Tensor Product Representations
and Holographic Reduced Representations
Smolensky, 1990 & Plate, 1991

Tiwalayo Eisape, Joey Velez-Ginorio, Pedro Colon-Hernandez
{eisape, joeyy, pe2bl/}@mit.edu

Neuro-symbolic Models for NLP (6.884), October 2, 2020

Outline

Introductions (us + 3 others) (11:35 - 11:40)

TPRs - why/what? (11:40 - 11:55)

Break out room (11:55 - 12:10 mins)
Discussion (12:10 - 12:20 mins)
[Early] Break (12:20 - 12:35)

p
TPR tutorial (12:35 - 12:50)
&
Discussion (12:50 - 12:55)
p
TPR Shortcomings; HRRs (12:55 - 1:10)
&

Discussion (1:10 - 1:25)

Outline

Is variable binding
necessary?

Do humans use a
TPR-like mechanism?
Do current models

approximate faithfulness?

Small group technical
questions

\

Introductions (us + 3 others) (11:35 - 11:40)

TPRs - why/what? (11:40 - 11:55)

Break out room (11:55 - 12:10 mins)
Full Group Discussion (12:10 - 12:20 mins)
(Early] Break (12:20 - 12:35)

J

TPR tutorial (12:35 - 12:50)

| \B

Full Group Discussion (12:50 - 12:55)

TPR Shortcomings; HRRs (12:55 - 1:10)

Full Group Discussion (1:10 - 1:25)

Tensor Product Representations - why?

A one-sentence summary of the implications of this view for Al:

connectionist models may well offer an opportunity to
escape the brittleness of symbolic Al systems ...

... This paper offers an example of what such a collaboration might look like.

Tensor Product Representations - why?

Jay is loved by Kay. Who loves Jay? Kay.

+ Jay in role: subject of passive sentence
+ Jay in role: object of wh-question
+ Kay in role: object of passive by-phrase

+ Kay in role: answer to wh-question

[Paul Smolensky HLAI Keynote (2019); Newell, A. (1980)]

Tensor Product Representations - why?

Jay is loved by Kay. Who loves Jay? Kay.

+ Jay in role: subject of passive sentence

Same

+ Jay in role: object of wh-question

+ : ’ : . i
o < Kay in role: object of passive by-phrase

+ Kay in role: answer to wh-question

Symbol

[Paul Smolensky HLAI Keynote (2019); Newell, A. (1980)]

Tensor Product Representations - why?

Jay is loved by Kay. Who loves Jay? Kay.

+ Jay in role: subject of passive sentence >

Same Different

+ Jay in role: object of wh-question

Different

. < + Kay in role: object of passive by-phrase >
+ Kay in role! answer to wh-question

Symbol Role

[Paul Smolensky HLAI Keynote (2019); Newell, A. (1980)]

Tensor Product Representations - what?

Representing Structured Objects

(1) Decomposing the structures via roles (2) representing variable/value bindings (3) representing conjunctions

[Smolensky 1990, pg. 169]

Tensor Product Representations - what?

Tensor Product Representations - what?

Filler

(1) Decomposing the structures via roles

Tensor Product Representations - what?

(1) Decomposing the structures via roles

Tensor Product Representations - what?

®@ |O O O © O
. ® |O O @ ®

L@ |O ® 06 ©
® | O 0O @ @

O e 0 O

Role

(2) representing variable/value bindings

Tensor Product Representations - what?
O O O O

O O O

O

Role

(2) representing variable/value bindings

Tensor Product Representations - what?

(Soulos et al. 2019]

(3) representing conjunctions

‘Faithful’ @
Tensor Product
Representations

Tensor Products

Faithful’)
Tensor Product
Representations

Tensor Products

Faithfulness

®© @ O e

© 0 6 6

Faithfulness

®© @ O e

Faithfulness

®© @ O e
© @ O @

Faithfulness

®© @ O e
© @ O @

Faithfulness

®© @ O e

© @ O @

®© @ O e

([0 e @ @ o

New Role, New Representation!

| 4

Faithfulness

®© @ O e

© @ O @

®© @ O e

([0 e @ @ o

New Role, New Representation!

Faithfulness

®© @ O e

© @ O @
®© @ O e

Orthogonality
| 4 Theorem 3.3, Section 3.2

([0 e @ @ o

New Role, New Representation!

Linear Independence
Definition 2.8, Section 2.2.2

ensor Product
epresentations

_|_I_|R

Tensor Products

Graceful Decay @&

Variable Binding r N
1. Is Variable Binding Necessary?
2. Do humans use a TPR-like mechanism?
3. Do current models approximate faithfulness?
4. Small group technical questions
. J

Gary Marcus @GaryMarcus - Feb 6,2018
completely agreed, @tdietterich! lots of cases where variable binding is
absolutely necessary. no binding, no AGI.

& Thomas G. Dietterich @tdietterich - Feb 6,2018
Replying to @tdietterich @jahendler and @GaryMarcus

There are lots of cases where binding appears to be necessary. Ex 1: If
you put X into your pocket and then walk to work, you will be able to take
X out of your pocket at work. Ex 2: If | ask you query X and you know X,
you will tell me X, forall X.

O 1 (A Q 9 s

Break

R Tutorial

TPR Tutorial

(1) Symbolic Structure

TPR Tutorial

(1) Symbolic Structure
(2) Encoding w/ TPRs

TPR Tutorial

(1) Symbolic Structure
(2) Encoding w/ TPRs
(3) Representation Proofs

(1) Symbolic Structure : Give, the programming language

(1) Symbolic Structure : Give, the programming language

Syntax

p = (Givep) |

(1) Symbolic Structure : Give, the programming language

Syntax

p = (Givep) |

Examples

(Give)
(Give (Give)
(Give (Give (Give)

(1) Symbolic Structure : Give, the programming language

Syntax Semantics

p = (Givep) |

(Give p) = p

Examples D—p

(Give) (Give p) — (Give p))
(Give (Give)

(Give (Give (Give)

(1) Symbolic Structure : Give, the programming language

Syntax Semantics

p = (Givep) |

(Give p) = p

Examples D—p

(Give) - (Give p) — (Give p))
(Give (Give) L

(Give (Give (Give) —

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, [pl : Give4 ~ R®3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give, denotes the set of all Give programs up to length 4.

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, [pl : Give4 ~ R®3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give, denotes the set of all Give programs up to length 4.

Give4 ={ ,(Give), (Give (Give)), (Give (Give (Give)))}

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, [pl : Give4 ~ R®3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give, denotes the set of all Give programs up to length 4.

Give4 ={ ,(Give), (Give (Give)), (Give (Give (Give)))}

000 [120] [221]
gas - p (111 [010] [113)
[111] ' (101 '[1o01

002 [201) [200]

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, [pl : Give4 ~ R®3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give, denotes the set of all Give programs up to length 4.

Give, ={ ,(Give), (Give (Give
(0 0 0] (120]

gia = ¢ [111] (010

(111] " [101]

(00 2] (201)]

), (Give (Give (Give)}

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, [pl : Give4 ~ R®3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give, denotes the set of all Give programs up to length 4.

Give, ={ ,(Give), (Give (Give)), (Give (Give (Give)))}

(00Q] (120] (221)
(111] " [101] (1o1 " "
(00 2] (201)] (20 O]

Fillers

fo={i iy, i, i,}

Roles

r = {Give, L€}

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, [pl : Give4 ~ R®3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give, denotes the set of all Give programs up to length 4.

Give4 ={ ,(Give), (Give (Give)), (Give (Give (Give)))}

(00Q] (120 (221)
111) " (101 "[101 "
(00 2] (201)] (20 O]
Fillers
fr=dip iy i) (Give (Give (Give) = (i;:Give) A (i,:Give) A (i,;:Give) A (i
)
Roles
r = {Give, €}

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, [pl : Give4 ~ R®3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give, denotes the set of all Give programs up to length 4.

Give4 ={ ,(Give), (Give (Give)), (Give (Give (Give)))}

(000 (120 (221)
111 " (101 '"[ro01 " "
(00 2] (201) (20 0]
Fillers
fo=Aip gl (Give (Give (Give) = (i;:Give) A (i,:Give) A (i,;:Give) A (i
) (Give (Give =)) = (i;: €) A (i:Give) A (i;Give) A (i
Roles)
r = {Give, €}

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, [pl : Give4 ~ R®3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give, denotes the set of all Give programs up to length 4.

Give4 ={ ,(Give), (Give (Give)), (Give (Give (Give)))}

(000 (120 (221)

111 " (101 '"[ro01 " "

(00 2] (201) (20 0]
Fillers
fo=Aip gl (Give (Give (Give) = (i;:Give) A (i,:Give) A (i,;:Give) A (i

) (Give (Give =)) = (i;: €) A (i:Give) A (i;Give) A (i

Roles ; (Give) = (i e) A(i, €) A(i;:Give) A (i
r = {Give, €}

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, [pl : Give4 ~ R®3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give, denotes the set of all Give programs up to length 4.

Give4 ={ ,(Give), (Give (Give)), (Give (Give (Give)))}

(000 (120 (221)
111 " (101 '"[ro01 " "
(00 2] (201) (20 0]

Eillers 1) © © o

© [[© [0 [(Give (Give (Give)] = |[(|1:G|ve) A (i,:Give) A (i,:Give) A (i,
0O WO I
fr="Aom o ol)
| |

(100] (010)] (00 1)
r = {Give, , € }

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, [pl : Give4 ~ R®3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give, denotes the set of all Give programs up to length 4.

Give4 ={ ,(Give), (Give (Give)), (Give (Give (Give)))}

(000 (120 (221)
111 " (101 '"[ro01 " "
(00 2] (201) (20 0]

Eillers 1) © © o

© [[© [0 [(Give (Give (Give)] = |[(|1:G|ve) A (i,:Give) A (i,:Give) A (i,
0O WO I
fr="Aom o ol)
| |

= (i,®Give) + (i,2Give) + (i,Give) + (i,)

(100] (010)] (00 1)
r = {Give, , € }

(2) Encoding w/ TPRs : Give, the programming language

A TPR is a mapping, [pl : Give4 ~ R®3, from a set of symbols to a vector space via filler/role
decompositions. Here, Give, denotes the set of all Give programs up to length 4.

Give4 ={ ,(Give), (Give (Give)), (Give (Give (Give)))}

000 [120] [221]
111) " (101 "[101 "
(00 2] (201) (20 0]
Fillers) 0 © © . . . o o . .
0 m o o [(Give (Give (Give)] = [(i;:Give) A (i,:Give) A (i;:Give) A (i,:
F=1 o [1;4} L (i,°Give) + (i,°Give) + (i,Give) + (i,® |
= (100
[100]
Roles [(100)
(100] [010] [001) (010
r = {Give, , € }

(3) Representation Proofs : Give, the programming language

Theorem. The following linear transformation is a representation of the
instruction Give.

Give : }.f.er. ~ 3 for

(3) Representation Proofs : Give, the programming language

Theorem. The following linear transformation is a representation of the
instruction Give.

Give : }.f.er. ~ 3 for

Proof.
Recall that w/ TPRs we encode Give programs as conjunctions of filler/role
decompositions, i.e. [pl = Z.f,er,. Additionally, recall that: (Give p) — p

[(Give p)] = I[pl
= fern
= Give }.f.er.
= Give [pl

Discussion

- How does this scale to larger programs in Give?
- What if our programming language was more complicated?
- Other thoughts...

Benefits & Shortcomings of Tensor Decomposition

No impositions on structure
Faithful
Variable binding

- Scaling up can be memory and compute demanding
o Using ConceptNet as an example, ~4M nodes, ~40 relations might need to play around with
pretty large tensors

— - -

Holographic Reduced Representations

e Use Circular Convolutions and Correlations to associate/disassociate
vectors that represent structures

e Requires a reconstruction system to sort through the noise

e Circular Conv. and Circular Corr. can be manipulated to query structure

t =c@®x co a1 2
to y=c®t
lo = coxo + 271 + €17
Yo = colo + 11y + 212

) =170 + cory + €272 i
1 = calo + coty + 313

2 =220+ 1T + CoT2
12 y2 = cilp + 2ty + col2

v2 n Yo
Circular Convolution Circular Correlation (Inverse)

Representations with HRR

Sequences Sape = a+a®b+ a®b®c
sge = d+d®e
Sfgh = f+feg+f®g®h

S(abcdefgh)= Sgpe + Sabe®8de + Babe ®Sde @Sjgh -

Representations with HRR

Seqguences
Variable Binding t=x®a+y®Db.

Bindingato XandbtoY

Representations with HRR

Running frame: Spot runs

Seqguences
trunning = 1run+ragent@fapot

Variable Binding

Seeing frame: Dick saw Spot run
Frame-Slots g P

Liee + ragcnt@fdick + Fobject®trunning
Lee + ragent@fdick
+ robject®(lrun + ragcnt®fapo:)

taceing

Example: Filling a frame

Frame: Filler
Job Application: o September 1, 2020
e Name

e Date

Example: Filling a frame

Frame: Job Application | 0.35 | 0.28 | 0.11
Name 0.19 | -0.14 | 0.02
Date -0.22 [0.04 | 0.10

Filler: September 1, 2020 0.06 | 0.05 | -0.16

Example: Filling a frame

Binding Date & Filler September 1, 2020

0.06 | 0.05 ‘—0.1€ﬂ

C[0]=0.1*0.05+-0.16*0.04+-0.22*0.06+=-0.0146
022 | O O O

C: -0.0146

Date | 0.04

0.10

Example: Filling a frame

Binding Date & Filler September 1, 2020

0.06 | 0.05 —0.1ﬂ

022 | O O O

C[1]=0.1*-0.16+0.05*-0.22+0.04*0.06=-0.0246

C: -0.0146 | -0.0246

Date | 0.04 | © O

O
010 | O @) O

Example: Filling a frame

Pairing Job Application + Date Field September 1, 2020

0.06 | 0.05 | -0.16

C[2]=0.1*0.06+0.05*0.04+-0.16*-0.22=0.0432
022 | O O O

C: -0.0146 | -0.0246 | 0.0432

Date | 0.04 | O @) O

010 | C O O

Example: Filling a frame

September 1, 2020

0.06 | 0.05 | -0.16
C: -0.0146 | -0.0246 | 0.0432 Q/

-0.22

C: {Date:September 1,2020} Date | 0.04

0.10

Example: Filling a frame

September 1, 2020

16

Add Name:
C: {Jo C: {Date: September 1, 2020}+ Name
C{Date: September 1, 2020, Name}

Example: Filling a frame

C": {Date: September 1, 2020, Name}

Example: Filling a frame

Add in Frame Label
C": {Date: September 1, 2020, Name}+ Job Application

C:{
s C":{Job Application: Date: September 1, 2020, Name}

Example: Filling a frame

C": {Job Application: Date:September 1,2020, Name}

Keep in mind representations are stored in a distributed manner
We used the “decoder” implicitly to clean the noise
Our representations are the result of an FFT

Example Application for Holographic Representation

Best role finder:

Job Application: Name, Date

Uninstantiated
Frame Best

O @D

Filler /

January, 1, 2021

Example Application for Holographic Representation

Best role finder:

Job Application: Name, Date

Uninstantiated

Frame Best
role

Job Application: Name, e @ o ° @

Date:January 1,

Filler /

January, 1, 2021

Example Application for Holographic Representation

Best role finder:

Job Application: Name, Date

Uninstantiated

Frame Best
\ role
Filler /

January, 1, 2021

Example Application for Holographic Representation

Best role finder:

Job Application: Name, Date

Uninstantiated

Frame \ Best

F“

January, 1, 2021

Example Application for Holographic Representation

Best role finder:

Job Application: Name, Date

;.::=/’

January, 1, 2021

Benefits of Holographic Representations

e [ormat for the two input vectors is not specified, only independently distributed

e Space Efficiency: you just need the 2 vectors rather than the whole Tensor, result
Is the same size as the input

e (Can be calculated in O(n log n) with FFT

e HRRs could retain ambiguity while processing ambiguous input (New York as
City and as Name)

e [Easy analysis of capacity, scaling and generalization

Shortcomings of Holographic Representations

e Decoder/cleaner must store all the possible outputs. If it knows everything,
then why not find a way to exploit it?

e |sthe decoder static? How would you add some new domain?

e Elements of each vector must be independently distributed, but have
meaningful features

e Hit until you decode the correct thing?

e Some operations to decode require additional machinery (recursive) — Lo

Encoding Methods?

E)} alamy stock photo sy

Encoding Methods?

3 . ' A
all other encodings @&
of symbols in vector §
spaces

([END]

