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Abstract—
The paper describes a practical approach to implement-

ing the congestion cluster pricing method as a viable conges-
tion management system (CMS) in the operation of electric
power systems.

The congestion cluster pricing method is formulated as
a stochastic optimization problem of the cluster design. In
the formulation the performance of the pricing method is
introduced as a measurable function of cluster design, based
on the conceptual criteria necessary for an effective CMS.
We define the search space from which a particular design
may be selected. Following the formulation the stochastic
elements to the optimization problem are discussed by de-
veloping suitable representation of various uncertainties in
the system. It is shown that the complexity of the problem
leads to the search based methods as the preferred option
for solving for the optimal cluster design.

Finally, some reasonable approximations are suggested to
solving the problem thus making it a practical approach to

implementing the congestion cluster pricing method. A nu-
merical example is given to illustrate the proposition.

I. INTRODUCTION

Competition and market mechanisms have been intro-
duced into the electric power industry to maximize system
efficiency. Here the well designed market structure replaces
the strict regulation regime of the vertically integrated in-
dustry. In these markets trades in the spot market are
frequently linked to short-term efficiency, while bilateral
transactions are linked to long-term efficiency .[2]

The congestion management system (CMS) 1, plays a sig-
nificant role in operating the energy market. At the time
of writing, there are two schools of thoughts in implement-
ing a market-based CMS. The first is bus-based CMS, an
example of which is nodal pricing. [7] The second is cluster-
based CMS, in which nodes belonging to the same cluster
receive a single cluster-wide price. An example of this is
cluster-based CMS.[8]

The cluster-based CMS is much more accommodating
to implementing bilateral transactions by providing trans-
parent information on the status of transmission (system)
congestion. The uniform prices within clusters are another
advantage of the cluster-based CMS. The disadvantages are
related to the unfavorable increase in cost of dispatched
generators in short term due to: (1) the cost from the
cluster-wide prices in inter-cluster pricing and (2) the cost
from the uplift charges in intra-cluster pricing.

The congestion cluster pricing method is quite suitable
as a viable CMS as it reduces the the effect of disadvantages
while preserving the effect of advantages of the implemen-

1Congestionmanagementsystemis the processof choosingwhich
generatorsto dispatchin the presenceof congestion.[4]
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tation of the cluster-based CMS. [9] The key to the method
is the novel approach proposed in [10] used to compute the
sensitivity measures of injection.

The implementation of the congestion cluster pricing
method consists of two steps: (1) aggregation of individ-
ual nodes into clusters and (2) computation of cluster-wide
prices. The number of clusters and the duration of fixed
cluster boundaries are required to be specified ahead of
time with respect to some heuristic measure of long term
efficiency according to the need of the market and its par-
ticipants. Details of the congestion cluster pricing method
can be found in [8] and [9].

The minimum desired criteria for the congestion cluster
pricing method can be summarized as

1. the transaction between any buses within the same
cluster have little impact of power flows on the con-
gested transmission lines

2. the energy cost computed after relieving inter-cluster
congestion is relatively small

3. the additional energy cost necessary for relieving intra-
cluster congestion is relatively small

The paper is organized as follows:
Section II shows the problem of the cluster design formu-
lated as a stochastic optimization problem. The search
based methods are introduced as the preferred option for
solving for the optimal cluster design given the high com-
plexity of the optimization problem in Section III. Section
IV presents the numerical examples to illustrate the propo-
sition, and Section V summarizes the conclusions of the
paper.

II. FORMULATIONOF CLUSTER.DESIGNPROBLEM

Throughout the paper the formulation of the problems is
performed under the following two assumptions.

1. DC power flow
2. Quadratic generation cost This implies that under the

perfectly competitive market condition, the optimal
production decision for the given price
based on the marginal cost given by,

_ dCG ~
MCGa —

— dQQi

= hG, QG,

is to generate

(1)

First, we present the formulation of the aggregation step
in the implementation of the congestion cluster pricing
method as a stochastic optimization problem given by

J
T

i3*= arg min
b’ee ~

J(*,t)dt=&[~TL(@,&(t),t)] (2)
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where @ represents the search space from which various
J

cluster design alternatives can be selected for aggregating
individual nodes into clusters. In Eq. (2) the performance
measure denoted by J(6, t) is the expected value of the
sample performance, L(O, ((t), t) which is a function of the
cluster design, 0, and the uncertainty, <(t)in the system,
Given that it is desired to keep the same cluster boundaries
for a certain period of time, i.e. a season, T represents the
duration of fixed boundaries. A slightly modified form of
Eq. (2) is a little more useful as the minimum time scale at
which the operation of the system takes place is typically
one hour. Thus, the optimization problem of the interest is
given by

A. Modeling Uncertainties in the System

In Eq. (3) the uncertainty, ~(t)in the system can actually
be broken into three parts: the uncertainty in load ~Q~i(t),
the uncertainty in generation bid, ~c~i (t), and the uncer-
tainty in status of equipment, i.e. generator or transmission
line, fQGi or (Ft rWPf2CtiVely.

We use a time series representation of each uncertainty.
1. Modeling load uncertainty

The time series model of load can be represented in a
general version of a discrete time random walk by

QDi[~+ 1]= $D, (Q~i[~+ 1],QD;[~])+ eQD,[~+ 1]
(4)

where eQD, [k] is normally distributed with zero mean

and variance n~~. and is independent of eQDi [1] for.
any k # 1. The expected value of the demand at k is
denoted with @D, [k] while the projected demand at k
computed through Eq. (4) is indicated with QD, [k].
Typically f(-) is assumed to take on either linear or
exponential form, and the parameter estimation is per-
formed to complete this regression model. [1]

2. Modeling generation bid uncertainty
The time series model of generation bid can be repre-
sented in a similar way by

MC~, [k + 1] = 2aG, [k + I]QG, + bG,[k + 1] (5)

where typically the slope, aGi is assumed to be fixed,
i.e. aG, [k] = aGi and the intercept follows another
linear regression model given by

b[k + 1]= b[k] + ecG, [k] (6)

where eQc,, [k] is again normally distributed with zero

mean and variance a~c.. .[1]

3. Modeling equipment st;tus uncertainty
The time series model of equipment status can be rep-
resented using a conventional Markovian chain consist-
ing two states as shown in Figure 1. The parameters
for the failure rate and the repair rates are denoted by
A and ,urespectively for each component in the figure.

P

Pig. 1. Markovian Chain Modeling of Equipment Status

Using these parameters, the governing equations for
transition probability for states O and 1 are given by

J-[l-(A+p)]k+&To[k]=– A+p (7)

+1=*[ l–(N-p)]~+~
A+p

(8)

respectively given that the component is initially in the
“up” state. [6]

B. Function for Sample Performance

In Eq. (3) the function describing sample performance,
L(d, ([t], k) determines how the superior designs are com-
pared to the inferior ones; i.e. if &[.L(6Z,<[k],k)] <
~ [L(8j, ([k], k)], then @i is a better cluster design than 19j.
Thus, the function is directly related to the various criteria
for a good congestion cluster pricing method. The mini-
mum desired criteria for the method are already discussed
in the previous section and are listed here again for com-
pleteness:

1. the transaction between any buses within the same
cluster have little impact of power flows on the con-
gested transmission lines, LDti,.~l(19,t[k], k)

2. the energy cost computed after relieving inter-cluster
congestion is small, ~QG, (d, ~[k], k)

3. the additional energy cost necessary for relieving intra-
cluster congestion is small, LAQ~, (@,t[k], k)

Limiting the sample performance to reflect only the mea-
sures of the above three criteria, we consider the overall
sample performance funct,ion to be given as

L(.) = ctD(i,j)LD(i,j) () + @QGi ~QGi (“) + ~AQ~; ‘AQG, (“)
(9)

where a’s denote the relative importance factors of each
criterion. Typically, the factors are selected such that
~D(i,j)LD(i,~) () z ~AQ~, LAQ~, (“) ~ ~Q~, ‘Q~, (“)

The congestion distribution factors (CDFS) proposed in
[10] give good measure of the impact of transactions be-
tween buses to the congested lines. CDFS are novel distri-
bution factors computed in such a way as to be independent
of the slack bus. See [10] for details of the derivation.

The energy cost after relieving inter-cluster congestion
is closely related to the computation of cluster-wide prices
step in the implementation of the congestion cluster pricing
method. As a matter of fact, the equations used for com-
puting the energy cost and the cluster-wide prices are the
same. Suppose the nodes G~,Gi+l, ..., Gi~k are in the clus-
ter Zj. Then, at some t the new generation cost associated
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with the cluster Zj is given by
.J

C,j (Q.j) = f.j (QG,,QG,+,, ~~, QG,+k) (lo)

where ~zj is the monotonically increasing nonlinear function
representing the least cost combination of Qa~’s in zj for
producing Q,,j. The marginal cost of zone Zj, J4C’zj, can
be used in order to compute ~.j (,) where

M *+&+. ..+~2a,+,)‘1Q.j Q.j C RI,

I( )
–1

++ *+. +J-
n. 2an+,. Q.j Q.j GRIk

(11)

where R1i’s define the region of operating condition in
cluster j with q number of generators are still below the
generation limits. a,’s represent the coefficient of associated
marginal cost of those generators below their generation
limits.

With Czj (Qzj ), the generation costs (and/or cluster-wide
prices) are computed by solving the optimization problem
given as

Q;j = arg~in~c=j(Q.j)
=3 ‘3

(12)

subject to the load flow constraint, i.e., total generation is
equal to system load,

(13)

Zj D;

the congestion interface flow limit constraints, i.e., the
power flow on any line 1 along only the congestion inter-
faces is within the maximum rating of the line,

and the generation limit constraints, i.e., the dispatch
amount in cluster Zj is within the sum of maximum rat-
ing of the corresponding generators within the cluster

The computation of Ifl., yields

dFl 8QG, dFl ~QGi+l dFl ~QG,q.
Hlz, =—— —— ——

dQG, 8Q.j + dQGi+, ~Qzj ‘“””+ dQGi+k t3Qzj
(16)

with
dFl

dQGi
— = H,G, (17)

and with

(11 1 1 )
–1—+...+—Q., (18)QGi = = Z + hi+l ha+k

if QG, E RI,.
The solution to the optimization problem (12) then given

by
(19)

where Ml# O if and only if IF1[ = Flm”z and

where pg,az = 2a G, QH,8Z.The total energy cost after re-
lieving inter-cluster congestion is then given by

TCQ~i = ~ p,, Q=, (21)
z<

The computation of the energy cost after relieving intra-
cluster congestion is similar to that after inter-cluster con-
gestion. The optimization problem to be solved in order to
determine the location marginal prices is given by

AQG, = arg min ~CG,(AQG,) (22)
AQG;,G;C2 G:

where
AQG, : the adjusted generation amount at node G~
z : the subset of clusters experiencing intra-

cluster congestion

subject to the load flow constraint

(23)

the transmission line flow limit constraints, i.e., the power
flow on any line 1 in the entire system is within the maxi-
mum rating of the line,

IE + Atil = IHJG, (QG, + AQG,) + HuI, QD, I s W“’
(24)

and the generation limit constraints, i.e., the dispatch
amount at node G~ c .23is within the maximum rating
of the corresponding generator

O s QG, + AQG, < Q~%a’ (25)

The additional energy cost necessary for relieving intra-
cluster congestion is then given by

TCAQG, = ~ aGi AQG, (QG, + AQGi ) (26)

GiGZ

III. PRACTICAL SOLUTIONTO THE CLUSTERDESIGN
PROBLEM

After the formulation we discover quickly that the so-
called real value based methods are unlikely to yield a
good result for solving this particular optimization prob-
lem. The real variable based methods refer to the analyt-
ical approaches to finding the optimal solution which re-
quire a sequential improvement by examining the gradients
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of smooth trajectories in the system with respect to search
- space. The reason for the difficulty in applying the real

variable based methods to the problem lies in the lack of
the nice structure of the search space, @, such as continuity,
differentiability, etc., which are essential for finding smooth
trajectories and computing gradients. This leads one to be-
lieve that the search based methods are more suitable for the
optimization problem in Eq. (3). The search based meth-
ods refer to the simulation supported approaches to finding
the optimum which requires a ranking of all possible design
after a thorough evaluation of performance of each design
alternative.

In order to apply the search based methods for the prob-
lem in Eq. (3) we first examine the search space, Cl. Sup-
pose that the system is composed of N~R transmission lines
and NB buses; NG generators and ND loads, and that the
maximum number of clusters allowed is limited to N=. Since
once the maximum number of clusters are fixed, it is always
possible to devise a cluster design to perform better than or
at least equal to any existing design by allowing one more
cluster in terms of L(6, ~[k], k) defined earlier [9], we start
with the search space of size, ]@/ given by

l@l = ~; NB-NZ) (27)

A typical electric power system consists of hundreds to
thousands of buses, so conservatively let NB = 100. Even
if the number of clusters allowed is less than 10, assume N.
= 5, the number of designs to be considered in the search
based methods is given by

[@[ = 5@00-5J R 2.5X 10’6 (28)

which is typical by combinatorial standards.
Even though a further reduction in the size of @ maybe

possible depending on the topology of system, it is clear
from examining the size of the search space that a brute
force application of the search based methods is not likely
to be a good approach for any reasonable simulation time.
Therefore, it is necessary to exploit any structural charac-
teristics of the search space linked to the sample perfor-
mance function.

One such characteristic is the first cut cluster design
based on CDR. Even though no analytical justification on
the effective measures is available, there are a few empiri-
cal results which suggest that the size of the search space
can be reduced significantly by designing clusters based on
CDFS with little concerns for carelessly excluding good de-
signs from the remaining search space. [8] This is especially
true if the sample performance function,

~() = a~(?,j)~D(i,J)() + ~QG,LQG, (“) + ~AQa, LAQC, (“)
(29)

is such that [9]

~D[i,j)LD(i,j) (.) >> CZAQ~iLAQ~i () > CKQ~,LQ~i (.) (30)

A practical approach to the clustering design, thus starts
with the system operator identifying the potentially crit-
ical lines, some of which may be congested at the same

time or at different times. Typically, the number of criti-
cal lines, N+R, is less than five, so again conservatively let
N+R = 3. For each of the three transmission lines, corre-
sponding CDFS are computed. Then, based on the relative
values of CDFS the system is divided into clusters as de-
scribed in [10]. Since there are multiple critical lines, the
clusters defined for each line must be superposed on top of
each other, and the intersections of the clusters constitutes
the first cut design. The empirical results show that for a
system of NB = 100, three critical lines result in around 20
clusters. Given that the desired number of clusters is five,
the search space of the problem is reduced from 2.52 x 1066
to 3.05 x 1010.

Although the size of @ is reduced by the orders of mag-
nitude, the problem is still not manageable from the op-
timization point of view. Suppose 10,000 samples are se-
lected randomly from @ and serve as the sample set, (3’ for
applying the search based method. The probability of the
optimum solution from @ being ccmtained in this sample
space is given by

(
10,000

Prob(d’ E (3’) = 1– 1 – 305 ~ 10=
)

= 3.28X 10-7

(31)
which is less than unlikely.

Still the sample size must be further reduced to a man-
ageable size before applying any search based method to
Eq. 3. Fortunately many of 3.05 x 1010 are infeasible as
geographically distant clusters after the first cut design can-
not be combined to be included in the sample set. Some
more topological characteristics allows further reduction of
the size of the sample set. Even though a generalization of
exploiting the topological characteristics of the system may
be made based on the recent development in various graph
partitioning methods, we employ more heuristic approach
to reducing the sample set. For instance, there are some
rules of thumb, such as not allowing clustering near the
critical lines, that significantly limit the possible designs to
be included in the sample set. We claim without an ana-
lytical proof that the heuristic approach by an experienced
system operator allows for the sample set containing around
1,000 design from which at least 50 designs belong in the
top 100 designs of the original search space for NB N 100,
NTR R 200 and NZ R 10. Thus, by and large the complex-
ity of finding the optimal solution to the problem in Eq.
(3) is reduced from the search space of IGI x 2.5x 1066to
the sample space of IWI N 1,000.

A. Application of Ordina,l Optimization Method

Here we examine the optimization problem in Eq. (3)
from the perspective of the ordinal optimization (00)
methodhas been proven to be very effective in dealing with
the search based methods [3].

The basic idea of the 00 method is the softening of the
objective of finding the optimum to finding any design be-
longing to the “good enough” subset. For example, the
good enough subset can be defined as the top-n% of the de-
sign space. The softening of the objective allows for working
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only in the much reduced selected subset with the expec-
“ tation for a reasonable number of designs belonging to the

good enough set at a high confidence. If the performance
of each design is measured without any noise, the original
optimization problem is transformed into the problem of se-
lecting the design with the smallest evaluated performance
belonging to the selected subset. [3] When the performance
estimate is noisy, it becomes necessary to include more than
one design in order to secure with higher confidence a cer-
tain degree of matching, or alignment, between the selected
subset and the good enough subset. [5]

Suppose that the size of the search space containing all
possible designs is in the order of 1010as in the case with our
problem. By goal softening principle we limit our goals to
picking any of the top 5% designs. Consider a set consisting
of 1,000 random samples from the search space. Then, the
probability of retaining at least one of the top 5% designs
in this sample space is given by

Prob(G n @ # 0) = 1 – (1 – 0.05) 1’000s 1 (32)

where G and 6)’ denote the set of the top 5% designs and
the sample space respectively.

Similar to the idea of taking an exit poll from a limited
number of electoral votes, if the designs in the sample space
are chosen completely random, then we may assume that
0’ of the size 1,000 will more or less include 50 designs that
belong to G. We can thus reduce the problem from finding
any of designs that belongs to the set of top 5% designs
from the search space of size 1010 to finding any designs
that belong to top 50 designs from the sample space of
size 1,000. The reduction of complexity is, indeed, quite
considerable.

Let G’ denote the set consisting the top 50 design con-
tained in the sample space, @. Now consider the selected
subset consisting s designs chosen randomly from ~’. We
are interested in necessary s such that the alignment prob-
ability defined as Prob (IG n SI > k) > ?A where k and
PA are defined depending on the purpose. For example,
let k = 3 and PA = 90%. For the parameters given the
equation for computing the alignment probability is given
as [3]

[ 1[50 1,000–50
[s\ - i

Prob(lGn Sl>3)=~ i 1
[1

>0.90
1,000i=3

[s[
(33)

Using Eq. (33) we deduce that the selected subset requires
to have at least 102 designs in order to have at least 3 of
them belong to the top 50 designs of the sample space.

To summarize the application of the 00 method allows
for a considerable savings of computational time in obtain-
ing an acceptable solution to optimization problem through
search based methods while the method itself involves only
the following simple steps [5]

1. selecting the sample set of size N, Itl’1 = N

2. defining the goals: # of good designs, g, # of good
design alignment in the selected subset, k and the prob-
abilityy of alignment, T’A

3. determining the subset size, s and selection rules that
meets the goals

4. constructing the selected subset, S
5. comparing the designs in the selected subset

Before describing the method for accurate comparison of
designs, we point out that the goal stated at the beginning
is not a very impressive one since given that the size of
the search space is in the order of 1010, the top 5% design
include the designs that is as far as 5 x 108 away from the
true optimum.

For the optimization problem at hand, however, the top
50 designs in the sample space consisting of 1,000 are much
better representatives than the top 5% of the entire search
space. As discussed earlier this is because the designs in
the sample space are not picked randomly but through a
rigorous testing of the performance “basedon the first crite-
rion for good cluster design. It is stated earlier that if the
clusters are defined based on the CDFS, and if the impor-
tance of each criterion is defined such that first criterion
is weighed orders of magnitude higher than the other two,
then the designs based on the CDFS are ranked much closer
to the true optimum than the rest of the possible designs.
It may not be possible to accurately quantify how much
better are the top 50 designs in the sample space to the the
top 5% of the entire search space. However, it would not
be surprising to find that the sample space contains at least
50 of the top 100 cluster designs from the search space if
the clusters are defined based on CDFS respect to the criti-
cal transmission lines identified by an experienced operator
relying on many heuristic tools.

B. Fairly Accurate Comparison of Designs in the Selected

Subset

The ranking of each design alternative requires evaluat-
ing the sample performance. According to three criteria
for good cluster design, L(6, &[k],k) is defined as a func-
tion consisting a linear combination of three parts, namely
L~(i~) (“), LQ~, (“), and LAQC, () as shown in Eq. (9). As-
sume that the relative weights, a, are chosen so that

Then we claim without proof that only LQR,(.) and
LAQC, (.) are relevant for evaluating the designs m the se-
lected subset. The reason for this is because when the
designs are chosen to be included in the selected subset,
LD(i,j) (.) is already used for comparison purposes. The de-
signs in the selected set are assumed to have about the same
LAQ~t (.) compared to the others in the same set for other-
wise the selected subset can be further reduced due to Ineq.
(34).

Consider the modified sample performance, L’(8, ([k], k).
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We write ~~=o L’(.) as
*

walk or the transient Markovian chain, the number of prob-

[

abilistic states that need to be evaluated grow exponentially

~L’(O,<[k],k) = ~ rnin ~Czj(Q,j[k],k)
with time k in order to compute Eq. (35). This is quite

(35) limiting in applying the search based method. Therefore,
k=O

~=o Q.j [k]
zj some modifications are necessary in order to simplify the

1
optimization to be manageable. One such modification is

+ rnin ~c’G,(~Q~[~],lc) to work with the steady state probability rather than the
~Q~;,Gicz[~] ~ transient probability.

subject to the load flow constraints at each hour k

~Q.,[k] = ~QDi[k] (36)

,73 D~

E AQGi [k] = O (37)

GiCZ[k]

the transmission line flow limit constraints

Ifi[k] + AF[[k]l = /HIG,[k] (QG, [k] + AQGi [k]) + HIDi QDi[k]/

(39)
and the generation limit constraints

B. 1 Steady State Approximation of Uncertainty

For representing the uncertainty in load and the uncer-
tainty in generation bid through steady state probability,
the models described in [11] is useful. First, for modeling
the load the identified are the several basic load patterns:
typically peak load pattern, normal load pattern and off-
peak pattern as shown in Figure 2, and the range of system

I / \ / \ F

P; P: P: P; P:Stem

Fig. 2. Membership Functions for Individual Load Pattern

Under the formulation presented above the uncertainty load levels given in discretized steps of hMW starting from
in the system is incorporated by considering QL MW, i.e. Q~f(k) = Q~ = kh as shown in Figure 3.

1. Load uncertain y Then, in the model if the total system load is larger than
substitute Eq. (4) into QD, in Eqs. (36), (38) and (39)

2. Generation bid uncertainty F4J~ )
substitute Eqs. (5) and (6) into s in Eq. (35)

3. Equipment status uncertainty 1 >1 -

[ ] (or Q&~’[~])if the transmis-
~

substitute Ofor Flmazk ~ ,
sion line 1 (or the generator Gi) Min the ‘tdown” state ~ ~ii

With Eqs. (35) - (41) we can rewrite the cluster design &

problem as the stochastic optimization problem given by

[k=o ~ ~ 1’42)~8’=arg~~~~ Y(O,k) ~ S ~L’(6’ ([k] k)
k=o *

The expectation in Eq. (42) can be evaluated using the 44
%

search based method (the Monte Carlo method) by Fig. 3. DiscretizedLoad DurationCurvefor the Rangeof System
Load

‘[SL’(’’[’]’)I=+:T~.ter ~ ~L’(~,~i[k],k) (43) Qpj the load distribution fOllOWSthat Of the Peak; if SYS-
tem load falls between Q[21and Q[31,it follows the normal
load distribution; and if system load is less than Q[ll, off-

where <i represents the ith sample of the uncertainty. [3]
It is recognized that because of the uncertainty is mod-

peak load pattern is used to depict the load distribution. If
the system load is either between Q[ll and Q[21or Q[31and

eled using either a general version of a discrete time random Q[ql the appropriate patterns are meshed to create typical
2~P~~~e d~n~t~~ the lin~s OII]Y 011 the congestion cluster interfaces. individual load pattern. This process can be, employing
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fuzzy logic, summarized as
%

(44)
where q denotes the membership function. Similar ap-
proach is taken for modeling the generation bid. The details
for modeling generation bid using the steady state proba-
bility is referred to [11].

For modeling the uncertainty in status of equipment, the
model presented through Eqs. (7) and (8) is used directly
by considering the same probabilities as k -+ co, i.e. the
steady state approximation. The resulting probability is
given by

(45)

(46)

Using the probabilities given in Eqs. (45) and (46), the
probability for different system status can be derived. For
example, the probability corresponding to having three
transmission line failures is given as

[1NTR
Prob(3 line outage) = s N~R-’[co] (47)7r:[ccl]7r1

IV. EXAMPLE

We illustrate the approach described in the paper using
the American Electric Power System (AEP) 118 Bus Test
System. The system consists of 118 buses: 54 generators
and 64 loads, and 186 transmission lines interconnecting
the entire system; i.e. NB = 118 (NG = 54 and ND = 64),
and N~R = 186.

The congestion cluster pricing method is to be imple-
mented on the 118 bus system for the cluster boundaries
defined at k = Ofor a season consisting of 90 days (T = 2160
(hours)). The maximum number of clusters allowed is lim-
ited to , i.e. N. = 15. Thus, the maximum size of the
search space is 1.37 x 10121computed by

1~1 = 15(118-15)

– 1.37 x 10121
(48)—

which is an astronomical figure.
For each load in the system, three types of load patterns

are assigned: peak, off-peak and normal as shown in Figure
4. There is no uncertainty in generation. The transmission
lines in the system may experience outages with the failure
rate of A = 5 x 10–4 and the repair rate of ,u = 0.5. For
example, the probability associated with no transmission
line failure is given by

[1NTR
Prob(no line outage) = o 7rg[co]7rp’ [co]

= 83%
(49)

Based on the system parameters it is determined that
there are four critical lines (lines likely to be congested) in

.

peak

normal

off-peak H
,yJ::;__

!-—.-. . ..—.— ..-

---- -__-. day
------- ..--. _,.day

day

61-90
31-60
0-30

~t——.—t
k=O 6 12 18 24

Fig. 4. Demandpatternfor loadz in the system

the system, namely the transmission lines between buses 30
and 38, between buses 59 and 63, between buses 70 and 71,
and between buses 94 and 100.

The first cut cluster design is performed for each of these
critical lines based on CDFS. The clusters are then super-
posed on top of each other to create the clusters over the
entire season. The resulting number of clusters after the su-
perposition is found to be 18. Therefore, the maximum size
of the sample space is reduced to a measly 3)37.5computed
by

1~~1 = 15(1s-15)

= 3,375
(50)

The size of the actual sample space is even smaller once the
clearly inferior cluster designs (or infeasible cluster designs)
are eliminated from the initial sample space resulting in
I@’ I R 300. From this sample space, 30 cluster designs are
picked randomly to form a selected subset. The alignment
probability for at least 3 matches in the selected subset of
30 designs for the top 50 designs is then, approximately
91% computed by

30[~1[3:=:01=,0,,%Prob(lG n SI > 3) = ~

[1
300

a=’
30

(51)
Finally, the performance function is estimated for each of

these 30 designs in the selected subset, S. The uncertainty
in the status of transmission line is not considered at this
estimation step. Table I summaries the estimated sample
performance. As shown in the table, three cluster designs
with the smallest evaluated performance are 19g,613 and
632. Tables II and III describe how the clusters are defined
for the first two designs.

For (313we incorporate the uncertainty in status of trans-
mission lines into the estimation of the sample performance.
It turns out that the probability associated with multiple
line outages is very small; i.e. less than 1.6%. Thus, we
consider only the single line outages. The newly estimated
sample performance is given as

I
T

1
~ ~ L’(09, f[k], I%) = 183.012 (52)

IA=o J
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I

Design $1 Qz .93 Qh 85 ~e
L’(. ) 189.283 185.457 188.195 189.283 185.678 187.644

Design 87 8/3 $9 010 611 012

L’(.) 185.841 187.121 184.424 185.407 185.436 185.709

Design 013 .914 015 19~6 01? 818

L’(.) 184.205 185.430 187.070 187.425 185.733 187.447

Design 919 020 Ozl 82.2 023 024

L’(.) 185.736 185.687 188,195 184.481 184.434 184.478

Design 625 ~26 027 E’28 029 030

L’(.) 184.440 184.470 187.277 184.727 185.687 184.440

Design 031 832 e33 034 635

L’(.) 187.978 184.243 186.929 185.457 188.195

TABLE I

ESTIMATEDSAMPLEPERFORMANCEFOR8;eS

Cluster # Bus #
1 123456789 10,11,12)13)14,15,117,>, >,>,>,
2 25,26,27,28,29,31,32,114,115
3 16,17,18,19)30,113
4 20,21,22,23,24
5 37,38,39)40
6 33,34,35,36
7 79,80,98,99,100,101,102,103,104,105

106,107,108,109,110,111,112
8 43,44,45,46)47,48,49
9 41,42
10 50,51,52,53,54,55,56,57,58
11 59,60,61,62,66,67
12 63,64,65
13 77,78,82,83,84,85,86,87,88,89,90,91

92,93,94,95,96,97
14 68,69,70,74,75,76,81,116,118
15 71,72,73

TABLE II

INDIVIDUALBUS CLUSTER AFFILIATION FOR 6’9

cluster # Bus #
1 123456789 10,11,12,13,14,15,117,,, ,,, ,>,
2 27,28,29,31,27114115
3 16,17,1R 19
4 20,21,2
5 37,38,3
6 33,34,35,36,43,44
7 103,104,105,106,107,108,109,110,111,112
8 79.80.98.99.100.101.102

,-—,...,___
.-,. -,25,26,30,113
!2,23,24
19,40,41,42
.- ,

9 77:78 :82:83 ;84,85,86,87,88,89,90,91 )92,93

El=
“., --,.

10 50,51,!
11 59,60,[
12 63,64,[
13 45,46, ~-.. . .
14 68,69,70,7~
15 71.72.73‘“’”’5-

TABLE III

INDIVIDUAL BUS CLUSTER AFFILIATION FOR 013

As expected some slight correction. is made to the earlier
estimation of the sample performance.3

V. CONCLUSION

In this paper a practical approach to implementing the
congestion cluster pricing method have been introduced.

We have presented the formulation for the implementa-
tion of the congestion cluster pricing method as a stochastic
optimization problem in which the minimum desired crite-
ria for the method is translated into the performance func-
tion.

After introducing the uncertainty in the system, we have
discussed some heuristic techniques to finding the solution
to the newly formulated optimization problem. Given that
the search based method is preferred for solving the prob-
lem, these heuristic techniques are particularly important
because of the high degree of the stochastic nature and be-
cause of the large size of the search space. The ordinal
optimization (00) principles are used to provide some jus-
tifications to the techniques.

The 00 principles are believed to be quite useful for ex-
ploring the presented optimization problem further. The
natural next step may be employing the 00 method to
evaluate the sample performances only for ranking various
cluster design alternatives rather than for calculating the
actual performance measure for a particular design. The
Monte Carlo formulation given for evaluating the sample
performance may then be solved directly without much con-
cern for the large number of iteration. The coefficient of
variation needs to be computed from the ordinal optimiza-
tion perspective if the Monte Carlo method is used so that
some confidence bound can be estimated for the accurate
alignment probability analysis. Finally, some sophisticated
numerical techniques such as the importance sampling may
also be worthwhile exploring as many uncertainties in the
system presented in the paper have very low probabilities
but high impact.

3This system exhibits a somewhat degenerate feature of the reduced
system-wide generation cost with some of the lines taken out. This
implies that the system operator may recluce the system congestion
by cleverly controlling the existing resources.
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