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Abstract—This paper reports efforts towards establishing a parallel numerical algorithm known
as Waveform Relaxation (WR) for simulating large systems of differential/algebraic equations. The
WR algorithm was established as a relaxation based iterative method for the numerical integration
of systems of ODEs over a finite time interval. In the WR approach, the system is broken into
subsystems which are solved independently, with each subsystem using the previous iterate waveform
as “guesses” about the behavior of the state variables in other subsystems. Waveforms are then
exchanged between subsystems, and the subsystems are then resolved repeatedly with this improved
information about the other subsystems until convergence is achieved.

In this paper, a WR algorithm is introduced for the simulation of generalized high-index DAE
systems. As with ODEs, DAE systems often exhibit a multirate behavior in which the states vary
at differing speeds. This can be exploited by partitioning the system into subsystems as in the WR
for ODEs. One additional benefit of partitioning the DAE system into subsystems is that some of
the resulting subsystems may be of lower index and, therefore, do not suffer from the numerical
complications that high-index systems do. These lower index subsystems may therefore be solved by
less specialized simulations. This increases the efficiency of the simulation since only a portion of the
problem must be solved with specially tailored code. In addition, this paper established solvability
requirements and convergence theorems for varying index DAE systems for WR simulation.

Keywords—Waveform relaxation, Differential/algebraic equations (DAEs), Initial value prob-
lems, Parallel processing.

1. INTRODUCTION
A differential/algebraic system may be modeled in the form

0= F(y,y,t), (1)

where %‘5— is singular and %% may or may not be singular. Systems of differential /algebraic equa-

tions (DAEs) of this type arise in connection with power systems [1,2], singular perturbation
theory (3], control theory [4], circuit simulations [5], robot dynamics [6], and many other applica-
tions in the fields of mechanical and chemical engineering, economics, and physics. Only recently
has concerted effort been put forth to find methods to numerically solve these systems [4,5,7-15).
Previously, systems of DAEs were frequently restated as ODEs, often with considerable difficulty
or by destroying the structure of the problem [12] (i.e., the resulting variables often no longer
represent physical quantities, or the inherent sparsity of the system is destroyed), but as DAE
systems arise more and more frequently, it has become necessary to develop numerical methods
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for solving these systems distinct from the traditional methods for ODEs. If %% is invértible,

this is a sufficient, but not necessary, condition for the system of (1) to be index one. If
noninvertible, the system is said to be of higher index [13]. Difficulties in using ODE methods
for solving DAE systems occur when the systems have index greater than or equal to two.

Standard circuit simulators use direct methods to discretize the system by standard stable
implicit integration methods. Modified Newton methods are then employed to iteratively salve the
resulting algebraic equations, and a sparse Gaussian elimination is utilized to solve the systems of
linear equations produced by the Newton method [16], The direct method may become me&fﬁclent
for very large, dynamic systems. This is because the matrix solution time of the linear a.lgebraic
equations grows super linearly with the size of the problem, thus swamping all other steps of the
integratiol method. The direct methods are also inefficient for systems with states which are
varying with considerably different rates. Direct application of a discretizing integration method
forces all of the states to be discretized identically and with sufficient fineness such that the
fastest changing state can be accurately reproduced. If it were possible to divide the system into
several subsystems, each of which were changing at individual rates, then it would be possible to
integrate each subsystem with the largest possible time step which would accurately reflect the
behavior of the subsystem.

In addition, if it were possible to divide a higher index system into subsystems, many| ‘of the
subsystems may possibly have a lower index, making it possible to solve these subsystems with
the usual numerical methods, with little or no additional precautionary measures, while those of
higher index may be integrated using methods specifically tailored for high index systems.

One method which overcomes all of the above drawbacks is the waveform relazation, (WR)
algorithm. The WR algorithm was introduced as an iterative method for the numerical integra-
tion of the system of ordinary differential equations over a finite time interval [17]. It is based
on the Gauss-Seidel and Gauss-Jacobi relaxation methods [18] used for solving large systems of
algebraic equations. In the WR approach, the system is broken into subsystems which are isol\‘r'ed
independently, with each subsystem using the previous iterate waveforms as “guesses” about the
behavior of the state variables in other subsystems. Waveforms are then exchanged between
subsystems, and the subsystems are then resolved with improved information about the other
subsystems. This process is repeated until convergence is achieved. The WR algorithm was first
applied to index one DAEs in [19] for the simulation of VLSI circuits. This algorithm for iODEs
was further explored in [20]. This paper endeavors to generalize the WR. algorithm to encompass
a broader spectrum of DAE systems, namely those of higher index.

Because the Gauss-Jacobi WR algorithm is inherently parallel in nature, it is well sui&ed for
implementation on various parallel processors. The suitability of the Gauss-Siedel WR alg¢r1thm
is strongly dependent on the implementation.

2. THE WAVEFORM RELAXATION ALGORITHM FOR SYSTEMS
OF DIFFERENTIAL/ALGEBRAIC EQUATIONS

An important subclass of nonlinear DAEs has. the form

x(t) = F(x,y,t),  x(0) = xo, )
0=G(x,y,1), (3)

where x(t) € R*, y(t) € R™, F : R**™+1  R®, and G : R*+™+! — R™. This type of #ystem
is known as a semi-explicit DAE. For a nonlinear system of this type, a local and globa,l\ index -
can be defined [7]. The local index is the index on the linear constant coefficient system that
results from linearizing a nonlinear system at a given fixed time. The global index is the number
of times the nonlinear DAE system must be differentiated to obtain a system of ODEs [13]. In
summary, the index might be considered to be a measure of the singularity of the system. In this
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work, only systems where the local and global indices are the same are considered. For a more
general discussion, see [9].

The WR algorithm is a means of solving a large system of nonlmear semi-explicit DAEs. The
basic method proposed here is to partition the system into subsystems in which tightly coupled
state and nonstate variables are grouped together. In particular, the system is decomposed into r
subsystems as

*l(t) =Fl(xl,x2:'H’xmylyy%"'syﬂt)’ xl(o) = X1o0, | (4)
0= Gl(xlyx%-'-~sxmy1,y21~~-’yr’t)) ¥1(0) = y1o, (5)
*r(t) = Fr(xh X2y 00y Xry Y1, Y25 - y Yrs t)’ xr(o) = Xr0» (6)
0 Gr(xlsxih 9Xm Y, Y2, ’yrat)v Yr(o) = ¥r0, (7)

where X; € R"*, Vi€ R™, YT ni=mn, Lo ymi =m F: R®" xR™ x R — R™, and
Gi : R® x R™ x R — R™. The Gauss-Jacobi WR algorithm for solving (4)-(7) is given in
Algorithm 2.1. ' ‘

ALGORITHM 2.1. The Gauss-Jacobi WR Algorithm for Semi-Explicit DAFEs.

k0
Guess some x*+1(t) such that x*+1(0) = x(0);
Guess some y**1(t) such that y*+1(0) = y(0);

repeat{
k—k+1
foreach (i € {1,...,r}) solve on [0, T}
5‘?.'.1 = Fi(xllc7 s k+1 . ’x:S’yf’ cee ’Y:H.l’y'fvt) xk+l(0) = xi(o)

0= Gi(xllc’ ’xk+17 [ ,xﬁ,y,f’ ayf+19yr’t) yk+l(0) = yi(o)
Juntil ([|x*+! — x*¥|| < ¢, and |ly**! - y*|| < ¢,); where ¢, and €, are small positive values.

The WR algorithm is iterative in nature, with the previous iterate waveforms of both dlﬁ’erentlal
and algebraic variables acting as inputs to the subsystem currently being solved.

2.1. The Solvability of the WR Algorithm for Systems of DAEs

The notion of solvability for DAE systems [7] can be extended to DAE systems with waveform
relaxatxon applied.

THEOREM 2.1. If the system!
Ey()=Ay(t)+BU (8)

is solvable, then the waveform relaxation formulation is solvable if and only if all the subsystems
are solvable.? :

There are two important observations to make from this theorem. The first observation is that
this theorem does not imply convergence of the WR method. It only states that for a solvable
system, given any continuous input vector y , then there exists a unique output vector y'“'*'1 It
does not guarantee anything about the relationship of y* to y**1, The second observation is that
the solvabllity of the WR method formulation depends on the subsystems chosen. If two possible

1E may or may not be singular. '
2The proof of this theorem is straightforward, but lengthy and is omitted for brevity. The proof may be found

in [21}.
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ways of partitioning the total system into subsystems are chosen, one may be solvable whxle the
other is not. Thus, the solvability of the entire system does not guarantee the solvability of the
partitioned system.

In some cases, applying WR may destroy the solvability of the system. As an exa.mple of a
problem where the system is solvable, but the subsystems are not, consider the index three Bimple
pendulum problem

&=Lz, ' (9)
j=Ly+g, . (10)
oz-;-(z2+y2+e"),, (1)

where z and y are the planar coordinates of an infinitesimal ball of unit mass at one end of a bar
of length ¢, L is proportional to the force in the bar, and g is the gravity constant. This qystem
may be written equivalently in standard explicit DAE form

v=Luz, ~ (12)
t=uv, : - (13)
w=Ly+g, o - (14)
¥ =u, y - (15)
| 0=-1-(‘:c2+y2+'132). - (16)

The equilibrium point for this system is (0,0,0, -2, g/¢). The solvabllity of this system is deter-
mined by considering {5,7)]
det (J(v, z,u,y,L) - A E)

The determinant is not 1dentlcally zero for any points of interest; therefore, this system is solvable.
After applying WR, the partitloned system becomes

f)k+ - Lk+1 $k+1, ' ' ‘\ / : (17)
(i?k+1 = vk+1 " i (18)
0= 7 (&) + @’+E), - (19)

= L” 14y, | (0
yk+ = yk+1, ‘ - (21)

The respective Jacobians are

0 Lk _ pk+1 ‘ k
Je=11 0 0 , J,,V_=[(1’ I(')]
0 gkt? 0’ ‘

The subsystem of the {z,v, L} variables is not solvable as z¥+! approaches 0, which is al$o the
equilibrium point, since

. -\ Lk+1 zh+1
det(Jy; ~AE;)=det| 1 -2 0 -0
: ‘ 0 1 0

as okt — Teq = 0. Thus, the waveform relaxation algorithm cannot be used to solvje this
problem unless the whole system is taken as one partition, which defeats the purpose of the
algorithm. The interdependence of system partitioning and rate of convergence of the wa.Veform
iterates is discussed in detail for ODEs in [22].
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2.2, Convergence of the WR Algorithm for General Index One Systems
Most DAEs may generally be modeled as 4

0=F (x, XY, t) ’ ‘ (22)
0= F(x,y,t), ‘ (23)

where- x(t) € R", y(t) € R™ and [%F’—(‘-] is nonsingular. This is known as a general form DAE.
Integrated MOS circuits containing pass transistors fall into this category and can be written as
follows:

0 = C(v,u) v(t) + q(v,z,u), v(0) =V, (24)

0 = 2(t) — g(v,u), (25)
where C is a symmetric diagonally dominant matrix-value function in which Cy;(v, u), for i # j,
is the total floating capacitance between nodes i and j, v is the vector of unknown voltages,
u is the vector of all inputs and their derivatives, and z is the vector of drain currents of the pass
transistors.

When the WR method is applied to index one systems of the form of equations (22) and (23)
this gives rise to the canonical form®

whtl = ﬁl(wk+17wk’wk1zk), (26)

25 = By(whtt, wk, wk, ZF), (27)
where w(t) € R” and is possibly different from x(t), £} and F} are continuous mapping functions
of appropriate dimensions, which are possibly (usually) different from Fj and F», and the algebraic
variable z(t) € R™ is possibly (usually) different from y(t).

This form of WR applied to DAEs was explored in [19]. The following theorem was presented
which gives conditions under which the system in general form will converge.

THEOREM 2.2. (General Index One WR Convergence Theorem?) Consider a WR anontbm
whose iterated equations can be transformed into the following canonical form

wht =F1(Wk+lw wh2¥), Wk (0) = wo, (2;8)
zF = By (whtl wh, wk, z%), (29)

where w*, wktl € R, z*, zF+1 ¢ R™ and wy € R™. Assume that there exist norms in R® x R™
and R™, A\; >0, A\ >0, and v € [0,1) such that for any a, b, s, &, b, § € R" and v, ¥ € R™

B (a,b,s,v) ~ B (a,b,8v
F‘Z (a,b,s,v) ""F'2

<Ml + oo~ Bl +|| 572

-V

d,b,35v
Then for any initial guesses (w°(t),z°(t); t € [0,T]), the sequence {(W*+1(t), wkt1(t), zF+1(t);

t € [0,T))}32., generated by the WR algorithm converges uniformly to (W(t), W(t), Z(t); t € [0,T))
which satisfies

V:V = 1(W, w, V.V: i)’ W(O) = Wo, ! (30)
zZ= Z(W, W, “;’7 2)' ) (31)

This theorem states that if the canonical form of the WR algorithm satisfies the conditions that
the functions (£, F3) are globally contractive with respect to (W, z) in some uniform norm, then
the WR algorithm will converge. For most functions, the Lipschitz conditions are mild compared
to the contractive conditions; thus, the constraining condition for convergence will usually be the
contractivity requirement.

3This notion of canonical form is consistent with the definition in [19]. A comparison of this definition and the
definition of canonical form found in {7] is given in. Appendix A.
4The proof of this theorem may be found in [19] and is therefore omitted.
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2.3. Convergence of the WR Algorithm for Index Two Systems

Several problems in engineering and physics result in problems which have an index of two.
Applying the WR algorithm to index two systems yields the canonical form

wk+1\\= f(wk-l-l wk wk Zk 2k), | (32)
k+1 =g(wk+1 wk W Zk k)’ | (33)

where w € R? is possibly (usually) different from x(t) € R™ with A < n, 2(t) € R™ is possibly
(usually) different from y(t) € R™ with » > m, and f, g are continuous mapping functions
of appropriate dimensions which are posslbly (usually) different from F and G. It is shown in
Appendix A that index two systems give rise to this canonical form. Note that, although qimllar,
this canonical from is different from the canonical form presented in Theorem 2.2, and thus,
Theorem 2.2 cannot be used to determine the convergence of a system which has this cahonical
form. In the remainder of this section, sufficient conditions to guarantee convergence of a WR
algorithm are derived. The conditions are stated for the canonical form of the WR alg¢rithm
but the WR is not necessarily implemented in its canonical form, i.e., it is not required to find S
and g explicitly. :

THEOREM 2.3. (Index Two Canonical WR Convergence Theorem) Consider a WR algorithm
whose Iterated equations can be transformed into the following canonical form
Wk - f(wk+1 w ch zk zk) k+1(0) = Wy, (34)
-+1 =g(wk+l W wk zk Zk), ‘ (35)
where wk, wht1 € R®, z¥, z%+1 ¢ R™ and wo € R". Assume that
1. the canonical differential variables can be expressed in the form

s k1

whtl = Fr(whtl wk wh=1 Wk wk-1y;

2. there exist norms in R® x R®, Ay >0, A2 2 0, A3 = 0, and v € [0,1), 72 € [0, 1) where
7 + 42 < 1, such that for any a, b, ¢, d, e, 8 b,&d ek

|F(a,b,c,d,e) - F(8,5,8,8,8)|| < M lla - &l + Xo o - B]| + da llc - &
- d]+ale -8l
Then for any mitw.l guesses (wO(t),z°(t); t € [0,T]), the sequence {(W*+!(¢), wFti(t), d"""(t)

t € [0, T))}32., generated by the WR algorithm converges uniformly to (w(t), w(t),2(t); t € [0,T))
which satisfies

W = f(W, W, %, 8,8),  W(0) = wo, 39)
& = g(W, W, W, ,2). ; 37

This theorem establishes sufficient conditions under which the WR algorithm will conwerge to
the correct solution. Assumption 1 of Theorem 2.3 ensures that the system dynamic bbha.vior
is governed strictly by the independent time varying variables (i.e., the state variables) and the
application of the WR simulation method does not introduce a dependence of the state mia.bles
on the initial waveform guess of an algebraic variable. This may be interpreted as: a\ strong
statement of contractivity of the algebraic variables with respect to the differential vaa‘iables
Assumption 2 establishes the criteria under which the differential canonical variables will converge
given Assumption 1. The significance of this theorem will be further discussed in Sectior# 3.

Two illustrative examples are given in the next section which explicitly highlight the dm@erences
between this theorem and Theorem 2.2 for general form index one systems.
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2.4. Illustrative Examples

Consider the following linear time invariant (LTI) index two system

1 =—4y1 +2ys —ys + Ya + 0.5ys,
Y2 = y1 — y2 + y3 — 0.5ys,

0= —y1+y2+y4,
a4 = 1.25y; + 2.25y3 — 4y + ys,

0 = —0.5y; — 0.5y2 + y4,

which is partitioned as (y1,¥z2,¥s) (v4,ys) for the WR method yielding

=~y 2k — ot 4o 4 05,
gptt =yt - bt gk o5y,

0= —yf*tt +yf*1 44,
git! = 125y + 2255 — 4pf+" + pfH,

0 = —0.5y% — 0.5y% + yk+1,

This system is solvable, therefore there exists a canonical form

2y = g,
2KV = oF 4 2k~ 2k,
25+ = 0.50F

2+ = 0.25w" - 0.52F + 0.50F,
where

A
w=1y + Y2,
A
2 =-yn+y2
N
%y = By1 ~ Tyz + 2ys,
LA
23 = Y4,

A
- %4 =Ys.

73

(38)
(39)
(40)
(41)
(42)

The convergence of this system cannot be determined by Theorem 2.2 due to the 2§ term in
equation (40) which violates the statement of the theorem. However, equation (38) can be

reduced to
WAt = ~3wk+! 4 05w,

which will guarantee convergence to the correct solution by Theorem 2.3.
A second illustrative example involves the following linear index two system:

1 =-3n+y2+y3— Vs

Y2 = Y1 — 2y,

Ys = Yz — 4y + Us,
0=y +y2 — 3ys,
0=2y4+ys.

(43)

(44)
(45)
(45)
(47)
(48)
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Grouping equations ((44), (45), (48)) and ((46), (47)) and the variables (y1,y2,%4) and (yg,ys)
for the WR method, equations (44)-(48) become

gt = gyt g kbl Lk kel  (49)
y§+1 k+1 2yk+1 o ’ i (50)
0= 2y,':+‘ + ok, G
g‘,’;-l-l = yéc - 4yk+l + yk-(-l | (52)
0=y} +yf -3+ . (53)

Note that the decomposed system now contains one index-1 subsystem and one index-2 sub-
system. This system is solvable, therefore it can be transformed into the following canomca.l
form

kbl 1 !
Wit = 3wl 4wkt 4 2f 4 -2-z§, o (549)
Wht! = wht? - 2uktl - (55)
1 1 ‘
zf"'l = -§w{° + §w'§, ' (56)
1 :
z§+1 = "é'zg" - (57)
4 1 1, 1, ‘
Z§+1 = gw;f + §w§ + EU){‘ + §w§, (58)
where
A
w1 =,
A
w2 = Y2,
A
21 = Ys,
A
22 = Y4,
A
23 = Ys-

Since no #* terms appear in the canonical system, the Theorem 2.3 sufficiency conditioﬂs may
be implemented. Unfortunately however, the convergence of the system cannot be determined
since the contractivity requirement

0010 3}
0000 O
0000 0 fll<1
0000 -4
3 oo o

is not satisfied. It is noticed however, that the canonical differential variables may be rewritten as

, 1oy 1ogg 1
Wit = =3wft! 4wt bl 4 STt 4 gl 4 Zad
whT = @kt - 2ukt,

which satisfy the contractivity requirements of Theorem 2.3 that

4 4]f

Therefore, the sufficiency requirements for convergence are satisfied, and the WR algorithm of
equations (49)—(53) will converge.
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At this point, one final note to' this section on the index two WR method is pointed out.
Whether or not the WR iterates will converge depends very heavily on the manner in which the
original problem is partitioned. For a particular partitioning the system may not be solvable, or
may result in a nonconvergent algorithm. As an example of the latter problem, consider again the
previous linear index two system of equations (44)-(48). If this had been partitioned differently
as ((44), (45), (47)) and ((46), (48)), the system is solvable and yields the canonical form

. ,u');ﬂ-l — _3wi¢+1 4 3w§+1’

k+1 _ o k
2y = 3wy,
25 = —wk 4 30k,

wst! = —wf — 4wkt + 42t + 22,
2K = _oyk 4 4zF + 225,

where

A
w = Y2,
A
Wy = —Ys3,
A
z1 =Yy + Yo,
A N
22 = =2y — Y2 — Ya,

A
23 = Ys-

Once again, the sufficiency criterion of Theorem 2.2

<1

S CcCoCo
SO WOoo
- bk O O O
N NO OO
SO O OO

is not satisfied. Similarly, even though a reduced canonical form for the differential variables can
be found

Wt = 30kt 4 3wk,
Wht = —wk — 4wkt 4 1205 + 6wk,

the sufficiency criterion for convergence of the iterates by Theorem 2.3 that -

e ell<

is not satisfied as well. This system does indeed fail to converge for this particular partitioning.
"From this example, it is concluded that the partitioning of the original system is important for
convergence.

Theorem 2.3 may be generalized to other index systems as well. For higher index systems, the
convergence theorem follows that of the index two case, except the canonical differential functions
must be m-point contractive with respect to the time derivative iterates, where m is the index of
the system.5

5Two-point contractivity is defined in Appendix B.

mem 19:12-F



% ‘ M. L. Crow aND M. D. ILi6

2.5. Nonstationary WR Algorithms

To this point the WR algorithms presented have been stationary algorithms in the sense that
the iteration process is performed with the same set of equations. In practice,‘howe%er, the
equations change slightly from iteration to iteration. These changes are a result of the finite error
introduced when the nonlinear equations are not solved exactly. These errors can be controlled,
but not altogether eliminated. Nonstationary elgorithms are algorithms in which the equations
describing the system at each iteration differ from one iteration to the next. To be considered
useful, the nonstationary algorithms must approach the stationary function as k — o¢. In the
remainder of the section, it will be shown that the nonstationary WR algorithms converge as
a direct consequence of the contraction mapping property of the original WR algorithm. This
result will be developed for the index two case from which the result can be generahzed to other
index cases.

THEOREM 2.4. Let F be a mapping in a Banach space Y which describes the reduced canonical
system of Theorem 2.3. Let F* : Y — Y be the nonstationary mapping approximdting F
at the k' iteration. Assume that F is a contraction mapping in the two-point sense with
contraction factors oy and o (o + a3 < 1) and ||F*(y) — F(y)|| < 6% forally € Y and define
y*+! = F(y*) and §5+1 = F*(g*). If there exists a y* € Y such that F(y*) = y* then for any
€ > 0 there exists a 6(¢) < 1 such that if 8 < 6 for all k then limy_. [|§* — §*~!|| < € and
limg—oo |5 — y*|l < 8/(1 = (01 + c2)). |

This theorem essentially states that any fairly accurate approximation to the function‘can be’
used to solve the WR iterates as long as the subsequent error is driven to zero as the Lteratxons
progress. It is difficult to ascertain beforehand how precise “fairly accurate” must be to meet this
criteria since this depends on the contraction factors oy and o which are difficult to estimate in
many cases, ' :

3. THE DISCRETIZED WAVEFORM RELAXATION METHQD
FOR DIFFERENTIAL/ALGEBRAIC SYSTEMS :

A major advantage of the WR algorithm is that the dlﬁ”erentxal/ algebraic equations are solved
in a decomposed manner. This implies that if discretization methods are used to solve the
independent sets of equations, the time steps for each subsystem can be selected relatweL y inde-
pendently. This leads naturally to three questions: Does the waveform relaxation process still
converge? If it does converge, does the resulting multirate integration method possess thé stabil-
ity properties of the integration method used for the decomposed systems? Can the vaxious time
steps be chosen independently?

The discretized WR algorithm is a nonstationary method, thus the theorem presented in
Section 4.3 may be applied to insure that the WR iterates will converge to the solutlbn of a
given system of DAEs when the global discretization error is driven to zero as the number of
iterations increases. The time steps for numerical integration methods are usually chbsen to
guarantee that local truncation error estimates are kept below some preset threshold. ‘waever,
in certain instances, it may be possible to satisfy the local truncation error criterion, but the dis-

“cretized WR algorithm may still fail to converge. This situation implies that the dlscretxzatxon.
process is more complex in the WR algorithm than for classical numerical integration methods
The discretized WR. algorithm for ODEs is discussed in [17,23]. ’

3.1. The Uniform Time Step Case

As an example of a situation where the WR convergence depends on discretization, ¢on31der
WR applied to the following linear index two test system with partitioning {z1,y}, {mg}

£y = -5z +y -+ 0.1z3, L (59)
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0=1z1 4+ A\ z9, (60)
5&2 =T — /\2 . (61)

This system is solvable and stable for all A\;, \; > 0. Therefore, if each equation in the system
is discretized 1dent1ca.lly (this is known as a uniform time step), the discretized equations under
backward-Euler become

(L+5h)2ith, — hofil =01haf, ) + okt (62)
. mllc-:;ﬁ-l =-X\ z2,n+1’ (63)
(1+22h) f”’zftzlﬂ = hml n+1 T ‘7’2 L (64)

where h =t 41 — ty. ‘

The waveforms for the Gauss-Jacobi WR algorithm exhibit a strange behavior when thls
algorithm is applied to DAE systems of index greater than or equal to two. The iterates for
all variables do not change at every iteration as they might in the WR applied to ODEs, but
for an index two case, they only change every other iteration. The first few iterations of z; and
zg for h = 0.01 of the previous example are given in Table 1, with the chosen initial condition.
From Table 1, note that-r; is updated in iterations 2 and 4, whereas x; is updated in iterations 1
and 3.

Table 1. Successive iterates for the Linear Index Two Test System:

k=1 k=2 k=3 k=4
t 31 23 T T3 31 2 1 x2

0.00 | ~1.0000 | 0.1000 | —1.0000 | 0.1000 | —1.0000 | 0.1000 | —~1.0000 | 0.1000
0.01 | —1.0000 | 0.0895 | —0.8955 | 0.0895 | —0.8955 | 0.0905 | —~0.9059 | 0.0905
0.02 | ~1.0000 | 0.0791 | —0.7915 | 0.0791 | —0.7915 | 0.0822 | ~0.8226 | 0.0822
0.03 | ~1.0000 { 0.0688 | —0.6881 | 0.0688 | —0.6881 | 0.0750 | —0.7500 | 0.0750
0.04 | —~1.0000 | 0.0585 | —0.5851 | 0.0585 | —0.5851 | 0.0688 | —0.6881 | 0.0688
0.05 } ~1.0000 | 0.0482 | —0.4827 | 0.0482 | —0.4827 | 0.0636 | —0.6366 | 0.0636

An examination of the discretized equations for the example clarifies why this phenomenon
occurs. After discretization by backward-Euler, the discrete variables become

it = = M2, (65)
1+5h 1
yhil=-— <o.1 + A1 ( o )) b1 = T Th s (66)

h 1 ;
’ zgtt{l-l 1+A h 1n+1+ 1+)‘ h ’2647.11 (67)

Thus :v'f,":ﬂ_l can be equivalently expressed as

h o ky 1 k
it =-\ (m Tin41 + T4 ogh %2n )

and similarly " .
k41 k-1 gk+1

Tani1 = T gk (M Bam) ¥ 757 Tan |
Note the dependence of the (k1) iterate on the (k — 1)** iterate. Thus, each of these variables
is only updated every other iteration, and the “middle” iteration is redundant. This dependency
is not unexpected in light of Convergence Theorem 2.3 which states that an index two system
may give rise to this type of “nested” iterations. This redundancy can be eliminated directly by
computing only every other iteration without loss of information. ~
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This phenomenon also occurs in Gauss-Seidel based iterations, although it is not as apparent
as with the Gauss-Jacobi iterations. During G-S iterations, the (k + 1)*t iterate will, in general,
depend on both the k*! and the (k — 1)*t iterates. Thus the “nesting” effect is still occurring,
leading to possibly slower convergence of the iterates, but it is more difficult to detect than with
the G-J iterations.

The algebraic relaxation of this system will converge if the eigenvalues of the relaxation matrix
lie within the unit circle in the complex plane. For the algebraic relaxation this leads to the
following allowable values of h

1
M=)z’
For example, if Ay = 10 and Az = 0.5, then

h< AM>A20..

1
h< m = 0.105.

To see how this h might be related to the allowable time steps for the WR algorithm, h = 0.1sec
is used in the above example. Using an initial guess z(t) = zo; ¢t € [0,T], the WR jiterates
converge to the solution of the discretized equations. However, when the time step A is ;x (creased
slightly to 0.11, the iterates diverge for any choice of initial waveform. This implies that there is’
a close relationship between the time step bound for the algebraic relaxation and the time step
bound for the WR algorithm.
'The WR iterates given above will converge to the discretized solution if
Arh <1,
14+ A2 h.

or equivalently 1

Ay —
This is identical to the time step bounds given by the algebraic relaxation method. 'I"hb upper
" bounds on the time steps for which the uniform time step discretized WR algorithm will converge
are very similar to the constraints on the time steps for which the algebraic relaxation Mkorithm
applied to a discretized numerical integration scheme will converge. In fact, in the linear cese
they are closely related as was shown in the previous example. A comparison theorem between
the WR and the algebraic relaxation method is presented below. f

h <<

THEOREM 3.1. Let a k-step backwards difference formu]a be applied to the linear DAE system
of the form

Eyt)=Ay(t), y(0)=yo,
where B, A € R™*™, and E has the form

E = diag{E;}, i=1,...,r,

E;:[I"‘ 0] En,—n, n<m

and y(t) € R™. Assume that the Gauss-Jacobi (or Gauss-Seidel) algebraic relaxation algdnthm is
used to solve the linear algebraic equations generated by the BDF. Given a sequence of tnhze steps
{hm}, where each h., is chosen such that the discretized DAE is hi, solvable, the Gausg-Jacobz :
(Gauss-Seidel) relaxation algorithm will converge at every step, for any initial guess, if emd only
if the WR algorithm, discretized with the same sequence of time steps and with the sanjw BDF
converges for any initial guess.

where

This theorem may be generalized to the nonlinear WR algorithm if it is assumed q;hat the
initial guess may by chosen arbitrarily close to the exact solution. This requirement is: nbcessary
because of the constramts imposed by the Newton’s methocl on the initial guess
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3.2. The Multirate WR Convergence Theorem

A major advantage of the WR algorithm for both ODEs and DAEs is that the differen-
tial/algebraic equations are solved in a decomposed fashion. This implies that if discretization
methods are used to solve the independent subsystems, the time steps used by each subsystem
may be selected fairly independently. When different time steps are chosen by the individual
subsystems, the computation of values at a time step of one subsystem may require a value of
another subsystem which was not explicitly computed, due to differing time steps. This value
must then be interpolated. If this interpolation is not performed carefully, the convergence of the
algorithm may be destroyed. To insure convergence of the WR algorithm, the error introduced by
the interpolation must be driven to zero with the WR iterations in accordance with the theorem
presented in Section 4.3 for nonstationary methods.

The most common type of interpolation is linear interpolation, where the unknown value is
taken to be on a line connecting the immediate greater and lesser values. For example, if #(7,-1)
and &(r,) are known, then £(#) is approximated by

s F =T

(1) = (22221 ) (3(rm) = #(rn-r)) + E(7nc),
Tn - Tn_ /

where T,~1 < # < 7. If linear interpolation is used to approximate the unknown values, the

multirate discretized WR algorithm will converge. This statement is formalized in the following

theorem.

THEOREM 3.2. If linear interpolation is used to approximate the unknown variable values for
nonconcurrent time steps, then there exists a collection of time steps hio > 0, i = {1,.. ,n},
such that if 0 < h; < hy for all i, then the multirate fixed-time step discretized WR algorithm
converges with respect to the interpolated sequences.

This theorem implies that the discretized WR algorithms will converge only if the “underlying”
discretized equations will converge. When a DAE system of index m is divided into subsystems,
not all of the subsystems may have index m, some may have index less than m. This implies
that different restrictions may apply in discretizing the various subsystems. A subsystem having
an index of three must be discretized by a constant step size BDF of order < 6 [13], whereas,
a subsystem of index two or less may be discretized by a variable-step variable-order BDF [10].
This is an additional advantage of the WR method. Those subsystems which are of low index
may be integrated with traditional numerical methods with little or no additional precautionary
measures, while those of higher index may be integrated using methods tailored for high index
systems.

4. CONCLUSIONS

Many systems in robotics and control applications are modeled with DAE systems having an
index greater than two. Computer simulation of these systems has been hampered by numerical
integration methods which perform poorly and must be explicitly tailored to the system. The
WR algorithm presents a means by which these systems may be more efficiently simulated by
breaking them into weakly coupled subsystems, many of which will no longer retain the limiting
high-index properties. This analysis also explains why VLSI circuits with floating capacitors
encounter convergence difficulties. These difficulties are due to the “nesting” behavior of the
iterations as a result of the increased index. Once these problems are identified, they may be
eliminated. This paper presents an extension of the waveform relaxation algorithm to systems

6The proof of this theorem parallels a similar proof in [17} for ODEs. For an index two DAE system, the multlrate
discretized WR differential canonical system is a two-point contraction in an exponential norm. This result is used
to prove convergence. This result may be generalized to other index systems provided the contraction assumptzons
are generalized as well.
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of differential/algebraic equations. Although this type of application has been explored earlier
in relation to VLSI circuits, the algorxthm has not been generalized to include the vast d,rray of
DAE system structures. This paper establishes the solvability and convergence requirements of
the waveform relaxation algonthm for higher-index systems.

APPENDIX A
DISCUSSION OF THE CANONICAL FORM FOR
WAVEFORM RELAXATION APPLICATIONS

This appendix is included to avoid any confusion which might arise due to the dlfferencd; in the
usage of the term “canonical form” of a DAE as used in [7] versus the same terminology deﬁned
in [19]. For simplicity, this appendix will discuss canonical forms for linear time invanant DAE
systems, but the results may be extended to the nonlinear DAE system.

Consider a solvable LTI DAE system

Ey(t)=Ay(t) +g(t), y(t)eR", - (68)

where E is a noninvertible square matrxx As stated in [5,7], there exist nonsingular matmces P
and Q such that

(69)

P(A-/\E)Q=[El+)‘lm ‘ 0 ]

0 I, + AE;

where E; and Ej are ny X n3 and ng X ng respectively, and n = nj +nz and E; has the property
that either there is an integer m such that E™ = 0; Em-1 # 0 or E = 0. The integer m is defined
to be the inder of the system [13]. The matrices P and Q may be applied to (68),.

PEQQ-'y(t) =PAQQ 'y(:) + Pg(t), ~ (70)

which decouples the system into a canonical form as defined in [5,7], )
‘ W(t) = Eyw(t) + 1 (t), ()
Eq3(t) = 2(t) + £2(t), - (72)

where E; and E; are from (69), [w(t) 2()]T = Q-!y(t), and [fi(t) £2(t)] T = P g(¢). Thus (72)
may be solved ‘

m-=1
z(t) = - > B4 f0()

i=0

= —f(t) — E; f(l)(t) _ E2 f(z)(t) i Em—l f(m—l)(t),

where the superscript (i) denotes q—éyl whereas the superscript i is simply “to the poWer i
Note that in an index two system, only the first two terms appear since EZ = 0. Thus a,n index
two LTI system of the form (71), (72), may be written

w(t) = By w(t) + fi(t), - (73)
2(t) = —f3(t) — Ba F5(2). | - (79)

Now, consider an LTI system to which WR has been applied, |
By**1(t) = My (1) + NyA(2) + (0, ()

where A =M+ N. This may be rewritten |
Ey*+1(t) = My (t) + g(b). (76)
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Note that g(t) in (68) is now —N y*(t) + &(t), thus both f;(¢) and f2(t) will be functions of g(t)
and N y*(t). Equation (75) may now be written as in (73) and (74) with

|5y |=eva 3 Jera

—N[ w ] +Pg(t)

_ Nww wk + 1‘;Tu.:.z z* + ?1
Nzw w,c + sz zk + f2

L. qT ‘
where [fl(t) f; (t)] = P §(t). This relationship leads to the following set of canonical equations

WhHL(t) = By whH () + 1 (2) + Now wh(t) + ﬁwz 2" (t) (77)
2 (t) = —fz(t) Naw wh(t) = Nou 2%(8) - Eafa(t) ‘
~ By N, wh(t) — Bo N, 2°(2). (78)
Thus the canonical form for WR applications can be generally stated
WhHL = f(whHL Wk ik gk sR) wkt(0) = w, (79)
k1l — g(wk+1 wk wk zk zk) (80)

Note the appearance of both the w* and z* terms. The primary difference between Theorem 2.2
and Theorem 2.3 is the addition of the z* term, which may considerably impact the determination
of convergence.

APPENDIX B
PROOF OF THEOREMS

DEFINITION APPENDIX B.1. A mapping f: D C R® — R" is two-point contractive on a set
Do C D if there are o € [0,1), a1 € [0,1), ap + a3 < 1 such that

"f(l'o,xl) - f(ymyl)” <o ||:v0 — yo" e "ml _ yl" ’ (81) .

for all Zg, T1, Yo, Y1 € Dy.

THEOREM APPENDIX B.1. (Two-point Contraction Mapping Theorem) Suppose that f : D C
R™ — R™ is two-point contractive on a closed set Do C D and that f(Do, Do) C Do. Thus f has
a unique fixed point z* in Dy. Furthermore, for any initial guesses z*, t® C Dy, z*, z° linearly
independent, the sequence {z*+! = f(z*,z*~1)} converges uniformly to z*. \

PROOF. Let z!, z° be arbitrary points in Dy, and form the sequence z*+! = f(z*,z*-1), k

1,2,.... The function f(Do, Do) C Do, {a**+!} is well-defined and lies in Dy, and let b+l
lz¥+1 — x*||. Thus e¥+! < o) € + ap €41, s0 that

k/2 :
ftl < (Z a(’“'2’) o C; ) et +ap (Z a(k'z"l) o C ) (82)

i

J=0 =0

where )
k-2 i

6=3 ¥ 31

ij=0 45.1=0 41 =0
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Thus, equation (82) may be rewritten as
e < i (k) €' + a(k) €0 . (83)

Since'yl(k)->Oaisk—>ooarid'yg(k)-»Oask—»oo,thenask—»oo e+l 5 0, thus z*+l — 2+
as k — co. Therefore z* is a fixed point of f. Now to prove that z* is unique. Suppose z* and y*
are two fixed points, then

lle* = y*lf = £ (=*,2*) = f*, ) < o1 lle* = y*|| + @z flz* — ||
< (o +ag) fle* - "l < flz* -yl

Hence a contradiction, therefore z* is unique. . | ]
This leads to the following lemma. ;

LEMMA APPENDIX B.1. Let x, y, z € C([0, T},R"). If there exists some norm on R" sujcl'i that

IO < 11 ¥ + 2 12 + & Ix@ + 22 Ny @)l + &5 I12(2)]], ‘ (84)

for some positive numbers £y, £2, £3 and v, +73 < 1, tben there exists a norm ||-}|, on C([O 6] R™)
such that

%@y < on |y (), + o2 121l + L1 IO + L2 Iy (0)]] + Ls ||2(0)]}, - (85)
for some positive a1, oz, L1, La, L3 such that oy + a'< 1.

PROOF. The proof of this lemma may be found in [21] and is omitted for brevity. This’ pnoof is
close in development to a similar proof for ODEs presented in [17). :

PROOF OF THEOREM 2.3. Given
WhHL = Fr (whH wh, wh=1 Wk sk ; (86)
Taking the difference between equation (85) at iteration k + 1 and at iteration j + 1 yielidsj
WEHL it o bt wh Wkl ek sy f(w L wi wiet W i), (87

Using the Lipschitz continuity of f with respect to w, and the contractivity with respect to w,
(87) leads to ‘

4+ = S [ ] [ = |
+ £y || W — Wit 4 gy || wWE - w|| + g5 ||wEt - wITY||. o (88)

Then from Lemma Appendix B.1, there exists a norm such that ‘

942 42, < a9 ]+ 92 =1, 4 I [[w100) — wi )]
+ Ly [W0) - W) + Lo [w+2(0) - wi )] e

thus,‘since wkt1(0) = wit1(0), wk(0) = wi(0), and w*~1(0) = wi=1(0),
[+t — w1, < ok = ], 4+ ag [kt — =, (50)

Thus for oy + a2 < 1, this is contractive by Definition 4.1. Hence, by Theorem Appendxx B 1,it -
has a unique fixed point satisfying

w* = f(W',W"W',W',W*), W*(O) =

Furthermore, for any given initial w!(0), w°(0) the sequence {w*+1(-)}}°  generated by (86)
converges uniformly to w*. i
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PROOF OF THEOREM 2.4. Taking the difference between the k*" and the (k + 1)® iterations of
the nonstationary algorithm yields

”gk+1 ~k||__“Flc+1( ~k-’) Fk (”'c 1% 2)” (01)
<P @, )~ F @, )
+”Fk(~k—1 52— F(ﬁ'c LI

+||F* (@9 - F @857 | (92)
Given that ||F* (y)— F (y)|| < 6* for all y € Y then
”~k+l k” < kL 4 gk 4 |7 @, 5" 1) F (~Ic-—1 ~k-—2) “ (93)
By the contraction property of F,
| |55+ = ¥l < 85+ + 6" + o flg* ~ 7, + 0a [l ~ 7)), (94)
Recursively substituting yields
k+1
”gk-{-l - ~k”b < ZCj (5k+1—-j + 5k—j), (95)
j=0

where Cj 2 a1 Cj_1 + @2 Cj_z, and Co = 1, C; = ay. If 6% < § for all k then

k1

g™+ - ¢*ll, <26 3Gy, (96)
=0 ‘
where
k41 k/2 k-2J o
ZC, Zaz Z of - Cyr , 97
=0 J=0 I=0 ‘
and

I 13 i2 , :
Cir=3, > Y 1. ' (98)

tg=0 i75..1=0 13==0
N

/s

v

J
Taking the limit as k — oo yields

k+1_gk” S T 26

(a1 + 012). (%9)

hm ”y
Since (o4 + a2) < 1, the limg—,oo ||#*** ~ 7*|| can be made smaller than any desired ¢ by choosing
5 (€) < (¢/2)(1 — (o1 + o)), thus proving the first part of the theorem.
Let y* be the fixed point of F. The difference between the (k + 1)** iterate and the exact
solution becomes
l[g4+* = y*|| = [|IF*** (5",5*") - F "7 (100)
Following the previous construction, this ,becomes '
[+ = v°|l, < 84! +en [|5* — ||, + 02 [l = 97, (101)
Recursively substituting and taking the limit yields

Jim [|y"+1 (102)

vl < Ty

which completes the proof of the theorem. ‘ [}

<
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