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Big Picture
How do we (humans) use and acquire knowledge of language?

Two competing ideas:

1. Explicit, inaccessible rule view: rules of language are stored in
explicit form

2. Connectionist models: capture “rule-like” behavior with no explicit
form of rules



History

First connectionist implementation by Rumelhart & McClelland in 1986
- Number of criticisms:
- Errorrate on “unseen” verbs is high -> Do these models reach adult
competence?
- Pinker and Prince (1988) and Lachter and Bever (1988): Extremely poor
empirical performance

Improved results by MacWhinney & Leinbach in 1991, replaced
Wickelfeature representation with UNIBET

Resurgence of neural networks today
- Kirov and Cotterell (2018) show that the Encoder-Decoder network architectures preclude
many of P6P’s arguments



Three claims from R&M connectionist model

1. The model captures the U-learning three-stage pattern of

2.

acquisition.

The model captures most aspects of differences in
performance on different types of regular and irregular
verbs.

The model is capable of responding to regular and
irregular verbs seen in training and low frequency
“unseen’ verbs.



R&M argument

The model demonstrates that it can acquire past tense without rules. So,
“[t]he child need not figure out what the rules are, nor even that there are
rules. The child need not decide whether a verb is regular or irregular.”

If no explicit rules, why should children generate forms that they have
never heard of?

“They do so because the past tenses of similar verbs they are learning show
such a consistent pattern that the generalization from these similar verbs
outweighs the relatively small amount of learning that has occured on the
irregular verb question.”



Discussion



U-learning three-stage pattern of past tense acquisition
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Train:
10 trials, 10

high-frequency verbs Connectionist model

190 more trials, 410
medium-frequency
verbs

Encoding Pattern Associator = Decoding

Test:
86 low-frequency
verbs

Phonological T T Phonological
representation of Wickelfeature Wickelfeature representation of
root form representationof representation of past form

root form past tense

Figure adapted from paper



Connectionist model
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Connectionist model

Pattern associators allow:

1. Exploitation of regularities that exist in mappings (e.g.
dependent set of inputs -> patterns)

2. Regular patterns and exceptions to those patterns to
coexist

3. Forregularization, followed by the gradual tuning of
connections to include exceptions
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1: Model captures U-learning three stage pattern
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oy
% Stagel Stage2  Stage3
+ 0 :
o 10 B 4B : 3
) Regular o :
o i @)} u :
R o 0.8 {(C 1L
8 n 0 ]
o 08 Irregular et
= Hooos
g T g
B~ 07 h En
- 0 04
g g
2 0.6 — Z
'y £ o2l
ST S I N S N S g i
"o 40 80 120 1€0 200 b : ] '
Trials o 00 L | ! [ S T 1
@) 0 40 80 120 160 200
FIGURE 4. The percentage of correct features for regular and irrcgular high-frequency verbs as a function of trials. Trials

FIGURE 6. The ratio of the correct response to the sum of the correct and regularized response. Points on the
3 curve below the .5 line are in the region where the regularized response is greater than the correct response.
Figures from paper
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2: Model captures differences in regular & irregular verbs

not t/d: drink, move, make TABLE 11
->used as no-change verbs
t/d: eat, build, pat AVERAGE SIMULATED STRENGTHS OF

->predominantly regularized
REGULARIZED AND NO-CHANGE RESPONSES

Time Period Verb Ending Regularized No Change

11-15 not 1/d 044 010
1/d 035 027
16-20 not ¢/d 032 012
1/d 025 035
21-30 not ¢/d 052 011
1/d 0.32 041

Table from paper



2: Model captures differences in regular & irregular verbs

TABLE 12

AVERAGE NUMBER OF WICKELFEATURES INCORRECTLY GENERATED

_— Lrregular Verbs . Regular Verbs

Numbe. (ype [ Types HI-VII Ending in t/d Not Endingint/d CVi/d

11-18 898 1239 4.1 828 87.3
16-20 57.6 93.7 45.3 51.2 60.5
21-3%0 43.5 78.2 329 374 479
31-50 34.4 61.3 29 26.0 373
51-100 18.8 390 11.4 12.9 21.5
101-200 11.8 215 6.4 74 12.7

noé change  vowel
Table from paper change



2: Model captures differences in regular & irregular verbs

TABLE 13

PERCENTAGE OF REGULARIZATION
BY PRESCHOOLERS

TABLE 14

STRENGTH OF REGULARIZATION RESPONSES
RELATIVE TO CORRECT RESPONSES

(Data from Bybee & Slobin, 1982)
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Tables from paper



2: Model captures differences in regular & irregular verbs

Verb Types II, V, VI, and VII Verb Types III, IV, and VIII
Examples: spend/spent; bite/bit; sing/sang; come/came sleep/slept; catch/caught; see/saw
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3: Model responds to training and testing sets

- The testing sample contains 86 “unseen" low frequency verbs (14 irregular
and 72 regular), all of which were not chosen at random.
- Six verbs had no response alternatives: jump, pump, soak, warm, trail,
and glare
- 93% error rate for irregular verbs; 33% error rate for regular verbs
- 43% error rate overall



THE MODEL'S RESPONSES TO UNFAMILIAR
LOW-FREQUENCY [RREGULAR VERBS

TABLE 17

English Ruponne

Verb Presented Phonctic  Phonetic
Type Word Input Response  Reodition  Streagth
[ bid Mid/ pid/ (bid) 0.55
thrust /m'st/  fovsd/  (chrasted) 0.57
It bend fend/  pPend'd/ ((bended) 028
fend flead/  Aflend*d/ ( (icnded) 0.70
o1 creep ferep/  /krept/  ((creeped) 0.5
weep fwep/  fwept/  (weeped) 0.4
fwept/ (wept) 033
IV cach [xac/ /kact/ (catched) 0.67
v breed /fored/ /ored*d/  ((brecded) 0.48
griod /gmd/  [gwd/  ((giod) 0.44
wind fwmd/ /fwmd/ (wind) 0.37
VI cling Jxting/ /xlind/ (clinged) 028
/xI°N/ (clung) 0.23
dig /dig/ Migd/  (digged) o.n
stick /six/ /etike/ (sticked) 053
VII  tear Nter/ Nerd/ (teared) 0.90

TABLE 18

SYSTEM RESPONSES TO UNFAMILIAR LOW-FREQUNCY REGULAR VERBS

Verb Pr d Pb Phonctic English Response
Type Word Input Response Rendition  Rendition

End in guard /eard/ /gard/ (guard) 0.29

t/d [gard’d/ (guarded) 0.26

kid /xid/ /xid/ (kid) 0.39

fxid*d/ (kidded) 0.24

mate /mAt/ Jfmatd/ (mated) 0.43

/mad*d/ (maded) 023

squat fkwet/ fkwt d/ (squated) 0.27

fekwet/ (squat) 0.2

fskw'kt/ (squawked) 021

End in carp fxarp/ [karpt/ (carped) 0.28

unvoiced /fxapt'd/ (carpted) 0.1

consonant  4yp /drip/ [dript*d/ (dripted) 0.28

/dript/ (dripped) 0.2

map /map/ /mapt*d/ (mapted) 0.4

/mapt/ (mapped) 02

shape Isap/ fsapt/ (shaped) 0.43

fsipt/ (shipped) 027

sip /sip/ fipt/ (sipped) 0.42

fsept/ (sepped) 0.28

shp Alip/ fslept/ (slept) 0.40

smoke fsmOk/ /smOkt*d/ (smokted) 0.29

/smOk/ (smoke) o

snap fsnap/ [snapt°d/ (snapted) 0.40

step ftep/ [stept°d/ (stepted) 0.59

type hpl fuptd/ (typted) 033

Endin brown forwn/ forwnd/ (browned) 046

voiced /Mornd/ (brawned) 039
consonant . .

or vowel hug h'g/ /h'g/ (hug) 059

mail /ma‘l/ /ma*ld/ (mailed) 038

/ b°1d/ ( bled) 023

tour hur/ furd*r/ (toureder) on

furd/ (toured) 0.25
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Compositional Generalization in
Semantic Parsing: Pre-training vs.
Specialized Architectures

Furrer, Zee, Scales, Scharli
Google Research



"How can we achieve compositional
generalization in natural language?

1. How to properly measure compositional generalization?
2. Approaches tried
3. Which work? Which don't? Future directions?



1. How to measure compositional generalization?

One way: The SCAN dataset

jump = JUMP

jump left = LTURN JUMP

jump around right = RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP
turn left twice = LTURN LTURN

jump thrice = JUMP JUMP JUMP

jump opposite left and walk thrice = LTURN LTURN JUMP WALK WALK WALK

jump opposite left after walk around left = LTURN WALK LTURN WALK LTURN WALK LTURN WALK

LTURN LTURN JUMP

Figure 1. Examples of SCAN commands (left) and the corresponding action sequences (right).



1. How to measure compositional generalization?

Template | Command Target

1 “turn left” LTURN

2 “turn right” RTURN

3 “Primitive left” LTURN [Primitive]

4 “Primitive right” RTURN [Primitive]

5 “turn opposite left” LTURN LTURN

6 “turn opposite right” RTURN RTURN

7 “Primitive opposite left” | LTURN LTURN [Primitive]

8 “Primitive opposite right” | RTURN RTURN [Primitive]

9 “turn around left’ LTURN LTURN LTURN LTURN

10 “turn around right” RTURN RTURN RTURN RTURN

11 “Primitive around left” LTURN [Primitive] LTURN [Primitive] LTURN [Primi-
tive] LTURN [Primitive]

12 “Primitive around right” | RTURN [Primitive] RTURN [Primitive] RTURN [Primi-
tive] RTURN [Primitive]

Table 1: All command templates in the SCAN dataset, along with the target output. Here, “Primitive” can stand
for “jump”, “walk”, “run”, or “look”, with the corresponding output [Primitive] being “JUMP”, “WALK?”, “RUN",
or “LOOK™.



Split name
Add jump
Add turn left

Jump around right
Around right
Opposite right
Right

Length

Traditional SCAN splits

Commands held out
any compound containing "“jump"

any compound containing "turn left"

any compound containing "jump around right"

any compound containing "PRIMITIVE around right" e.g. walk around right
any compound containing "PRIMITIVE opposite right"

any compound containing "PRIMITIVE right"

any command whose target sequence length is greater than 22




Distribution-Based Compositionality Assessment (DBCA)
and Maximum Compound Divergence (MCD)

1. Similar atom distribution: All atoms present in the test set are also present in the train set,
and the distribution of atoms in the train set is as similar as possible to their distribution in
the test set.

2. Different compound distribution: The distribution of compounds in the train set is as differ-
ent as possible from the distribution in the test set.

Dc(V|W) =1 = Coa1(Fc(V) || Fc(W))
Da(V|IW) =1 — Cos(Fa(V) || Fa(W))

MCD: Split with maximum compound divergence D¢, low atom divergence (D4 < 0.02)



Distribution-Based Compositionality Assessment (DBCA)
and Maximum Compound Divergence (MCD)

Frequency of atoms Frequency of compounds

:

500 1000 1500 2000 2500

Frequency of atoms (left) and compounds (right) in the train and test sets of the MCD split for CFQ data



The CFQ Dataset

- Given natural language question, generate SPARQL query which, when
executed, generates the correct answer

Table 1: Examples of generated questions at varying levels (L) of complexity.
L Question — Answer

10 What did [Commerzbank] acquire? — Eurohypo; Dresdner Bank

15 Did [Dianna Rhodes]’s spouse produce [Soldier Blue]? — No

20 Which costume designer of [E.T.] married [Mannequin]’s cinematographer? — Deborah Lynn Scott

30 Who was influenced by and influenced [Steve Vai], [Marx Brothers], [Woody Allen], and [Steve Martin]?
+— Brendon Small

40 Was [Weekend Cowgirls] produced, directed, and written by a film editor that [The Evergreen State Col-
lege] and [Fairway Pictures] employed? — No

50 Were [It’s Not About the Shawerma], [The Fifth Wall], [Rick’s Canoe], [White Stork Is Coming], and
[Blues for the Avatar] executive produced, edited, directed, and written by a screenwriter’s parent? — Yes

?x0 a ns:people.person .
?x0 ns:film.director.film m.Ogwm_wy

Natural Language: ogical Form: SPARQL:
“who directed Elysium” ' Grammar Rules lPerson n 3RolePair(Director,Directee).Elysium) Resoluu:n Ruies SELECT DISTINCT ?x0 WHERE {

Interence Rules E }




2. Architectures and Techniques

SCAN-inspired

- Syn-att, CGPS, Equivariant, CNN, GECA
Meta-learning

-> Meta seqg2seq, Synth
Symbolic

— LANE

MLM + Pretraining
- T5 transformer family

Other
- NSEN



Results

Add Jump
Add turn around Around Opposite SCAN CFQ

Model jump left right right right Right Length MCD MCD
LSTM 0.1 90.3 98.4 +05 2.5+27 47.6 177 23.5 81 13.8 - -
LSTM-+A 0.0 z00 82.6 +s2 100.0 20.0 0.0 +00 16.5+64 30.0+7s 14.1 6.1 +1.7 14.9 +1.1
CNN 69.2 +9.2 - - 56.7 +10.2 - - 0.0 - -
GRU 12.5 +6.6 59.1 +16.8 - - - - 18.1 - =
GRU-dep 0.7+0.a  90.8 +36 - - - - 17.8 - -
Transformer 1.0 t0.6 99.6 +0.8 100.0 0.0 53.3+109 3.0z6s 92.0:151 0.0 0.9 +0.3 17.8 +o0.9
Univ. Trans. 0.3 03 99.4:1.4 100.0 0.0 47.0 100 15.2 1130 83.2 182 0.0 1.1 +0.6 18.9 +1.4
Evol. Trans. 0.6 0.6 100.0 +0.0 100.0 0.0 30.2 1284 11.6+14699.9:0.3 19.8100 1.6106 20.8 +0.7
Syn-att 91.0 274 99.9 102 989 123 2891348 105188 99.1:18 152107 - -
CGPS 98.8 +1.4 99.7 +0.4 100.0 0.0 83.2 1132 89.3+55 99.7205 20.3+11  2.0+07 7.1+18
Equivariant*  99.1 +o.0 - - 92.0 +o0.2 - - 15.9 +3.2 - -
GECA* 87.0 +1.0 - - 82.0 +4.0 X = - = =
LANE 100.0 - - 100.0 - - 100.0 100.0 -
Meta seq2seq™ 99.9 - - 99.9 - - 16.6 - -
Synth* 100.0 - - 100.0 - - 100.0 - -
NSEN 0.0 +0.0 0.0 +0.0 0.0 z00 0.0 +o0.0 0.0 x00 0.0 z0.0 0.0 t00 1.7+09 2.8+03
T5-small-NP 14108 45.7+154100.0 0.0 5.3+46 30.5187 446112 194108 0.9+05 214415
T5-small 84.1 t1.0 T73.0+s5s 100.0 0.0 31.8 +10 58.2+104 88.7:s59 10.9 6.9 +1.1 28.0 +0.6
T5-base 99.5 0.0 62.0+00 99.3:03 332105 992102 73.5:18 144 154 +11 31.2 113
T5-large 98.3 69.2 99.9 46.8 100.0 91.0 52 10.1 16 34.8 115
T5-3B 99.0 65.1 100.0 27.4 90.0 76.6 3 11.6 40.2 +4.2
T5-11B 98.3 87.9 100.0 49.2 99.1 91.1 2.0 9.1 40.9 +a3
T5-11B-mod - - - - - - - - 42.1 101



Pretraining success?

Length split accuracy decreases as model size increases!
194,10.9,14.4,5.2,3.3,2.0

SCAN MCD split accuracy with size shows no clear relation
0.9,6.0,154,10.1,11.6,9.1

CFQ accuracy increases with size:
21.5,28.0,31.2,34.8,40.2,40.9

Intermediate representation gives +1.2% accuracy boost

Hypothesized benefit of pretraining: “improve model’s ability to substitute
similar words by ensuring they are close to each other in representation
space”
- Achieves near-perfect performance on Add jump split, lesser gains on
others.



Discussion



Symbolic approach: LANE

- Two modules, Composer and Solver, plus memory. Trained with curriculum and
hierarchical RL.
- 100% accuracy on SCAN MCD split.

symbolic function variable assignment

(6] $x after $y  SxafterSy —— $v $X % WALK WALK LTURN LTURN RN
(5) $x after $y fuice  Sytwice  ——> $Y $Y —» WAL WAIK

(4] $x after walk twice  walk —=* WALK i " .

(3] $x opprﬁﬂg fl after walk twice Sx opposite Sy L $Y $Y $X‘~» LTURN LTURN RLN

0 $x opposite le‘%t after walk twice left — LTURN

[1] rt';n opposite left after walk twice run — RUN -

Figure 1: The schematic illustration of our idea on learning analytical expressions (see text).



Meta-learning: Meta seq2seq

Trains over permutations of the SCAN grammar by remapping primitives to different
outputs, e.g. jump -> WALK.

Highly augmented training data — fair comparison?

Builds invariance to primitive replacement in similar manner to Synth, Equivariant, and

GECA approaches

Support
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] f# e

S0S> JUMP JUMP

Query jump twice
input



Meta-learning: Synth

- seq2seq model takes in i/o examples and generates single program (interpretation
grammar) which is symbolically evaluated to solve all examples.
- Trained by sampling grammars from a meta-grammar, and learning to output the
correct program given examples generated with the sampled grammar.

G:

twice -> WALK
jump -> RTURN
turn -> JUMP
walk ->

blicket => GREEN
kiki =-> RUN

right -> RED

run =-> BLUE

x2 left =-> [x2] [x2] [x2] [x2] [x2]
x1l dax ul -> [ul] [x1] [ul]

ul thrice x2 -> [ul] [x2] [x2] [ul]
x1 look u2 =-> [x1] [x1] [u2] [x1]
x2 around -> [x2]

ul u2 -> [u2] [ul]

[ul]

support examples

run twice

RUN RUN

look thrice

LOOK LOOK

it

Figure 9. Samples from the training meta-grammar for SCAN.
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Grammar proposals:

Counterexample:
G =
> run -> RUN run twice
% look -> LOOK
x twice -> [x] [x][x] RUN RUN RUN

= thriom o> [XJ[=]"

Erun -> RUN
~ P look -> LOOK
‘x twice -> [x][x]

: satisfies all
—> support

examples

G = Counterexample:
run -> LOOK run twice
look -> RUN

x twice -> [x][x] LOOK LOOK
x thrice -> [x][x][x]

Symbolic application
on query set

G.apply( look twice’)
= LOOK LOOK



GECA

Simple, effective approach: detects templates repeated during training, generates new
training examples by filling with different fragments

Augmenting training set so helps build invariance to compositional shifts in distribution

(a) (c)

She picks the wug up in Fresno. = Pat picks cats up.
2 v
She puts the wug down in Tempe. =¥ = Pat puts cats down. :
(b)

(d)



CGPS and Syn-att

- Separates syntax (output action type) from semantics (output action order), each having

a separate representation.

“It appears rather that the CGPS
mechanism, unlike pre-training, is
not robust to shifts in compound
distribution and even introduces
negative effects in such
circumstances.”

CGPS chosen representative of SCAN-inspired approaches
Bad performance on SCAN MCD

Input (x): “jump twice after look”

v v
Primitive representation (p): Function representation (f):
jump look twice after
Y }
Entropy regularization (train) | \ Entropy regularization (train) ‘

’ Sequence-to-sequence architecture ‘
v

Attention map 1 Attention map 2 Attention map 3

— twiceafter __ — twice after __ twice after

— Merge ’-—‘
v
Merged result (v): look jump jump
4
Prediction I
\

Output (y): LOOK JUMP JUMP




NSEN

- Learns O(n log n) seq2seq algorithms with a shuffle-exchange architecture. Successor to
Neural GPU.
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Conclusions

Pretraining helps for compositional generalization, but does not solve
it.

Specialized architectures often do not transfer to new compositional
generalization benchmarks

Improvements in seq2seq architectures leads to corresponding
incremental improvements in compositional settings

MCD likely measures compositional generalization more thoroughly
than the traditional SCAN splits



Discussion



