.e., it is not true that if the not no-gain transmission lines
are connected together, the network would be a gain-net-
work. As a consequence, we cannot say anything about a
systemwide response (as opposed to localized) based on the
no-gain theory results. L

Therefore, we develop algebraic type statements to prove
that a system may have response which is systemwide.
These results do not state explicitly the operating regions
where the systemwide response could occur. To establish
the nonlocalized response of the Q-¥ network and to
demonstrate the relationship between the shunt eleménts
and the nonlocalized response it is necessary to consider
the reactive power balance equations at each bus. The
reactive power injection at bus i is written

0,=-Y, Z Vicik

keK,

(12)

where K; are the buses connected directly to bus i (incl;ud-
ing i) and 3
(13)

Cix = C3;= By cos 6, i#*k

e

cac . anxx




ILIC-SPONG et al.: DECOUPLED Q -V NETWORK

{
and

¢iy=B;=—B;— E By.
: kek,
itk

(14)

:I‘o clalu-ify the sign convention in (12), notice that for
_ inductive transmission lines B, <0 and capacitive shunts
B,, > 0 where B, is the shunt connection at bus i. Since the
V, are voltage magnitudes, write

Vi=e* - (15)
to form
Qi = Z e(xi+xk)cik (16)
keK,
or
0= Z f(xluk)cik- (17)

keK,

Since we are concerned with perturbations of the solutions,
we form ‘

AQi=~ X [f(x;+x,+Ax;+ Bx )= f(x;+ x| ey

keKk;
(18)
or ‘
AQi=— ¥ hu(Ax;+Bx;)c, (19)
. kekKk,
where
hik = e(xl*'xk)(e(Axi*'Axk)_l)‘ (2())

It can be seen that 4, (Ax, + Ax,) is monotone increasing
and restricted to the first and third quadrants in (Ax, +
Ax,). We create a linear system of equations of the form

AQ;=— ¥ (Ax;+Ax)c8u (21)

keKkK;

where g;, = g,,. If we examine solutions of (18) for which
|ij| <rj=1, 2,--+, N then it is only necessary to con-
sider g;, in (21) which are bounded by

(e7-1)
-2r

Further, if we are interested only in problems of voltage
reduction —r <Ax;<0 j=1,2,---, N it is only necessary
to consider g, which are bounded by

gf.—_jrz—Tl) (23)

Every solution to (18) with bounded Ax; then corre-
sponds to a solution of (21) with some set of coefficients
8. bounded by inequalities (22) or (23). To demonstrate
the nonlocalized response of (18), it is necessary then to
demonstrate nonlocalized response for the linear system
(21) for all g, within the appropriate bounds. We will
show that the set of equations (21) have a network inter-
pretation and that there are disturbances AQ, that produce
a nonlocalized response. To put the linear system in more

e -1
27 <8< KVk(—T) N %))

Yk <gu <V
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recognizable form, rewrite (21) as
— AQ = HAx (24)
where
‘ hy= Cik8ik = 8ix By cos 0, ‘ (25)
and |
Chy= ) S8k +2¢,8;;. (26)
keK, :
kwi
The conventions involved in (12) produce nonpositive

off-diagonal entries in the B matrix for the power system.
If we associate — AQ with a set of currents and Ax with a
set of node voltages, then the H matrix can be thought of
as a conductance matrix for a resistive network with the
same topology as the power system. Nodes i and k in the
resistive network are connected with positive conductance
— 8By c0sb,,. The conductance to ground at node

- iis
given by
hiy=2g,c, +2 E Cir8ik (27)
kek,
kwi |
hi=2g;|— B;,— E By |+2 Z 8By cos 8. [(28)
kek; keK,; !
ki ki P

To verify that the conductances h,, are typically negative
consider perturbations small enough so that

8k = ViV (29)

In this case
h,=-20,. (30)

The typical load bus (PQ bus) in the power system has
Q;> 0 so that for small disturbances the equivalent resis-
tive network is composed of positive resistors between
nodes and negative resistors to ground at the nodes corre-
sponding to load buses. The dc load flow assumptions of
small angles 6, and voltage magnitudes near unitylive,
for small perturbations

(31)

Again, the typical PQ bus has a capacitive connection to
ground from the transmission line models and possible
static capacitors which with our sign convention is a nega-
tive value of A,,.

Estimates of the size of the perturbations r, for which
the shunt connections remain negative can also be ob-
tained. If we assume

hy==2B,.

(32)

which is typical at PQ buses then A, is maximized‘lf 8
takes on the maximum value possible while each g, is the
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minimum. For example, for the voltage reduction case

h Gz
i S @y 2r 0 (33)
where
Qix = ZV? Bis - Z Bik (34)
kek,
k#i
and
Q=2 Z V;‘V;cBi‘k cos . (35)
keK,

ki
Since Q,, is available from the diagonal entry of the
Jacobian of the load flow solution and

Q,v= _ (Qis;Q&) (36)

the range of » for which (33) is negative can be computed
directly. For the AEP 14 bus system the bounds on r at the
load buses were computed. The corresponding voltage
bounds ranged from 22 percent to 65 percent. In other
words, for all acceptable perturbations of the 14 bus sys-
tem the equivalent resistive network has negative shunt
connections to ground at the nodes corresponding to PQ
buses.
With the preceding as justification we write

H=B-C (37)
where B is an admittance like matrix and C is a diagonal

matrix representing the negative conductances to ground
from (28). From (25)

Eik = 8ix B, cos 0,

where the g, satisfy (22) or (23). ‘

To examine the structure of disturbance propagation, we
define an echelon structure for the network. Let echelon 1
correspond to the PV buses, echelon 2 to the PQ buses
(not in echelon 1) directly connected to echelon 1,. ..
echelon i to PQ buses (not in previous echelons) directly
connected to echelon (i —1), etc. Three or four echelons
seem typical of transmission systems we have examined. It
should be noted that echelons are different than organiza-
tions of the network that are disturbance related like tiers
[7] or disturbances areas [19]. We can write (24) as

Eu - 5:1 512 0 0

By By, - Cn By 0 Ax,
0 1_;32 1_333 - C_'33 By, Ax,y
0 0 §43 By~ Cu Ax,

AQ,
AQ,

= 38
ao, | ©®

AQ,
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or
HAx =~ AQ

where B, >0, B,;<0, and C, is a diagonal matrix with
C.; > 0 representing negative connection to ground. |

V. NONNEGATIVE MATRICES

Such an H matrix is called an M matrix if it can be
written as 3

H=s]- 4 where A> 0
and p(A) < s, where p(A) is the spectral radius of A and
4> 0 means that every element of A is nonnegative. If
s> p(A), then H is a nonsingular M matrix. There are a
large number of equivalent conditions to the statement “H
is a nonsingular M matrix” [20]. The following are equiv-
alent and are used in the sequel: ‘

1) H is a nonsingular M matrix;
2) H 1> _
3) all the principle minors of H are positive;

4) There exists a positive diagonal matrix, D such? that
HD is strictly dominant. .

An immediate consequence of 4) is that if H is a nonsingu-

lar M matrix, then every principle submatrix of H has a

nonnegative inverse. Since all off-diagonal entries are non-

positive ‘
(Eﬁ"cﬁ)Df: i=2,3,4

is strictly dominant and (B,, — C,)~! > 0.

In the sequel it will be assumed that H is a nonsingular
M matrix. Note H itself is not diagonally dominant due to
the shunt connections, but has both positive and negative
row sums. The positive row sums correspond to the con-
nections to the swing bus or shunt reactors in the full H
matrix of (38). The assumption that H is a nonsingular M
matrix does not preclude shunt connections but limits their
size. To see that the limit is a reasonable one, consider a H
with some negative shunts but which is a nonsingular M
matrix and imagine increasing one shunt, ie., !

- -1 ¢ 'xixiT
(B-¢,ee! =X+ —
: 1-¢;x,

(39)
where H™!= X >0 and x, is the ith column of X, e isa
vector with a one in the ith position and zeros elsewhere.
The limiting value of ¢, is seen to be 1 /x;;. The inverse
remains positive until it blows up. For Ci=e+1l/x,,
however, the inverse is entirely negative. Critical values! of
shunt capacitance for example systems are found to be
unreasonably large. |
In general, we will assume that the PV buses regulate
correctly, ie., that Ax, =0. Before proceeding, however,
suppose that Ax, = ae;, ic., a2 small perturbation in one
PV bus voltage while the other PV buses maintain volt-

eoc._qnnr
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age. The remaining voltages must satisfy

( Ezz_“ C-'zz ) Ezs 0 Ax,
B;, (Baa: G ) §34 Ax,
0 By (Bas - Cu) || Ax,

—aBye,
=/ 0 (40)
0
or

ﬁzzAx = - aAQ.

If there are no shunt reactors in the second echelon, the
Tow sums in the matrix H,, of (40) are

(ﬁzzl)r‘_‘[("ﬁzll“z‘z)T: -l

where 1 is a vector of 1’s, and & =C,l. Reactors to ground
would only increase the first part of the row sum. Since
B, <0 and H,, is a principle submatrix of H, it can be
seen that the assumption that H is a nonsingular M matrix
implies that the lower echelon voltages track the PV buses
in the sense that if a PV bus voltage increases, then the
lower echelon voltages tend to increase and visa versa.
Again, if H fails to have a positive inverse, unusual system
behavior can be expected.

The matrix H,, is significant in investigating other dis-
turbance propagation. If Ax, =0, then arbitrary perturba-
tions must satisfy where 22 has positive row sums in
echelon 2 and negative row sums in echelons 3 and 4. We
now state results which are independent of the size of the
shunts as long as H has a positive inverse and has the
assumed row sums.

+ EZ]

VI. UNIFORM PERTURBATIONS
Consider a nonsingular M matrix partitioned as follows

M, M, 0 ][ax, 0
My, M,, M, |lAx,|=|-AQ, (41)
0 M, M| Ax, 0

where
Maal+Mab’=k>0
Mcb‘+Mcc‘=—C; c20

and let AQ, be chosen so that Ax,=al a “uniform”
perturbation. Then it can be verified that the solution to
(41) is given by

Ax,=a(l- M7 k)

Ax,=a(1+ M7Yk).

In other words, Ax, <||Ax,ljco1 and Ax,~ [jAx,joo1. For
example, a uniform perturbation in echelon 2 produces
larger voltage changes in all of echelons 3 and 4 while a
uniform perturbation in echelon 3 produces larger voltage
changes in echelon 4 but smaller voltage changes in eche-
lon 2. The general conclusion is that a uniform perturba-
tion in an entire echelon is attenuated as it propagates

321

toward the PV buses but is amplified as it moves away
from the PV buses. It should be recognized that the result
is valid for some AQ, (which depends on the 8 and 6,)
as long as H is a nonsingular M matrix. Note that,
although a uniform perturbation in an entire echelon is
severe, the results are larger or smaller than the change in
voltage in the perturbed echelon. !

To clarify the role of the second echelon in disiurbance
Propagation, consider disturbances limited to the# second
echelon and write

[Ezz - é'_22 - 323(333 - C‘\‘33) —lénlez == AQ: (42)

where 3 corresponds to echelons 3 and 4 combined. The
row sums of the matrix in (42) are determined by the
transmission lines connecting echelon 2 to the PV buses,
the shunts in echelon 2 and the shunts reflected ﬁ*om the
lower echelons. It is reasonable to assume that the| matrix
in (42) has positive row sums or is diagonally dominant.
Hence, the proof in [6] of the tierwise spreading |of dis-
turbances in the active power problem is appropriate to
disturbances and iters which are limited to the second
echelon. That is, the reactive power problem behaves like
the active' power problem in disturbance p‘ropagat‘?'on on
buses with positive row sums. It is only when negative row
sums are encountered that voltages away from the dis-
turbance can change more than those at the disturbance,
It is also possible within restrictions of a nonsingular M
matrix to have voltage gain for a single disturbance. To
demonstrate this fact, consider a disturbance AQ; aq‘ bus j
and suppose the Ax; is larger than Ax,, m+ j. We will
show that the capacitance at some other bus ¢;; ¢an be
increased until Ax,, > Ax; without violating the conditions
of a nonsingular M matrix. Using (39) we compute the
value of ¢;; so that x,,, > X, b

1
Ci > X1 — X7 (43)
i
X;+ x,.jx e |
JJ. mj

Recall that the condition for H to be a nonsingular M
matrix is that ¢; <1/x,,. We have assumed that Xy > X s
so it is only necessary to select i so that X > X to make
the second term in the denominator positive. If there is no
such i, then we are assured that we can reverse the argu-
ment and provide voltage gain from bus m to bus j. The
value of ¢;; computed from (43) will turn out to be large if
both j and m are in echelon 2. However, if j is in echelon
2 and m is in a lower echelon, then the capacitor values are
not unreasonable.

VI. CONCLUSION

In this paper we analyze the justification of the assump-
tion of localized voltage response to changes in reactive
power injections. This assumption is often made .for de-
signing control schemes and computing algorithms in large
scale electric power systems. Here we show that it is not
possible to give an exclusive answer to the question of the .
localized response in the reactive power-voltage problem.
The answer is network and operating point dependent. We
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state (sufficient) mathematical conditions under which a

localized response is true. Most of the transmission lines of
a power network possess the no-gain property only in a
subset of R? Although the above results explicitly define
regions where a transmission line has a localized response,
they cannot be used to demonstrate a voltage gain. There-
fore, we develop algebraic type statements to prove that a
system may have response which is systemwide,

Next, an “echelon” structure is defined for the linearized
equation describing the incremental voltage magnitudes in
terms of the incremental reactive injections. By including
the capacitive shunts, it is shown that there are a class of
“uniform” perturbations (uniform voltage changes in an
echelon) that are attenuated in the direction of the PV
buses but which are amplified in the direction away from
the PV buses. Under modest assumptions concernirig the
strength of the ties to the PV buses, it is shown that
disturbances that are limited to echelon 2 spread in the
tier-wise manner previously established for the active power
problem.
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