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Abstract

In this paper, a new methodology for power system
dynamic response calculations is presented. The
technique known as the waveform relaxation has been
extensively used in transient analysis of VLSI circuits
and it can take advantage of new architectures in
computer systems such as parallel processors. The
application in this paper is limited to swing equations
of a large power system. Computational results are
presented.

I. INTRODUCTION

The main trust of this paper is to introduce the wave-
form relaxation method (WRM) for the transient stability
analysis of very large scale power systems. In recent
years this method has been shown to be very effective
for the transient analysis of VLSI circuits. Although
the VLSI systems are technologically newer compared to
eléctric power systems, they share many commonalities
with them: the number of nodes typically exceeds
several thousand on realistic systems and both circuits
are sparse. Also, a typical VLSI circuit is a circuit
mainly R-C components, while a typical

power system consists primarily of R-L components

(with some capacitive effects on long lines and as’

shunt compensation). Because of the dualism between
the RC and RL circuits, it is reasonable to assume
that the WR techniques can be applied to power systems
as well. K The implementation of WR algorithms on pipe-
line or parallel processors will result in enhanced
computational efficiency. Hence, the results of this
paper complement the recent research work [1]1-[3] on
applying parallel processors for solving power system
problems.
power systems (VLSP) share the common property that
the system matrix is diagonally dominant, if  the
coupling between machines or groups of machines is
weak. 1In the WR algorithm, this helps in speeding up
the convergence. We emphasize here some of the common
problems in the VLSP and VLSI systems since the inten-
sive research efforts in the VLSI area can benefit
power systems research and vice versa. Moreover, the
developments in the VLSI research area are most often
geared towards the newest computer technology and
architectures [6].
on-line computer implementation or developing software
for power system simulators. It is a well known fact
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Both VLSI circuits and very large scale |

These are important factors in .

that researchers in VLSI simulation have benefited
immensely from the pioneering work on sparse matrix
techniques first applied to power systems [4]. It is
appropriate to emphasize such cross fertilization of
ideas in terms of dynamical simulation as a healthy
trend.

In particular, in this paper, we present recent
results of using waveform relaxation in VLSI circuits
[5]-[7] to the transient stability simulation problem
with the classical model. The results are general
enough to be applicable to multi-machine systems with
mixéd algebraic and differential equations. Use of
parallel processing architectures and numerical con-
vergence aspects are discussed. The simulation
results on three, ten, and twenty-machine systems are
presented. They are very encouraging and support the
viewpoint that new avenues for finding more efficient
numerical methods for stability transient analysis
(TSA) still exist to the point - that the transient
stability analysis, if combined with a proper computer
technology, may become feasible for real-time monitoring
and security evaluation of electric power systems.

IX.

THE DYNAMICAL MODEL FOR ELECTRIC POWER SYSTEMS

Generally, a multi-machine dynamical model is described
by the set of differencial and algebraic equations of
the type

\

x = F(x,y) , x(0) = N (2.1a)

0 = G(x,y) (2.1b)

where (2.1a) are equations of .the generating unit and
(2.1b) are those corresponding to the interface
equations and the network equations.

If a classical model 1is assumed for the machine
and all loads are converted into impedances, we have
equations of the form

£=Fx) X0 =X, (2.2)
Swing equations with the classical model can be put in
the form (2.2) as shown below.

The swing equation for ith machine is

2
avs, 2 .
M, 2 =P, - EG, - 2 (¢, 5 oind, 1y CO8 51j)
t =1
#1
=P - P (61 Gn) (2.3)
where
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'944 : o

H

M = A with H, = inertia constant in secs.
i xf 1
2
Pmi - mechgnica} input in peu., P1 - Pmi Eicii

. ]
zi/qi = voltage behin§ the transient reactance Xdi
13 " By By By s Dy = By Ey Gy
Gij’ Bij are elements of the Y matrix at the internal

nodes of the generator. Depending on the system con-
figuration (faulted or post-fault), these will assume
appropriate values.

Ve take 61 as the rotor angle with respect to the syn-
' ‘ e
chronously rotating reference axis. Let 31 - dci -,

) uy be the relative angular velocity where ei is the

rotor angle w.r.t. absolute .reference frame and w, =

‘synchronous . velocity (377 rad/sec). Introducing the
state variables 61 and wy (L =1, 2, ..., n), we get

the state space equations

§ =w
11 (2.4)
L d l
wi-ﬁ(yi-Pei (61, cesy Gn)_) i=1, 2, 0-'.’“

The initial conditions of (2.4) are (5,000, 0) 1 =1,
2, +es, n where 61(0) is computed from the load flow
data and x&i of the machine. The usual assumptions
regarding Pmr = constant and E1 = constant are made

during the simulations.

‘1II. iACKGRDUND ON THE WAVEFORM RELAXATIOF METHOD

General Overview

The dynamical model used for transient stability studies
of an electric power system consisting of n machines
teviewed in Section II, can be thought of as a system
of 2n coupled first-order differential equations. If
the unknown variables are denoted in a vector form

X=08 w60 s %

X 1T

= [X X X2l x22 ces nl an

11 12

the power systems equations defined in Section II
could be represented as

X = F, (X veey X

" X,)  (3.2a)

11° ¥120 %910 %590 a1’

bde

12 = Fr2 Gy X0 X0 Xpp eee, X0 Xap?  (3:2D)

.

X ) (3.2¢)

Ry = By Oy Xppo e X0 X,

nl nl

e

2 ynz (xll, x12’ ceey xnl, xnz) (3.2d)

TX(t) for t > ¢t Cand te [t

3.1),

Mathematically, the transient analysis problem ig a
problem of integrating for given initial conditiong
x(:o) - XO equations (3.2a)-(3.2d) in time to obtain

0 0’ Tl. The time T is fixed

prior- to performing the integrgtion and is generally
1-2 seconds. The efficlency of the transient analysis
method is mainly meagured by the necessary CPU time to
generate X(t) for all te[to, T}. 'Both implicit and

explicit methods of integration are used in power
system dynamic response calculations [8]. Unique
properties of power gystems like highly localized
fault propagation phenomena or coherency of machines,
etc., are not accounted for in the standard transient
stability programs, unless coherent dynamic equivalentsg
are established by a separate program. Research in
coherency and dynamic equivalents has resulted in
good production grade codes [9]-[10]. 1t is, however,
highly desirable that results in coherency be inte-
grated with numerical "algorithms and WR algorithm
precisely allows for this. Also if some variables do
not change during simulation, i.e., latency phenomena,
it could be accommodated in our methodology [12].

For any high order problems, direct numerical integra-
tion (explicit) methods (DNI) are more attractive than
the class of so-called implicit numerical integration
(INI) schemes (backward Euler formula being one of the
simplest numerically stable in this group). A basic
difference between these two methods is that the INI
method involves the inversion of a matrix whose order
is the same as the order of differential equations to
be solved, e.g., 2n for the system (3.2). This is
thought of as being computationally expensive for
transient analysis studies since the matrix inversion
needs to be done at each step in time. Algebraization
of the differential equations with LU factorization

. with sparsity and vector. array processors reduce the

computation [13}. Typically, if the integration time

is [to, T] and the integration step 1s h, the number
: [T~ ¢.]

of inversions would be of order‘

s, which 1is

extremely time consuming. This reasoning should not
be confused with ‘the reagoning in load flow computa~
tions, where algebraic, rather than differential
eauations are solved. Here, Newton-Raphson's method
with sparsity and vector array processor reduces the
equations of the form AX = b 1is the most favored
approach. In power systems transient analysis, DNI
methods like Runge-Kutta are well accepted and used.
The proposed Waveform Relaxation Algorithms as a new
option - are originally based on INI methods (1like
Backward FEuler Formula) and then combined with the
latency [12] property of diagonally dominant dynamical
systems, to reduce the order of matrices which need to
be inverted,

Waveform Relaxation Method

The Waveform Relaxation Algorithms are illustrated
first on a simple system of two differential equations
in two unknowns, xl; x2:

% = F(x, X)) X, (t) = X (3.3a)

1 10

- - .3b
X, Pz(xl, X)) Xz(to) %0 (3.3b)
The basic idea of the WRM is to fix the waveformn X2
in [to, T] and integrate equation (3.3a) as a one-
dimensional{differential equation 1in Xl(t) over the

vhole time interval'[to, T] (“one sweep”). The solu-

tion o

which
ferent

(3.3a)
X,(t)

numeri
equati
iterat
one Vv
Jacobi
Detatll

The be
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Chart




tion obtained for Xl(t) can be substituted in (3.3b),

which will then reduce to another first-order dif-
ferential equation in one variable Xz(t). Equation

(3.3a) is then integrated again using the new solution
X2(t) and the procedure becomes iterative. A standard

numerical integration .problem of n differential
equations in n unknowns becomes a problem of solving
iteratively a sequence of n differential equations in
one variable. This algorithm is analogous to the
Jacobi method for solving the load flow equations,
Details can be found in [14]. ’

The basic WRM for solving a general. system of nonlinear
differential equations (2.2) is presented in Flow
Chart 1. ’

FLOW CHART 1,

The Basic Waveform Relaxation Method.

Input Data

Waveform Guess xo(t): t;[to, T]

such that

X (0) = X;

So;v;ifor tc[to, T)

Ry " B K By e X

v X X )

X Bt o Yo

k+1

No
Solution

k = maxi
nax mum number of sweeps
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A typical convergence check 1s’

max max Ix () -x, ()] <e (3.4)
IKign teley, 11 DML LT

Important specific features of this numerical algorithm
compared to conventionally used power systems tran-
sient stability schemes are:

(a) the algorithm is iterative

(b) the step where the solution in the (k+1)8t sweep
of differential equations 1is employed involves
solving a differential equation in one unknown
Xi,k+1 only. The other variables xl,k’ xz,k”

ceey Xi—l,k’ xi+1,k’ ceey xn,k are known from

the previous sweep k. In the VLSI literature, a
typical IN] method used to perform this step is
the backward Euler algorithm.

We adopt the same method here, and it basically
amounts to the following. Letting j correspond to the
integration step {, to the ith state variable and k to
the sweep '

Xeowrr = F1 (B Xy i oo Xy i Xy e Xigg 1

vees xn’k) (3.5)
or
xj+l _ Xj
_.i.l.k_tl_._._i;!.m = F (Xj xj Xj XJ
h 1 VK P2,k Tt -1,k ikl
3 3
xi+1’k, cens xn’k)
n 3F
D e, j 3 J+1_ o3
' zzx K, (xl.k‘ A RIS LI Xn,k)(xz.k Xz,k)
221
aF .
i3 3 3 LA N, |
+—a')'{*; (xl,k’ cery xi,k‘l-l’ cesy Xn’k)(xi’k+l xi,k‘ﬂ)
(3.6)
which implicitly defines
3F
22 S - h=t xd 3 vee
xi,kﬂ xi’kﬂ +h(l -h %, (xl’k, cees xi’k+l,
3yt 3 3 3
Xo0) 0 (B e r oo e oo %)
n JF
i3 3 3 s
+ zzl %, (CSTITTTTIE - ISR TELIIR =0 LS S 4 Xp,i0)
2#d

(3.7

1f higher order terms in the right-hand side of (3.7)
are neglected, (3.7) can be approximated as

3+1 3 o

a1 - b=t 3 e
PRI R A R R

-1
3 3
xﬁ,k>) . F, (x{,k, e 8 R G

v
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IV. CONVERGENCE CONDITIQNS AND PROCEDURES FOR SPEED-UP

It has been shown that rather mild conditions on con-
tinuity of functions Fi’ i =1, ..., n are required

for the WRM to converge for any initial guess X(t

)
telty, TI. (Theorems 3.1, 3.1 in [5]). e

For typical power systems the required conditions are
always satisfied. Going back to the parallelism with
the Jacobi method for load flow solution, a well known,
theoretically proven fact [23] 1is that this method
converges for a wider range of initial guesses  than
the standardly used Newton-Raphson method. It is the
rate of convergence that makes the Jacobi method
inferior for load flow calculations. Jacobi method is
considered to converge linearly, while Newton-Raphson
converges almost»quedraticqlly. Since the WRM tech-
nique in transient analysis is analogous to Jacobi's
method for solving algebraic equations whose conver-
gence rate is linear, this might be a point of concern,
Gauss-Seide]l WRM algorithm will improve the conver—
gence rate [5].

It is not surprising, however, that the initial con-
vergence rate obtained for VLSP systems is much higher
than the convergence rate for VLSI systems. We argue
in the next section that if the knowledge about cou—
pling between machines on a typical large scale power
system 1is used, the WRM easily becomes a superior
technique, even prior to parallel processing implemen~
tation,

A true issue in comparing convergence rate of conven-
tionally used direct integration methods for transient
analysis with the WRM 1s the fact that the DNI methods
become inefficient for extremely large problems because
of the following two reasons.

(a) The sparse matrix solution time grows super—
linearly with the size of the problem. Experimental
evidence indicates that the point ‘where the matrix
solution time begins to dominate 1is when the system
has over several thousand nodes, which is the case for
VLSP systems.

(b) The DNI methods become inefficient .for large
problems when the differential equations are stiff.
Direct application of the integration method forces
every differential equation in the system to be
discretized identically, and this discretization must
be small enough so that the fastest changing variable
in the system is accurately represented. Gear's
formula [16] overcomes this difficulty. If it were
possible to pick different discretization points, or
time steps, for groups of differential equations in
the system so that each could use the largest time
step that would accurately reflect the behavior of the
assoclated variables, the efficiency of the simulation
would be greatly improved. This is the multiple time-
scale issue and has been implemented in a DNI frame-
work {17]. '

Specific Techniques Employed

The partitioning of original power equations (2.4) is
done in 2 x 2 blocks, i.e., the angle 61 and speed o

are solved from two equations simultaneously. The
notation corresponding to the power system problem is
given in (3.1). If equations are solved one at a time,
the WRM does not converge. So, the results reported
here are for the case where two equations are solved
in two unknowns by the Backward Euler Formula and the
WRM adopted to this simulation is given by Flow Chart
No. 2. '

FLOW CHART 2.

WRM Algorithm for Transient Stability Analysis

60(;2 = 8¢ tele, 1]

uo(t) =yt tc[co,'T]

ie1
1
Solve for :s[to, T]
¥ -
1,k+1 1, ket
o - L (®, ~ P, (& 5
1,k+1 Mi 1 el "L,k " g1 K’
St,ke1” Sparic e 8y )

onvergence
heck

No
Solution

k = maximum numb
max um number of sweeps

Different time responses of different variables for
which we are solving naturally suggest grouping based
on coherency [9]-[11]. 1Initial experiments with this
show that the convergence rate is rather sensitive to
grouping. If the machines within a group are tightly
coupled, then the convergence rate in terms of number
of "sweeps” 1is better. WR algorithm can thus incor-
porate coherency based technique with numerical
integration. A major research effort on VLSP systems
with nodes of order of thousands should be based on
exploring this fact together with the WRM.
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The other technique for speeding up the WRM convergence
rate is based on the so-called time windowing [6]. If
we are interested in results on time [to, T}, the WRM

could be applied on [to, TI] then in [Tl, T2] and
[TZ’ T] in order to reduce the total CPU time. The

effect of time windowing om the numerical examples is
presented in the next section.

The grouping of differential equations to be solved
simultaneously has a significant effect on very large
scale systems and it should be done carefully., The
"adaptive clustering” idea reported in the VLSI liter-
ature [6] could be directly implemented since grouping
under the same name and meaning has been recently
reported by Zaborszky et al. [18]. Again, this is

what makes this numerical method very promising and

currently research is in progress in this area.

V. PARALLEL PROCESSING BASED WRM

An additional property of WRM is the fact that parallel

" processing is a natural setup for the method. If one
processor is assigned to one group of variables which
are solved for simultaneously, the CPU time is reduced
proportionally to the number of groups. Considerable
work exists on parallel solution of ordinary differen-
tial equations [19])-[20].

A detailed discussion of the possible computer archi-
tectures for WRM methods is given in [6]. Previously
reported work on parallel processing in power systems
[1]-[3} exploits time-point pipelining algorithms.
The shared memory computer architecture is argued to
be more efficient for the WRM support of VLSI systems
which, we believe, should be common for VLSP systems.
The key problem in designing a parallel processor lies
in the communication between the processors and is
much easier here.

The main advantage of a shared memory system 1is that
it 1s not necessary to explicitly transfer data from
one processor to another. When a processor needs data
from another processor, it simply reads from the memory
location in which the other processor has written.
This allows for more dynamic algorithm structures (like
WRM with fault dependent grouping) because it is not
necessary to determine beforehand which processors
will need the results of a given calculation. There
are disadvantages, however (synchronization and lock-
ing being the major), but overall the shared memory
architecture appears to be better for more adaptive
algorithms.

VI. NUMERICAL RESULTS

The WR algorithm discussed in Section III was imple-
mented on the 3, 10 and 20 machine systems. The 3
machine data is taken from Ref., [21], and 10 and 20
machine data from Ref. [22]. From the numerical
point of view it appears that the number of sweeps is
fairly independent of the size of the system. This is
probably due to the fact that the natural modes of the
system lie in a fairly small range. In each case we
have compared the WR algorithm with the explicit fourth
order Runge-Kutta method. Both simulations were coded
in PASCAL so that CPU times etc. can be compared on
the same basis. The step size chosen was At = .00375s
because the comparison was with Runge-Kutta method
which becomes unstable for larger At. If an implicit
method such as the trapezoidal method is used, At
could have been chosen higher. In fact, in the WR

algorithm, At can be chosen even higher because of the
backward Euler method which is numerically stable.
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The CPU times were computed in each case and are shown
in Table I. Also shown are the number of "sweeps" for
the WR algorithm and the CPU time with At = 0.0375 s.
The progressive convergence for 66(t) in the 10 machine

case for different sweeps is shown in Figure 1. There
was no significant change in number of sweeps when At
was increased from .00375 s to .0375 s. It .can be
seen that CPU time decreases for the WR algorithm when
At is increased to .0375 s.

3 m/c 10 m/c| 20 m/e
1. CPU time (WR) 4.440 36.232 151.941
At = ,00375s
2. CPU time (WR) 0.402 3.072 21.337
" At = .03758
3. CPU time (RK) 1.130 7.291 26.674
At = .00375s
4, No. of Sweeps (WR) | 19 18 19
At = 003758 .

TABLE I. CPU time comparison and number of

"sweeps” for WR algorithm.

The effect of "windowing” in the WR algorithm is shown
in Table II. Two different time "windowing™ patterns
were investigated. There is a significant decrease in
CPU time when windowing 1s used. Only the results
using three ‘"windows" are presented in Table II.
Comparing these results with the corresponding cases 1
and 2 in Table I, we observe a 50% reduction in CPU
time. Since "windowing” 1is not possible in the RK
method, no direct comparison is possible. At this
point, it fis felt that depending on the time interval
of simulation [to, T] beyond a certain number of

"windows,"” one cannot expect a decrease in CPU time.
The same experience has been reported for the VLSI
systeme [6]}. Figure 2 shows the effect of "windowing" .
on 66(t) in the 10 machine case.

3 m/c 10 m/c 20 m/c
1. CPU time (WR) 2.436 17.889 79.053
At = .00375s
2. CPU time (WR) 0.220 1.614 9.605
At = ,0375s
TABLE II. CPU time with "windowing” (.5, 1.0, 1.5 S)

Finally, the WR algorithm in combination with coherent
grouping was investigated. In the 10 machine case
there were six coherent groups as in [10]}. The groups
were machines (2,3), (4,6,7,8,10), (5), (9), (1) (see
Figure 3). Instead of grouping the variables as in
(3.1), we group all variables corresponding to a
coherent group as one set. If the coupling between
the areas is weak and within an area 1is tight, this
will havé the effect of improving both the CPU time
and the number of sweeps. The improvement is depen-
dent on the degree of coherency. Table III shows the
effect of grouping on the 10 and 20 machine system.

10 m/c 20 m/c
1. CPU time (WR) 29.961 105.147
At = ,003758
2. CPU time (WR) 3.075 14,806
At = .0375s
3. CPU time (RK) 14 13
At = 003758

TABLE I1I. Effect of grouping.
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Note that a combination of windowing and grouping
still needs to be studied. Based on the results in
Tables II and III, we believe that the CPU time for
solving a 20 machine case will be shorter than the
shortest reported for the WRM, i.e., 9.605 CPU.
It is true that as the size of the system increases,
the ratio of CPU time of WR/RK increases from 2,155
for the three machine case to 2.96 for the 20 machine
case for At = .00375 sec. However, this is offset by
the possibility of taking larger At for the WR method
in which case the same ratio varies from .1946 to .36.
A comparison of the WR method with a stable method like
the trapezoidal or backward Euler method indicated that
the latter takes much computer time. Sparsity consid-
erations were not used and hence a direct comparison
method is not fair at this stage. Research on this
aspect is continuing. If the parallel processing
argument is introduced with a suggested number of pro-
cessors M, the reported computing time needed for the
WRM of 9.605 CPU would reduce to approximately r the
(9.605/M) CPU. However, many different constraints,
like cost and specific computer architecture, should
determine the choice of the number of processors M.
VII. CONCLUSION

In this paper a new method for the transient stability
analysis of very large scale power systems is pro-
posed. This is the waveform relaxation method inten-
sively used in VLSI systems. Groups of differential-
algebraic equations are integrated for the "sweep” and
iteratively done as in Jacobi method of solving load
flow equations. The technique 18 very promising.
Current further work in this area concerns the detailed
models of machines and use of parallel processors to
make the tool an effective one. Also, theoretical
results on coherency are being combined with the
numerical aspects of the WRM.
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Discussion

P. Kundur and G. J. Rogers (Ontario Hydro, Toronto, ON, Canada): This

s a very interesting paper and describes techniques which appear to have

nuch potential in the analysis-of large scale power system transient stability
yroblems. ‘

At present we are simulating systems with as many as 10 000 buses and
1000 synchronous machines. With a conventional stability program using
tither explicit or implicit integration techniques, this requires several hours
»f CPU time on a computer such as VAX 8600. A method of reducing CPU
ime while retaining the ability to model very large systems in detail would
se well received by the power industry. )

The current work of the authors shows how the waveform relaxation
‘WR) method can be used for implementing an implicit integration
echnique in a simple and efficient manner without the need for the
simultaneous solution of a very large system of algebraic equations. This
iimplifies programming considerably and removes a major limitation of the
mplicit integration approach. The authors have shown that coherent
grouping of machines for simultaneous integration of parts of the system
urther improves the speed of solution. This points to the multi-time scale
sroperty of power systems as being the physical basis by which the method
ould be extended to the incorporation of the dynamic effects of
synchronous machines and associated controls. Have the authors considered
such an extension?

The authors have not commented on storage requirements of the WR
nethod. Unless reasonably small time windows are used, the need for

itoring all the state variables for every time step of the entire study period.

vould make the method unattractive.

We find it difficult to believe that with a fourth order Runge~Kutta (RK)
ntegration method a time step as small as 0.00375 s had to be used. With all
generators represented by classical models as in the paper, we have
simulated fairly large systems using time steps as large as 0.1 s with fourth
srder RK methods. Even when detailed models including the effects of high
nitial response exciters and PSS are used, we are able to use time steps of
he order of 0.02 s. We wonder if the authors used any approximations in
he implementation of the RK method. It is also not apparent how coherent
grouping was implemented with the RK method. Our experience has been
hat the RK methods require truly simultaneous solution of all the states at
sach time step. ) )

We believe that the concepts presented in the paper could be very
sffectively used in the simulation of the dynamic performance of very large
sower systems, with computational gains significantly better than those
iemonstrated in the paper.

Manuscript received August 1, 1986.

Adridn Inda (Instituto de Investigaciones Eléctricas, Cuernavaca, More-
o0s, México): The authors are to be commended for their interest in finding
1ew methodologies for transient stability calculations. First of all, I would
ike to make some comments regarding your statement about implicit
aumerical integration (INI) schemes. In section III of the paper under
“General Overview,” the authors state that whenever INI is applied, the
nversion of a matrix whose order is the same as the order of the differential
:quations to be solved is needed. This is not necessarily true. A wise
arrangement of the differential equations can lead to an appropriate
application of the INI without having to invert a large matrix. To better
sxplain this idea, let us recall that the application of an INI to a set of first
srder ordinary differential equations of the form

J(X, U)=AX+BU @
results in }
|1-khA| X () =khBU(r) + K(z - A?). ®)

For the transient stability problem, some elements of 4 and B change due to
saturation.

Instead of obtaining X'(r) from (b) by matrix inversion for the whole
system of equations, partitioning can be used as suggested by B. Stott in
Ref. [8] of the paper and analytical solutions for each machine of the system
(including controls) can be coded directly for any desired number of
modeling options. This manner of applying INI methods, besides avoiding
the inversion of large matrices, can handle the problem of saturation with no
extra effort.

The discusser has applied this idea in developing a new transient stability
program and so far no problems have been encountered [a]. }

1 think this partitioning idea can be very useful if properly applied with
the WRM proposed by the authors, especially if detailed modeling is to be

used for the synchronous machine controls. The authors’ opinion on thig
idea would be very much appreciated.

Another point which I would like to address in this discussion is related to
the idea of parallel processing. The authors argue that WRM is naturally
suited for parallel processing and I agree with them. However, in my
opinion WRM is not the only method which can result naturally suited for
paralle]l processing. .

Following the above partitioning idea, a partitioned-implicit solution
scheme together with network tearing techniques can result also in a paralle]
processing. naturally suited structure. Suppose you have arranged the
differential equations in such a way that matrix 4 of Eq. (a) presents a
matrix diagonal structure; 4 = dig |4, 43, ** +, A,| and matrix B a block
rectangular structure,

- For the algebraic equations consider the nodal formulation

I(X, V)= YpusV | ©

If saturation, saliency, and nonlinear loads are considered, the transient
stability algorithm consists in solving (b) and (c) for each integration step

.alternatively within a global iterative process until convergency is achieved.

Now suppose a tearing technique has been wisely applied to the system,
leaving ‘it torn in n-subsystems, each one of them with the following
structure: :

1 Yy YIINT Vi @
IIINT YINT/ Yivr Y’INT
Apply a triangulation process to get:
L u ||V
©
Iinr||Q 1 Yivr|| Vigyr

Since the Yjzys matrix remains constant as long as no switching events
occur, the elimination process of (e) has to be performed only when
switching -operations occur. .

The transient stability algorithm with this modeling would be for each
time step:

1) Using previous values of U estimate an initial value of U(#) for each
subsystem. - .

2) Solve differential equations by applying (b) to each subsystem exploiting
matrices 4 and B block structure.

3) Solve interconnection equation for the subsystems all together, to
calculate Vinr.

4) Obtain ¥, for each subsystem by backward substitution from (e).

- 5) Check for convergency of the process. If process is converged, go for

the next time interval, otherwise go back to step 2) through 4) until
convergency is obtained. .

The next step, of course, would be to apply this partitioned solution
scheme with parallel processing techniques, with each subsystem being
solved by a different processor. )

I believe this solution algorithm can render low CPU execution time,
which could be compared with the authors’ idea.

It is worth mentioning that the numerical stability properties of the INI
methods are preserved under this partitioned process, since the whole
system of equations are taken to convergency.

The authors’ comments about applying these ideas to the WRM they
propose are to be very welcome.

Once again, I congratulate the authors for such an interesting paper.
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O. Razavi, H. D. Chiang, and P. Varaiya (University of California,
Berkeley, CA): The authors have presented an interesting application of the
Waveform Relaxation Method (WRM) to the power systems. We wish to
put forward the following comments. ‘ ) .
As properly noted by the authors, exploitation of the inherent r,vropemesf
of the power systems could significantly improve the computation time O
the WRM-based siniulations. Regarding the two properties mentioned by
the authors, namely *‘coherency’” and “‘latency,”” we would like to inquire
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what method they used to obtain the coherency grouping information for
“test cases and b) whether they observed latency phenomenon in their
julation experience and if so, of what nature. .

[n the introduction section, it is stated that the results may be applicable to
xed algebraic and differential equations. We would like to ask how the
ebraic equations may be incorporated into the solution framework
;sented here.

The WRM is an iterative process. It starts by decomposing the set of
namical equations (2.3) into disjoint subsystems. Then, an initial guess
 the waveform solution of the original dynamical equations is provided.
iring each sweep (or iteration), each decomposed subsystem is solved for
er the time interval [#,, T'}. The solution process for state X; may be
astrated as in Fig. (A.1). There is a flat initial guess (k = 0) and after
ch sweep an improved waveform is obtained- until convergence to the
tual solution waveforni is achieved. S
However, the algorithm as presented by (3.8) is found to act differently.
sing the same notation as in the paper, for the sake of simplicity, we may
tite (3.8) as follows ) ’

X{;L,:X{'k+,+Gi(X{,k, Tt X{,kﬂ’ X0 (A-i)
here ‘
- OF(*)\~!
San-(1-n=E2) - FC .
oy ah- (1-n752) " FO) %)
t the first time step, (A.1) becomes:
X;,k+l=X2k+l+G‘(X?,k’ e X Tt X500 (A.3)

otice that the right-hand side (ths) of (A.3) is evaluated at time £y and
ierefore, it ;emains constant for all sweeps kK > 0, i.e.,

X;,k“ =X,!.| (A4
& the second time step, (A.1) becomes:
X2 =X+ GUX oo Xy 0 X0 A5

Jotice that because of (A.4), the rhs of (A.5) is constant for all sweeps kK >
,i.e.,

X=X o

nd so on for the rest of the time points. Therefore, the behavior of the
Igorithm may be illustrated as in Fig. (A.2) and thus is not convergent to
he actual solution waveform. oo

Manuscript received August 18, 1986.
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Fig. A.2. Algorithm (3.8) waveform solution behavior.

M. Hic-Spong, M. L. Crow, and M. A. Pai: The authors thank the
discussers for their valuable comments to the paper. It is clear that with the
new architectures of computers, the parallel numerical algorithms will be
incorporated eventually in the dynamic simulation of electric power
systems. The pufpose of our paper was to demonstrate the potential of such
an ‘approach. To make it practical for production grade programs much
more research is required. We respond to the discussion as follows.

Razavi, Chiang, and Varaiya

" i) The coherency is an inherent property of all power networks, since for
a given fault ‘certain machines tend to swing together. In other words, the
machines which swing together are tightly coupled and as a group they are
weakly coupled to the other groups of coherent machines. In the slow-
coherency technique [9], the coherency of machines is identified indepen-
dent of the fault. In [10]-it is identified based on the fault deépendent
linearized method and demarcation of the system into study and external
areas. The eigenvalues of the linearized prefault system are given as 0, 0,
+73.916, +j5.953, +j6.345, £j7.034, +j7.845, & 8.051, +/8.918,
+79.618, and +9.722. The number of areas is largely a mattér of a clear
eigenvalue separation: In this case a good separation exists between the fifth
and the sixth pair of eigenvalues. The machine with the largest inertia #1, is
associated with the slowest (zero) mode. Then, following the slow
coherency approach [9], the other groupings are (2, 3), 4, 6,17, 8, 10), (5),
and (9). The method of [10] separates the second group farther into (4, 6,7)
and (8, 10).

- The latency phenomena has been observed for the rotor angles far away
from the fault; however, it has not been exploited in the algorithm yet.

The question regarding mixed-algebraic and differential equations is a
very important one. However, due to space limitations it could not be
élaborated on in detail here. A full paper on this topic is being submitted for
the PICA 87 meeting.’

And finally, the discussers assert that the algorithm presented by (3.8)
does not converge to the correct solution. Rigorous convergence proofs are
to be established yet, and moreover, since “the correct solution’’ is not
known a priori, it will be premature to guess it.

. However, the following is true: If equation (3.8) is derived from (3.5),
one obtains ‘ ‘

Xips1=Fil X1 s Xojes *° " Xikers =05 Xng) ®R.1
or .
Xl , , . ’
{iLL;‘.‘}’_!:!:_‘_=E(XJ&l, ij;cl» ce, XJJ‘L, ey X{:k') (R.2)

which is the Backward Euler formula for imegratioh, generally accepted as
stable numerically. Further since X/3!, is the only unknown, we need to
expand the function F; about X; .1 only. This implies,

X’i;clrl“X{kn X{:kl)'

+1 j+1 4
=F‘I(le,k’Xj2,k’ “.’Xl,k+ls MY

aF, i i ; ; .
#3000 XA s K XX = K)- RD)
' i
In this paper we have expanded F; about all the variables X, ***, X, and

evaluated it at the previous integration step (J) as indicated in (3.6): This

also may have an effect on the true solution. It is computationaily




952

undesirable to evaluate all of the partials. One further simplification was
made (going from (3.7) to (3.8)), where the summatjon terms of the partial
derivatives were not included. This simplification could have been the
source of the assertion by the discussers as the simplification may cause the
algorithm to converge to the wrong sojution.

We mc}ude the results of a simulation run using these three (similar)
methods:

1) Equation (3.8) of the paper:
le;:!=X{,k+x+h(lf'h (Xu’ i

X';nv Tt

X0

* Fi(xy 10 " XIIHI’ ot ’Xn,k)

which needed 37.261 CPU’s and at = 1.5 s. The solution was 8, =
2.6773, 6, = 2.4827, 8 = 2.5025, 5, = 2.5676, and&, = 2.3170.
2) Equation (3.7) of the paper:

oF;

X{k+l=XIk+l+h(l h_(Xllt' s X X
JF,
CFUX v Xy ..k)+2 =
'125
X s Xl ""X‘{'#)(X!l“—x';k)

which needed 46.359 CPU’s. The solution at £ = 1.5 s was §; = 2.8559, 5,
= 2.6611, 5, = 2.6810, &, = 2.7579, and &; = 2.5148.
3) Equatnon (R.3) of this response becomes
-1
x4

J+1
5 X 7 X))

which ran in 37.445 CPU’s and the solution was at # = 1.5 s: 8; = 2.8552,
5, = 2.6606, 5; = 2.6804, 5, =.2.7571, and 65 = 2.5142.

From these numerical results itis clear that methods 2) and 3) have a very
similar solution, bt method 1) is a bit different. Method 1) is the algorithm
asserted not to converge to the correct solution by the discussers. However,
that may be problem dependent. We wish to emphasize that the method is
only one of the three methods we tested; t.he other two are possibly more

aF,
Xl.k+l=xlk+l+h (1 —h I(Xj.k' AR SRS

R,

[EEE Transactiol

accurate, with method 3) being superior in both accuracy and time.
was the method which was used for all the presented simulation resul
Based on the above, we believe that the thinking followed in the last part
the discussion'could be used as an estimate of the number of sweeps n

for the algorithm to converge with a predefined accuracy, rather than’
argument of nonconvergence.

Adridn Inda

We agree that Stott’s method [8] could be used to minimize the order
matrix inversion required in the INI method. We also agreg that some othy
partitioning wchniques, such as tearing, can be applied to implem
parallel prooessmg In fact, the coherency-based decomposition is one o
such partitioning schemes which we have used. It would be interesting
compare effects tearing techniques with the coherency-based decompositi

on the efficiency of the WRM methed. We plan to test it on structu
preserving models. :

. Kundur, Rogers
The discussers have correctly inferred that the time-scale decompositior J

of the synchronous machine dynamics could result in the speed-up of th
pmposed technique. We are currently working with the detailed machxm
models in which at least three time scales are involved.

Further, the choice of At = 0. 00375 s for the RK method was made to

obtain ‘the same solution’ as the prewously published solution for: this| .

system. No grouping was applied in simulating the dynamics via the Rk
method. C

The storage reqnirements of the WR method are currently high because
they are programmed on a serial machine. The optimal windowing
technique is impoitant in this context to reduce storage requirements. The
coherency-related questions were addressed in the reply to Razavi et al.

In summary, the authers wish to thank all the discussers for their
informative comments. We believe that the power industry should exploit
the potential of the parallel numerical algorithms for dynamic simulations of
the system. Our work has just established the feasibility of possibly one of
the most promising methods. Currently planners use transient stability
programs with detailed ‘models -infrequently. Operational people run it
rarely. Just as load flow through sparsxty techmques has become common
for both operation and planning people, it will require considerable research
to exploit the new computer architectures to achieve the same goal for
transient stability.

Manuscript received October 1, 1986.
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