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Today

1. F&P: Are there fundamental differences  
between symbolist / classical accounts of  
information processing and connectionist 
/ neural ones? 

2. How much progress have neural models 
made towards addressing the concerns 
raised by F&P?



The research program

F&P: 
 
“The architecture of the cognitive system consists of the set of basic 
operations, resources, functions, principles, etc (generally the sorts of 
properties that would be described in a “user’s manual” for that 
architecture if it were available on a computer), whose domain and 
range are the representational states of the organism. 
  
It follows that, if you want to make good the Connectionist theory as a 
theory of cognitive architecture, you have to show that the processes 
which operate on the representational states of an organism are those 
which are specified by a Connectionist architecture.”



Historical context

Smolensky 1988:  
 
“Higher-level analyses [of] connectionist models reveal subtle relations 
to symbolic models. […] At the lower level, compntation has the 
character of massively parallel satisfaction of soft numerical 
constraints; at the higher level, this can lead to competence 
characterizable by hard rules. Performance will typically deviate from 
this competence since behavior is achieved not by interpreting hard 
rules but by satisfying soft constraints.” 



Historical context

Rumelhart & McClelland 1985:  
 
“Children are typically said to pass through a three-phase acquisition 
process in which they first learn past tense by rote, then learn the past 
tense rule and overregularize, and then finally learn the exceptions to 
the rule. We show that the acquisition data can be accounted for in 
more detail by dispensing with the assumption that the child [eamns 
rules and substituting in its place a simple homogeneous learning 
procedure. We show how ‘rule-like’ behavior can emerge from the 
interactions among a network of units encoding the root form to past 
tense mapping.”



The research program

F&P: “Not so fast! 

Specific aspects of human mental representations and 
information processing seem poorly captured by current 

connectionist models.”



F&P's argument

1a. Classical representations have combinatorial syntax 
& semantics; connectionist ones cannot.



F&P's argument

1b. Classical information processing operations are  
sensitive to structure; connectionist ones are not.

1a. Classical representations have combinatorial syntax 
& semantics; connectionist ones cannot.



F&P's argument

2a. Human language (& thought?) are productive, which 
requires structure sensitivity and combinatoriality.



F&P's argument

2b. Ditto for systematicity rather than productivity.

2a. Human language (& thought?) are productive, which 
requires structure sensitivity and combinatoriality.



F&P's argument

∴ Connectionist models cannot model human  
language (/ thought).

(But classical models probably can.)



Discussion



Combinatorial structure



Sample task

The cat is on the mat.

[https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat]

True

https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat


Sample task

The fox is in a box.

[https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat]

False

https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat


A classical implementation

The cat is on the mat.

[https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat]

[[The cat] [is [on the mat]]]

https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat


The cat is on the mat.

[https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat]

cat(x), mat(y), on(x, y)

A classical implementation

[[The cat] [is [on the mat]]]

https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat


The cat is on the mat.

[https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat]

cat(x) 
mat(y) 
red(y) 
on(x, y) 
…

cat(x), mat(y), on(x, y)

A classical implementation

[[The cat] [is [on the mat]]]

https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat


The cat is on the mat.

[https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat]

True

cat(x), mat(y), on(x, y)

⊢

A classical implementation

[[The cat] [is [on the mat]]]

cat(x) 
mat(y) 
red(y) 
on(x, y) 
…

https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat


A connectionist implementation

The cat is on the mat.



A connectionist implementation

The cat is on the mat.



A connectionist implementation

The cat is on the mat.



A connectionist implementation

The cat is on the mat.



A connectionist implementation

The cat is on the mat.

on(cat, mat)

on(cat,  
mat)



A modern neural implementation

The cat is on the mat.

[https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat]

True

https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat


The cat is on the mat 
and the fox is in a box.

[https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat]

True

[[[The cat] [is [on the mat]]] 
[and [the fox [is [in a box]]]]]

cat(x) 
mat(y) 
red(y) 
on(x, y) 
…

cat(x), mat(y), box(z), on(x, y), …

⊢

A classical implementation

https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat


A connectionist implementation
on(cat, mat)

The cat is on the mat 
and the fox is in a box.

in(fox, box)  ???



A connectionist implementation
on1(., cat)

The cat is on the mat 
and the fox is in a box.

on2(., mat)  ???



A modern neural implementation

[https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat]

True

The cat is on the mat 
and the fox is in a box.

https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat


Classical representations contain their constituents

[[[The cat] [is [on the mat]]] 
[and [the fox [is [in a box]]]]]

[[The cat] [is [on the mat]]]



Classical representations contain their constituents

[[[The cat] [is [on the mat]]] 
[and [the fox [is [in a box]]]]]

[[The cat] [is [on the mat]]]



Constituents of connectionist representations?

The cat is on the mat and  
the fox is in the box.

The cat is on the mat.



Algebraic structure

[[[The cat] [is [on the mat]]] 
[and [the fox [is [in a box]]]]]

[[The cat] [is [on the mat]]]

[the fox [is [in a box]]]

*

=



Combinatorial structure

and(in(fox, box), on(cat, mat))

on(cat, mat)

in(fox, box)

*

=



Combinatorial structure

*

=



Combinatorial structure

*

=

???



Algebraic structure

[[[The cat] [is [on the mat]]] 
[and [the fox [is [in a box]]]]]

[[The cat] [is [on the mat]]]

[the fox [is [in a box]]]

*

=



Algebraic structure

*

=

α

β

(α * β)



Discussion



The cat is on the mat.

[https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat]

True

cat(x), mat(y), on(x, y)

⊢

Structure-sensitive processing

[[The cat] [is [on the mat]]]

cat(x) 
mat(y) 
red(y) 
on(x, y) 
…

https://www.amazon.in/Feline-Yogi-Original-Yoga-Cat


Structure-sensitive processing

True⊢

α ∧ β → β

and(in(fox, box), on(cat, mat))

on(cat, mat)

→



Structure-sensitive processing

True[[.]]

αβ → [[α]] ∧ [[β]]

red cat

and(cat(x), red(x)) 

→



Structure-sensitive processing

True

αβ → [[α]] ∧ [[β]]

fake gun

and(fake(x), gun(x)) 

→ [[.]]



Structure-sensitive processing

The cat is on the mat.



Structure-sensitive processing

The cat is on the mat.



Structure-sensitive processing

The cat is on the mat.

True



Structure-sensitive processing

True

The cat is on the mat.



Discussion



Break



Linguistic productivity

“Infinite use of finite means”
W. von Humboldt

this is the dog that chased the cat that ate the rat 
that lived in the house that Jack built…



The competence/performance distinction

Chomsky 1965: Linguistic theory is concerned primarily with an 
ideal speaker-listener, in a completely homogeneous speech-
community, who knows its (the speech community's) language 
perfectly and is unaffected by such grammatically irrelevant 
conditions as memory limitations, distractions, shifts of attention 
and interest, and errors (random or characteristic) in applying his 
knowledge of this language in actual performance.

Linguistic competence (including claims about 
productivity of language) concerns this idealized 
speaker.



The competence/performance distinction?

Labov 1971: It is now evident to many linguists that the primary 
purpose of the [performance/competence] distinction has been to 
help the linguist exclude data which he finds inconvenient to 
handle.



The cat is on the mat.

True

cat(x), mat(y), on(x, y)

⊢

Productivity in classical models

[[The cat] [is [on the mat]]]

cat(x) 
mat(y) 
red(y) 
on(x, y) 
…

Claim: like humans, the classical model can interpret  
arbitrarily complex sentences:



The cat is on the mat.

True

cat(x), mat(y), on(x, y)

⊢

Productivity in classical models

[[The cat] [is [on the mat]]]

cat(x) 
mat(y) 
red(y) 
on(x, y) 
…

Claim: like humans, the classical model can interpret  
arbitrarily complex sentences:

Need more processing power? Just add RAM!



Productivity in connectionist models

on(cat, mat) and(on(cat, mat), in(fox, box))

and(on(cat, mat), 
  and(in(fox, box),  
    in(cub, tub)))



You can’t cram the 
meaning of a whole  

%&!$# sentence into a 
single $&!#* vector!

[Ray Mooney, ca. 2014] 



Productivity in neural models

Seq2Seq + Attention

the conditioning vector is dynamically computed at each stage 
based on the current decoder hidden state.

[Bahdanau 2015]



Productivity in neural models

Seq2Seq + Attention

the conditioning vector is dynamically computed at each stage 
based on the current decoder hidden state.

[Bahdanau 2015]

Need more processing power? Just add steps/layers/precision!



Unit 192 skyscraper OR lighthouse OR water tower
IoU 0.06

Unit 310 sink OR bathtub OR toilet
IoU 0.16

Unit 483 (water OR river) AND NOT blue
IoU 0.13

Unit 432 attic AND (NOT floor) AND (NOT bed)
IoU 0.15

Unit 102 cradle OR autobus OR fire escape
IoU 0.12

Unit 321 ball pit OR orchard OR bounce game
IoU 0.12

Unit 439 bakery OR bank vault OR shopfront
IoU 0.08

Unit 314 operating room OR castle OR bathroom
IoU 0.05

(a) abstraction (lexical and perceptual) 

(b) abstraction (perceptual only) 

(c) specialization 

(d) polysemanticity

Figure 5: Image classification explanations categorized by semantically coherent abstraction (a–b)
and specialization (c), and unrelated polysemanticity (d). For clarity, logical forms are length N = 3.

Unit 870 (gender-sensitive)

((((NOT hyp:man) AND pre:man) OR hyp:eating) 
AND (NOT pre:woman)) OR hyp:dancing
IoU 0.123 wentail -0.046 wneutral -0.021 wcontra 0.040

Pre A guy pointing at a giant blackberry.
Hyp A woman tearing down a giant display.
Act 29.31 True contra Pred contra
Pre A man in a hat is working with…flowers.
Hyp Women are working with flowers.
Act 27.64 True contra Pred contra

Unit 15 (sitting only in hypothesis)

hyp:eating OR hyp:sitting OR hyp:sleeping
OR hyp:sits AND (NOT pre:sits)
IoU 0.239 wentail -0.083 wneutral -0.059 wcontra 0.086

Pre A person…is walking through an airport.
Hyp A woman sits in the lobby waiting on the doctor.
Act 30.68 True contra Pred contra
Pre A man jumps over another man…
Hyp Two men are sitting down, watching the game.
Act 27.64 True contra Pred contra

Unit 99 (high overlap)

((NOT hyp:JJ) AND overlap-75% AND (NOT 
pre:people)) OR pre:basket OR pre:tv
IoU 0.118 wentail 0.043 wneutral -0.029 wcontra -0.021

Pre A woman in a light blue jacket is riding a bike.
Hyp A women in a jacket riding a bike.
Act 19.13 True entail Pred entail
Pre A girl in a pumpkin dress sitting at a table.
Hyp There is a girl in a pumpkin dress sitting at a table.
Act 17.84 True entail Pred entail

Unit 473 (unclear)

((NOT hyp:sleeping) AND (pre:NN OR pre:NNS)) 
AND (NOT hyp:alone) AND (NOT hyp:nobody)
IoU 0.586 wentail 0.020 wneutral 0.016 wcontra -0.050

Pre A gentleman in a striped shirt gesturing with a stick…
Hyp A gentleman in a striped shirt joyously gesturing.
Act 31.62 True neutral Pred neutral
Pre An Asian man in a…uniform diving…in a game.
Hyp A person in a uniform does something.
Act 29.76 True neutral Pred entail

Figure 6: NLI length 5 explanations. For each neuron, we show the explanation (e.g. pre:x indicates
x appears in the premise), IoU, class weights w{entail,neutral,contra}, and activations for 2 examples.

The observation that IoU scores do not increase substantially past length 10 corroborates the finding of159

[12], who also note that few neurons detect more than 10 unique concepts in a model. Our procedure,160

however, allows us to more precisely characterize whether these neurons detect abstractions or161

unrelated disjunctions of concepts, and identify more interesting cases of behavior (e.g. specialization).162

While composition of Broden annotations explains a majority of the abstractions learned, there is163

still considerable unexplained behavior. The remaining behavior could be due to noisy activations,164

neuron misclassifications, or detection of concepts absent from Broden.165

5

Logical labels for neurons

[Mu and Andreas 2020; c.f. Bau et al. 2017, Dalvi et al. 2018]
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Figure 8: “copy-paste” adversarial examples for vision. For each scene, the units that contribute most
(by connection weight) are shown, along with their explanations. We target the bold explanations to
crudely modify an input image and change the prediction towards/away from the scene.

Unit 39 (nobody in hypothesis)

hyp:nobody AND (NOT pre:hair) AND (NOT 
pre:RB) AND (NOT pre:’s)
IoU 0.465 wentail -0.117 wneutral -0.053 wcontra 0.047

Pre Three women prepare a meal in a kitchen.
Orig Hyp The ladies are cooking.
Adv Hyp Nobody but the ladies are cooking.
True entail → neutral Pred entail → contra

Unit 133 (couch words in hypothesis)

NEIGHBORS(hyp:couch) OR hyp:inside OR 
hyp:home OR hyp:indoors OR hype:eating
IoU 0.202 wentail -0.125 wneutral -0.024 wcontra 0.088

Pre 5 women sit around a table doing some crafts.
Orig Hyp 5 women sit around a table.
Adv Hyp 5 women sit around a table near a couch.
True entail→ neutral Pred entail → contra

Unit 15 (sitting only in hypothesis)

hyp:eating OR hyp:sitting OR hyp:sleeping OR 
hyp:sits AND (NOT pre:sits)
IoU 0.239 wentail -0.083 wneutral -0.059 wcontra 0.086

Orig Pre A blond woman is holding 2 golf balls while     
reaching down into a golf hole.

Adv Pre A blond woman is holding 2 golf balls.
Hyp A blond woman is sitting down.
True contra → neutral Pred contra → contra

Unit 941 (inside/indoors in hypothesis)

hyp:inside OR hyp:not OR hyp:indoors OR 
hyp:moving OR hyp:something
IoU 0.151 wentail 0.086 wneutral -0.030 wcontra -0.023

Orig Pre Two people are sitting in a station.
Adv Pre Two people are sitting in a pool.
Hyp A couple of people are inside and not standing.
True entail→ neutral Pred entail→ entail

adv adv

adv adv

adv adv

advadv

Figure 9: “copy-paste” adversarial examples for NLI. Taking an example from SNLI, we construct
an adversarial (adv) premise or hypothesis which changes the true label and results in an incorrect

model prediction (original label/prediction adv��! adversarial label/prediction).

sensible; water, foliage, and rivers contribute to a swimming hole prediction; houses, staircases, and218

fire escape (objects) contribute to fire escape (scene). However, the explanations in bold involve219

polysemanticity or spurious correlations. In these cases, we found it is possible to construct a220

“copy-paste” example which uses the neuron explanation to predictably alter the prediction. In some221

cases, these adversarial examples are generalizable across networks besides the probed ResNet-18,222

causing the same behavior across AlexNet [24], ResNet-50 [15], and DenseNet-161 [21], all trained223

on Places365. For example, one major contributor to the swimming hole scene (top-left) is a neuron224

that fires for non-blue water; making the water blue switches the prediction to grotto in many models.225

The consistency of this misclassification suggests that models are detecting underlying biases in the226

training data. Other examples include a neuron contributing to clean room that also detects ice and227

igloos; putting an igloo in a corridor causes a prediction to shift from corridor to clean room, though228

this does not occur across models, suggesting that this is an artifact specific to this model.229

7

Logical labels for neurons

[Mu and Andreas 2020; c.f. Bau et al. 2017, Dalvi et al. 2018]



Discussion



Systematicity

F&P: What we mean when we say that linguistic capacities are systematic 
is that the ability to produce / understand some sentences is intrinsically 
connected to the ability to produce / understand certain others.

the cat is on the mat the mat is on the cat



Systematicity

NP  NP V PP→
PP  on NP→
NP  the cat sat on the mat⇝



Systematicity

 NP  the mat sat on the cat⇒ ⇝

NP  NP V PP→
PP  on NP→
NP  the cat sat on the mat⇝



Connectionist models permit non-systematicity

The cat is on the mat.

on(cat, mat) on(mat, cat)



(but so do classical ones)

PP  on NP2→

 NP  the mat sat on the cat⇏ ⇝

NP  NP1 V PP→

NP  the cat sat on the mat⇝



(but so do classical ones)

PP  on NP2→

 NP  *itself sat on the cat⇏ ⇝

NP  NP1 V PP→

NP  the cat sat on itself⇝



Takeaway

Systematicity is a property of a  
parameterization, not just a model class!



Discussion



F&P's conclusions

F&P: By contrast, since the Connectionist architecture recognizes no 
combinatorial structure in mental representations, gaps in cognitive 
competence should proliferate arbitrarily. It’s not just that you’d 
expect to get them from time to time; it’s that, on the ‘no-structure’ 
story, gaps are the unmarked case. It's the systematic competence that 
the theory is required to treat as an embarrassment. But, as a matter 
of fact, inferential competences are blatantly systematic. So there 
must be something deeply wrong with Connectionist architecture.  
 
[…but] we have no objection at all to networks as potential 
implementation models, nor do we suppose that any of the 
arguments we’ve given are incompatible with this proposal.  



F&P's conclusions

F&P: By contrast, since the Connectionist architecture recognizes no 
combinatorial structure in mental representations, gaps in cognitive 
competence should proliferate arbitrarily. It’s not just that you’d 
expect to get them from time to time; it’s that, on the ‘no-structure’ 
story, gaps are the unmarked case. It's the systematic competence that 
the theory is required to treat as an embarrassment. But, as a matter 
of fact, inferential competences are blatantly systematic. So there 
must be something deeply wrong with Connectionist architecture.  
 
[…but] we have no objection at all to networks as potential 
implementation models, nor do we suppose that any of the 
arguments we’ve given are incompatible with this proposal.  



The worst RNN in the world

[0.00100…] [0.00101…] [0.01101…]



More realistic connectionist symbol processing?

[Kaiser & Sutskever 2015]



Discussion



Empirical results

L&B: connectionist models can be made systematic 
in principle, but are they systematic in practice?



Operationalizing systematicity
Generalization without Systematicity

jump ) JUMP
jump left ) LTURN JUMP
jump around right ) RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP
turn left twice ) LTURN LTURN
jump thrice ) JUMP JUMP JUMP
jump opposite left and walk thrice ) LTURN LTURN JUMP WALK WALK WALK
jump opposite left after walk around left ) LTURN WALK LTURN WALK LTURN WALK LTURN WALK

LTURN LTURN JUMP

Figure 1. Examples of SCAN commands (left) and the corresponding action sequences (right).

jump

WALK

twice and walk <EOS>

JUMP JUMP

<SOS> JUMP JUMP WALK

<EOS>

Figure 2. The seq2seq framework is applied to SCAN. The sym-
bols <EOS> and <SOS> denote end-of-sentence and start-of-
sentence, respectively. The encoder (left) ends with the first
<EOS> symbol, and the decoder (right) begins with <SOS>.

200 hidden units per layer, no attention, and dropout

applied at the 0.5 level. Although the detailed analyses to
follow focus on this particular model, the top-performing ar-
chitecture for each experiment individually is also reported
and analyzed.

Networks were trained with the following specifications.
Training consisted of 100,000 trials, each presenting an
input/output sequence and then updating the networks
weights.5 The ADAM optimization algorithm was used
with default parameters, including a learning rate of 0.001
(Kingma & Welling, 2014). Gradients with a norm larger
than 5.0 were clipped. Finally, the decoder requires the
previous step’s output as the next step’s input, which was
computed in two different ways. During training, for half the
time, the network’s self-produced outputs were passed back
to the next step, and for the other half of the time, the ground-
truth outputs were passed back to the next step (teacher
forcing; Williams & Zipser, 1989). The networks were
implemented in PyTorch and based on a standard seq2seq
implementation.6

Training accuracy was above 99.5% for the overall-best
network in each of the key experiments, and it was at least
95% for the top-performers in each experiment specifically.

5Note that, in all experiments, the number of distinct training
commands is well below 100k: we randomly sampled them with
replacement to reach the target size

6The code we used is publicly available at the link:
http://pytorch.org/tutorials/intermediate/
seq2seq_translation_tutorial.html

4. Experiments

In each of the following experiments, the recurrent networks
are trained on a large set of commands from the SCAN tasks
to establish background knowledge as outlined above. After
training, the networks are then evaluated on new commands
designed to test generalization beyond the background set
in systematic, compositional ways. In evaluating these new
commands, the networks must make zero-shot generaliza-
tions and produce the appropriate action sequence based
solely on extrapolation from the background training.

Experiment 1: Generalizing to a random subset of

commands

In this experiment, the SCAN tasks were randomly split
into a training set (80%) and a test set (20%). The training
set provides broad coverage of the task space, and the test
set examines how networks can decompose and recombine
commands from the training set. For instance, the network is
asked to perform the new command, “jump opposite right

after walk around right thrice,” as a zero-shot generaliza-
tion in the test set. Although the conjunction as a whole is
novel, the parts are not: The training set features many ex-
amples of the parts in other contexts, e.g., “jump opposite

right after turn opposite right” and “jump right twice after

walk around right thrice” (both bold sub-strings appear
83 times in the training set). To succeed, the network needs
to generalize by recombining pieces of existing commands
to interpret new ones.

Overall, the networks were highly successful at general-
ization. The top-performing network for this experiment
achieved 99.8% correct on the test set (accuracy values here
and below are averaged over the five training runs). The top-
performing architecture was a LSTM with no attention, 2
layers of 200 hidden units, and no dropout. The best-overall
network achieved 99.7% correct. Interestingly, not every
architecture was successful: Classic SRNs performed very
poorly, and the best SRN achieved less than 1.5% correct at
test time (performance on the training set was equally low).
However, attention-augmented SRNs learned the commands
much better, achieving 59.7% correct on average for the test
set (with a range between 18.4% and 94.0% across SRN
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weights.5 The ADAM optimization algorithm was used
with default parameters, including a learning rate of 0.001
(Kingma & Welling, 2014). Gradients with a norm larger
than 5.0 were clipped. Finally, the decoder requires the
previous step’s output as the next step’s input, which was
computed in two different ways. During training, for half the
time, the network’s self-produced outputs were passed back
to the next step, and for the other half of the time, the ground-
truth outputs were passed back to the next step (teacher
forcing; Williams & Zipser, 1989). The networks were
implemented in PyTorch and based on a standard seq2seq
implementation.6

Training accuracy was above 99.5% for the overall-best
network in each of the key experiments, and it was at least
95% for the top-performers in each experiment specifically.

5Note that, in all experiments, the number of distinct training
commands is well below 100k: we randomly sampled them with
replacement to reach the target size

6The code we used is publicly available at the link:
http://pytorch.org/tutorials/intermediate/
seq2seq_translation_tutorial.html

4. Experiments

In each of the following experiments, the recurrent networks
are trained on a large set of commands from the SCAN tasks
to establish background knowledge as outlined above. After
training, the networks are then evaluated on new commands
designed to test generalization beyond the background set
in systematic, compositional ways. In evaluating these new
commands, the networks must make zero-shot generaliza-
tions and produce the appropriate action sequence based
solely on extrapolation from the background training.

Experiment 1: Generalizing to a random subset of

commands

In this experiment, the SCAN tasks were randomly split
into a training set (80%) and a test set (20%). The training
set provides broad coverage of the task space, and the test
set examines how networks can decompose and recombine
commands from the training set. For instance, the network is
asked to perform the new command, “jump opposite right

after walk around right thrice,” as a zero-shot generaliza-
tion in the test set. Although the conjunction as a whole is
novel, the parts are not: The training set features many ex-
amples of the parts in other contexts, e.g., “jump opposite

right after turn opposite right” and “jump right twice after

walk around right thrice” (both bold sub-strings appear
83 times in the training set). To succeed, the network needs
to generalize by recombining pieces of existing commands
to interpret new ones.

Overall, the networks were highly successful at general-
ization. The top-performing network for this experiment
achieved 99.8% correct on the test set (accuracy values here
and below are averaged over the five training runs). The top-
performing architecture was a LSTM with no attention, 2
layers of 200 hidden units, and no dropout. The best-overall
network achieved 99.7% correct. Interestingly, not every
architecture was successful: Classic SRNs performed very
poorly, and the best SRN achieved less than 1.5% correct at
test time (performance on the training set was equally low).
However, attention-augmented SRNs learned the commands
much better, achieving 59.7% correct on average for the test
set (with a range between 18.4% and 94.0% across SRN
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Figure 3. Zero-shot generalization after training on a random sub-
set of the SCAN tasks. The overall-best network was trained on
varying proportions of the set of distinct tasks (x-axis) and gener-
alization was measured on new tasks (y-axis). Each bar shows the
mean over 5 training runs with corresponding ±1 SEM.

architectures). For LSTMs and GRUs, attention was instead
not essential. Since the SCAN commands are never longer
than 9 words, attention is probably superfluous, at least
in this simple setup, for gated architectures that generally
exhibit a more robust long-distance behaviour than SRNs.

As indicated above, the main split was quite generous, pro-
viding 80% of the commands at training time for a total of
over 16,700 distinct examples (with strong combinatorial
coverage). We next re-trained the best-overall network with
varying numbers of distinct examples (the actual number
of training presentations was kept constant at 100K). The
results are shown in Fig. 3. With 1% of the commands
shown during training (about 210 examples), the network
performs poorly at about 5% correct. With 2% coverage,
performance improves to about 54% correct on the test set.
By 4% coverage, performance is about 93% correct. Our re-
sults show that not only can networks generalize to random
subsets of the tasks, they can do so from relatively sparse
coverage of the compositional command space. This is well
in line with the success of seq2seq architectures in machine
translation, where most test sentences are likely never en-
countered in training. Still, even with this sparser coverage,
differences between training and test instances are not dra-
matic. Let us for example consider the set of all commands
without a conjunction (e.g., “walk around thrice”, “run”,
“jump opposite left twice”). All the commands of this sort
that occur in the test set of the 2% training coverage split
(either as components of a conjunction or by themselves)
also occur in the corresponding training set, with an average
of 8 occurrences. Even for the 1% split, there is only one

conjunction-less test command that does not also occur in
the training split, and the frequency of occurrence of such
commands in the training set is at a non-negligible average
value of 4 times.

Experiment 2: Generalizing to commands demanding

longer action sequences

We study next a more systematic form of generalization,
where models must bootstrap to commands requiring longer
action sequences than those seen in training.7 Now the train-
ing set contains all 16,990 commands requiring sequences
of up to 22 actions, whereas the test set includes all remain-
ing commands (3,920, requiring action sequences of lengths
from 24 to 48). Under this split, for example, at test time the
network must execute the command “jump around left twice
and walk opposite right thrice”, requiring a sequence of 25
actions. Although all the elements used in the command
have been observed during training, the network has never
been asked to produce a sequence of this length, nor it has
ever seen an “around * twice” command conjoined with an
“opposite * thrice” command (although it did observe both
components conjoined with others). Thus, it must produc-
tively generalize familiar verbs, modifiers and conjunctions
to generate longer action sequences. This is a fair task for
a system that is correctly translating the input commands.
If you know how to “walk around,” how to “jump,” and the
function of the “and” conjunction, you will be immediately
able to “walk around and jump,” even if you have never
performed an action sequence of that length.

This test turns out to be very challenging for all models. The
best result (20.8% on average, again over 5 runs) is achieved
by a GRU with attention, one 50-dimensional hidden layer,
and dropout 0.5. Interestingly, this is a model with consider-
ably less capacity than the best for the random-split setup,
but it uses attention, which might help, to a limited degree,
to generalize to longer action sequences. The overall-best
model achieves 13.8% accuracy.

Fig. 4 (top) shows partial success is almost entirely ex-
plained by generalization to the shortest action sequence
lengths in the test set. Although we might not expect even
humans to be able to generalize to very long action se-
quences, the sharp drop between extrapolating to 25 and
26 actions is striking. The bottom panel of Fig. 4 shows
accuracy in the test set organized by command length (in
word tokens). The model only gets right some of the longest
commands (8 or 9 tokens). In the training set, the longest ac-

7We focus on action sequence length rather than command
length since the former exhibits more variance (1-48 vs. 1-9). The
longest commands (9 words) are given by the conjunction of two
directed primitives both modified twice, e.g.: “jump around left
twice and run opposite right thrice.” On the other hand, a relatively
short command such as “jump around left thrice” demands 24
actions.
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Figure 4. Zero-shot generalization to commands with action se-
quence lengths not seen in training. Top: accuracy distribution by
action sequence length. Bottom: accuracy distribution by com-
mand length (only lengths attested in the test set shown, in both
cases). Bars show means over 5 runs of overall-best model with
±1 SEM.

tion sequences (�20) are invariably associated to commands
containing 8 or 9 tokens. Thus, the model is correctly gener-
alizing only in those cases that are most similar to training
instances.

Finally, we performed two additional analyses to better un-
derstand the source of the errors. First, we examined the
greedy decoder for search-related errors. We confirmed
that, for almost every error, the network preferred its self-
generated output sequence to the target output sequence
(as measured by log-likelihood). Thus, the errors were not
due to search failures in the decoder.8 Second, we studied
whether the difficulty with long sequences can be mitigated
if the proper length was provided by an oracle at evaluation

8For both the overall best model and the best model in this
experiment, on average over runs, less than one test command (of
thousands) could be attributed to a search failure.

time.9 If this difficulty is a relatively straightforward issue
of the decoder terminating too early, then this should pro-
vide an (unrealistic) fix. If this difficulty is symptomatic
of deeper problems with generalization, then this change
will have only a small effect. With the oracle, the overall-
best network performance improved from 13.8% to 23.6%
correct, which was notable but insufficient to master the
long sequences. The top-performing model showed a more
substantial improvement (20.8% to 60.2%). Although im-
proved, the networks were far from perfect and still exhib-
ited difficulties with long sequences of output actions (again,
even for the top model, there was a strong effect of action se-
quence length, with average accuracy ranging from 95.76%
for commands requiring 24 actions to 22.8% for commands
requiring 48 actions).

Experiment 3: Generalizing composition across

primitive commands

Our next test is closest to the “dax” thought experiment pre-
sented in the introduction. In the training phase, the model
is exposed to the primitive command only denoting a certain
basic action (e.g., “jump”). The model is also exposed to
all primitive and composed commands for all other actions
(e.g., “run”, “run twice”, “walk”, “walk opposite left and
run twice”, etc.). At test time, the model has to execute
all composed commands for the action that it only saw in
the primitive context (e.g., “jump twice”, “jump opposite
left and run twice”, etc.). According to the classic thought
experiments of Fodor and colleagues, this should be easy:
if you know the meaning of “run”, “jump” and “run twice”,
you should also understand what “jump twice” means.

We run two variants of the experiment generalizing from
“turn left” and “jump”, respectively. Since “turn right” is
distributionally identical to “turn left” (in the sense that
it occurs in exactly the same composed commands) and
“walk”, “run” and “look” are distributionally identical to
“jump”, it is redundant to test all commands. Moreover, to
ensure the networks were highly familiar with the target
primitive command (“jump” or “turn left”), the latter was
over-represented in training such that roughly 10% of all
training presentations were of the command.10

We obtain strikingly different results for “turn left” and
“jump”. For “turn left”, many models generalize very well to
composed commands. The best performance is achieved by
a GRU network with attention, one layer with 100 hidden
units, and dropout of 0.1 (90.3% accuracy). The overall-

9Any attempt from the decoder to terminate the action se-
quence with an <EOS> was ignored (and the second strongest
action was chosen) until a sequence with proper length was pro-
duced.

10Without over-sampling, performance was consistently worse
than what we report.
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Conclusions

L&B: Given the astounding successes of seq2seq models in challenging tasks 
such as machine translation, one might argue that failure to generalize by 
systematic composition indicates that neural networks are poor models of 
some aspects of human cognition, but it is of little practical import. However, 
systematicity is an extremely efficient way to generalize […] this ability is still 
beyond the grasp of state-of-the-art neural networks, likely contributing to 
their striking need for very large training sets. These results give us hope that 
neural networks capable of systematic compositionality could greatly benefit 
machine translation, language modeling, and other applications. 



Discussion



See you next week!


