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ABSTRACT

In this thesis we formulate and consider the problem of estimation for applica-
tions where the structure of a system is the major unknown to be determined. We
propose a logical structure for estimation theory to deal with problems in which
the output of an estimator is a formal object such as a graph, a tree, a set, a
sequence, or other non-vector structure.

The major result is a framework for approaching a wide range of difficult
estimation problems that focuses on formal language descriptions of the possible
structures and inputs, and measures of the information content of such descrip-
tions. A Minimum Information (MI) Estimator is developed which chooses a
structure that minimizes an information measure over a set of possible descrip-
tions.

The approach can be viewed as a method for dealing with the computational
difficulties of algorithmic information theory, and Solomonoff’s theory of induc-
tion. It is a logical development of the work on information criteria of Wallace
and Boulton, Rissanen, and others, but reorganized to center on formal language
based descriptions using phrase structured grammars. This technique provides a
very general framework suitable for diverse applications in many fields in which
information needs to be extracted from data, including detection, estimation in
vector spaces, signal processing, system identification, inference, induction, pat-
tern recognition, and artificial intelligence.

In many ways, the description-based MI technique provides a unifying view of
these fields. A single general estimator can be tailored as required by the problem
domain and the types of data, models, and a priori information particular to it. It
accommodates either probabilistic or nonprobabilistic models of structure distri-
bution. The issue of model crder, or structural complexity, is treated in a uniform
manner which addresses the essential tension in the estimation of structure: simple
models versus good fit to data.

Many existing criteria for selecting structures are examined and seen to be
special cases of the proposed criteria. Case studies are presented in which estima-
tors are developed for finite state machines, Markov sources, piecewise constant
signals, clusters in scatter plots, and visual images. Simulations, with excellent
results, are presented showing the estimated structures.
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Chapter 1

DESCRIPTION-BASED ESTIMATION

1.1 The Introduction

There are many structure estimation problems which classical estimation the-
ory can not solve. In this thesis we create a category for problems of estimation in
complex spaces, where system structure is the major unknown to be determined.
We present a framework for estimation when the output of an estimator is a non-
vector formal structure, such as a graph, a tree, a set, or a sequence, and demon-
strate how it offers a new perspective in a variety of applications. The major result
of this thesis is a framework for approaching a wide range of difficult estimation
problems that focuses on formal language descriptions of the possible structures
énd inputs, and measures of the information content of such descriptions. A Min-
imum Information (MI) Estimator is presented which chooses a description that
minimizes an information measure over a set of possible descriptions.

A virtue of this approach is tl.at it forces the analyst to focus on the fun-

damental issue of structural complexity. The issue of model order, or structural
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complexity, is treated in a uniform manner which addresses the essential tension
in the estimation of structure: simple models versus good fit to data. Once put
in these terms, appropriate ways to add structure to ill-posed problems become
apparent.

The class of problems we consider are commonly found in a wide range of
applications, but have not previously been grouped in one framework. The general
field of pattern r‘ecognition perhaps has the greatest overlap. We will deal with
discrete spaces of interrelated possibilities, for which probabilistic models are not
always pertinent, and classical estimation techniques generally fail. The most
familiar structure estimation problem to scientists and engineers is probably that
of least-squares curve-fitting a polynomial to measurements. The structure to
estimate is a sequence of coefficients, of unknown length. The more complex
structures of higher-order polynomials can always be made to fit the data better
than simple structures.

This class of structure-estimation problems differs fundamentally from classi-

cal estimation problems in vector spaces for two reasons:

1) Classical statistical inference techniques within an n-dimensional
vector space pre-constrain the number of parameters to be deter-
mined as n. However, in typical problems in which structures are to
be estimated, there is no upper bound on the allowable complexity
of the estimate. The number of elements in an appropriate tree or
graph must depend upon the data. This requires that attention be
focused on the problem of selecting an appropriate level of complezity
in the estimate.

2) Spaces of structures generally lack the algebraic properties of vector
spaces. Graphs and trees, for example, can not be meaningfully
added, subtracted, or scaled by real numbers. The usual notions of
expectations, bias, variance, and optimization by differentiation are
therefore not available.
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There is a third property, typical of structure estimation problems, but not
essential to them. In most situations where structure is to be estimated, the
original problem formulation is ill-posed, because it is underdetermined. Addi-
tional constraints must be imposed in order to formulate a well—deﬁned problem.
Our problem formulation provides a framework for adding these constraints in a
manner which results in satisfactory estimates.

The overall framework presented below is closely tied to the notions of Al-
gorithmic Information Theory (AIT), especially Solomonoff’s work on induction.
However, our focus is on practical methods for estimation;rather than the un-
computable notions of AIT. A comparison between the two frameworks is given
in Section 8.2.7. A major difference is that we allow the class of structures of
interest to be specified, rather than restricting ourselves to the Turing Machines
of AIT. In this regard, the approach used is similar to the information criteria
of Wallace and Boulton, and Rissanen, but more versatile, in that it centers on
formal-language-based descriptions. This technique provides a very general and
adaptable framework suitable for diverse applications in many fields in which in-
formation needs to be extracted from data, including:

Detection

Estimation in Vector Spaces
Signal Processing

System Identification
Inference

Induction

Pattern Recognition
Artificial Intelligence

e ol

In many ways, the description-based MI technique provides a unifying view of
these fields. A single general estimator can be tailored as required by the problem

domain and the types of data, models, and a priori information particular to it.
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With appropriate choices for its parameters, it reduces to well known techniques
for estimating structure as special cases (e.g. hypothesis testing, finding the “knee”
of the curve, MAP and ML estimators). It can therefore be viewed as interpolating
between these many estimation techniques.

The most important contribution of this work may be in the problem formu-
lation itself. We emphasize that a wide range of problems which are not normally
posed as structural estimation problems should be thought of in those terms. Be-
cause Structural estimation problems involve rather different issues from classical
estimation problems, one is then led to focus on the issues of complexity and fit
within the context of the problem. A description-based framework offers a fresh
point of view for finding a solution. An abbreviated list of problems which might
be reexamined in these terms is included in the final chapter.

Our goal throughout is twofold. First, we wish to explore the fundamental
issues and relations in structure estimation from as wide a range of perspectives
as possible. Secondly, we wish to illustrate practical techniques which we feel can
be applied to solve many real-world engineering problems. We will occasionally
speak of “the system designer” when emphasizing decision points where options

must be selected according to the requirements of an application.

| 1.2 The Logical Structure of Estimation Theory

In developing a theory of estimation for structures, we wish to take as much as
possible from the large body of classical statistical inference techniques for vector
spaces. As emphasized above, many of these techniques are not suitable for more

general application because they rely on the special algebraic properties of vector
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spaces, and require that the estimated quantity have a prespecified number of
degrees of freedom.

Upon examination, four general characteristics of estimation emerge when
methods peculiar to vector spaces are eliminated from the large body of classical

methods. These four components form the foundation of our approach.

1. Description Mechanism. A formal representation system must be
available which provides a description for each of the elements in the
domain of possible estimates. It must also allow the set of possible
observations, which serve as inputs to the estimator, to be described.

2. Interpretation. Associated with each of the possible structures and
observations must be an interpretation relative to an application.
The interpretation generally includes some notion of simplicity of
models relative to each other and of the degree of fit between par-
ticular models and particular observations.

3. Information Measures. In order to formalize and to effect a tradeoff
between simplicity of a structure and its degree of fit with the data,
it must be possible to measure both of these quantities with a scalar
measure on the set of descriptions. The sum of these measures is
then an information criterion to be minimized over the set of possible
descriptions.

4. Optimization Techniques. Some method must be selected for finding
either the optimal structure by the criterion, or an approximately
optimal one.

A novel aspect of the MI method, compared to classical estimation techniques,
is the primary role which is given to the function of description. We justify this by
claiming that a formal description system is essential to any estimator. The output
of any estimator must be a description of its estimate. While the importance of
descriptions has always been emphasized in the field of artificial intelligence, it has
received little notice in the large body of classical estimation techniques used in
vector spaces. This is because the language for describing points in a vector space
is simply the language of ordered n-tuples, which is so familiar and appropriéte to

the domain that its role as a descriptive language is overlooked.
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In examining estimation problems in spaces with less structure, the need
for a descriptive language becomes immediately apparent. An estimator which
outputs, for example, a finite-state machine, or an analysis of a digitized visual
image, must incorporate a language appropriate to the types of structures found
in the domain. The output of the estimator must be a description of an object in
the domain. With this point of view, returning to classical estimation techniques,
we see the outputs of all estimators as statements in an appropriate description
language. For example, in signal processing, the Karhunen-Loéve projection of
input signals onto an orthogonal basis of waveforms can be viewed as providing an
interpretation which allows signals to be described using the language of ordered
n-tuples. We develop other languages for describing signils in Chapter 6.

Because a unified approach to estimation requires a flexible description mech-
anism, a rigorous approach will require the application of formal languages. A
natural choice (but not the only choice) of formal language model for this purpose
is the phrase-structured grammar (PSG). A PSG allows sentences to be formed
compositionally from expressions, which are in turn formed from sub-expressions,
etc., down to a level of primitive tokens. This formalism is flexible enough to pro-
vide descriptions of the elements of many complex spaces. Some objects are simply
described with a short expression, while others require long detailed descriptions.
If, on the other hand, the space has the property that all the objects can be de-
scribed with expressions of the same length and construction (e.g. n-tuples), this
is easily accommodated also.

An important property of PSGs is that their compositional organization al-
lows complex descriptions of compléx structures to be formed hierarchically, by

conjoining descriptions of the substructures of the object. Trees can be described

Chapter 1 Page 14



by conjoining descriptions of their subtrees; graphs can be described by conjoining
descriptions of their arcs, nodes or subgraphs. In this respect, PSGs are a good
model of the constructions used in natural languages. Conversely, the types of
natural language constructs which automatically come to mind when describing
a space or its elements can be invoked and adapted in the design of the formal
languages required for an estimator in that space. Thus the desigh of formal
languages for applications will be seen to be a very natural process.

Once designed, the PSG also aids in defining neighborhood relations in the
set of structures. The notion that structures with similar descriptions are them-
selves similar provides an organization to the space of structures which can be
exploited in optimization. Local search techniques, based on syntactically defined
neighborhood relations, are used to minimize the MI criterion in the vérious case
studies.

The second essential component of our estimators is an information measure.
Intuitively, this will be a measure of the complexity of a description. It is formal-
ized as a function from descriptive sentences to the real numbers. Clearly, some
function in this class must be involved in any estimator which is defined by the
optimization of a scalar criterion. Generally, we will define information measures
such that long complex descriptions have a high measure of information, and short
descriptions ha‘ve a low measure. In certain cases, length itself (measured as the
number of characters) can be used as information. With the minimum information
criterién, our estimators will select concise, pithy ways of describing the data.

In applications for which probabilistic models are appropriate, a useful infor-
mation measure can be found in the standard entropic notion of self-information.

The MI estimator then reduces to well known methods of statistical inference.
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However, in many “real world” problems where a complex set of possibilities are
available, we contend that probability measures do not provide a useful or insight-
ful model. One often has no way to assess probabilities, and difficulty interpreting
the very notion, when a problem can not be modelled as one in which a true
structure is to be repeatedly selected from an ensemble of structures.

In the many applications where probabilistic models are inappropriate, a vari-
ety of non-entropic information measures are available. Perhaps the simplest such
notion is to measure the information in a sentence as its length, i.e. by counting
the number of characters it contains. With this measure, a minimﬁm information
estimator seeks the shortest sentence out of a class. We design our description
language in a way which allows our a priori expectations to enter the estimator
nonprobabilistically. The formal language should have the property that com-
mon sub-structures, or expected sub-structures, have relatively short descriptions.
Then, given two possible analyses of an input, the one which incorporates the
expected sﬁb-structures will be preferred, everything else being equal.

Of course, everything else might not be equal; sometimes unexpected struc-
tures are the desired estimate. To see how this can occur, we must be more precise
about what the sentences of the language are to describe. Those sentences of the
language over which we minimize the information measure do not cnly describe
structures; they must be joint descriptions of possible structures and input data.
From any sentence of the description language we must be able to exactly deter-
mine the input to the estimator. One way this might be arranged is with a clause
which directly describes the input. That technique would not lead to a useful
estimator however, as there would be no interaction between the description of

the structure and the description of the data. Instead, the language must provide
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constructions which take advantage of the fact that a good model allows data to
be described concisely. For example, sentences of the language can be built of
two clauses, the first describing a structure, and the second containing only the
information necessary to describe the input data given that structure. In certain
applications, this second clause can be thought of as a description of the noise in
the input. More generally, it provides the information to eliminate the variability
allowed by the structure.

The effect of this formulation is to allow the desired tradeoff between simple
models, and good fit to the data. If an overly simple structure is used in the
description of the input data, the remaining discrepancies between the model
and the data will be substantial, and will require a lengthy description, i.e. a
long noise clause which adds to the length of the sentence. Conversely, it may
be possible to eliminate the noise clause altogether by means of a very complex
model which exactly predicts the input data, but requires lengthy description. In
either of these extremes, the burden of describing the input data is placed in just
one of the two possible loci. However, for many inputs, the result will be that
the shortest description distributes the information betwzen the description of the
structure and the description of the noise. The MI estimator chooses a point of
balance between simplicity and fit which depends both on the data and on the
a prior: information that entered into the design of the description language and
information measure.

The major questions concerning this framework, which will be addressed in

later chapters, are:
1. For what applications is the method suitable?

2. How to design a description language for a particular application.
3. How to design an information measure on the language.

Chapter 1 Page 17



4. How to find a sentence which minimizes the information measure for
a given input.

5. What are the provable properties of the estimator?

6. How does it relate to existing estimation techniques.

7. Why does the method work?

In considering these questions, it is important to remember the constraints
placed on the method because it is to work in arbitrary spaces (that can be de-
scribed with PSGs). In particular, we can not assume any notion of addition or
distance in the space. Accordingly, the operations of expectation and differenti-
ation, and the notions of estimation error, bias, and variance are not available,
even in those cases where a probability distribution is given. In addition, the use
of a PSG restricts us to a countable space.

For these reasons, structure estimation problems can be seen as detection
problems from the point df view of classical statistical inference, which require
the selection of a hypothesis from a finite or countable unstructured set. But we
will apply the method to problems of far greater complexity than those usually
classed as detection. The difference between these problems and classical detection
problems is that in the classical case, the different hypotheses are considered to be
elements of a set of mutually exclusive hypotheses with no structure, e.g., target.
present or target absent in a radar detection problem. In the structural problems
that we consider however, the elements of the set are related by means of common
substructures. Different hypotheses with similar internal structures are treated
similarly in their formal descriptions and information measures. For example, if
the hypotheses are trees, and two structures under consideration share identical
subtrees, they also share certain clauses in their descriptions and certain terms in
the definition of their complexity. The method attempts to exploit these felations

in the estimation process.
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1.3 Origins

The MI estimation framework presented here is a synthesis of ideas from a
wide range of fields. It is an interdisciplinary approach, combining ideas from
probability theory, classical estimation and detection theory, system identifica-
tion, artificial intelligence, syntactic pattern recognition, formal language theory,
classical information theory, and especially, algorithmic information thcory.

Three methodsv of taxonomic classification proposed by Wallace and Boul-
ton [W&B 1968; B&W 1973, 1975] contain many of the ideas generalized in this
thesis. Theirs is the earliest application of information criteria to structure esti-
mation problems that we have found. They give the first statement of a minimum
information criterion [1968, p. 185]: “We suggest that the best classification is
that which results in the briefest recording of all the attribute information.” They
consider the problem of grouping individuals, in the form of observation vectors,
into classes, and address the structural problem of selecting an appropriate num-
ber of classés into which the data in a scatter plot should be classified. Wallace
and Boulton’s methods are similar to those in Chapter 5, and contain many of the
essential elements of this work. However, there are three important differences:
(1) a flexible formal language is not utilized, (2) they rely on specific families
of probability distributions, and (3) the generalizability of the method was not
recognized. Curiously, this work seems to have been largely ignored except by
entomologists, botanists, and by Rissanen [1978, 1983|. This may be attributed
to the specificity of their application.

The seéond use of an information criterion for estimating structure which we

have found is in Cook et al. [1976]. They propose a complexity measure, and
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probabilistic measure of fit for estimating stochastic context-free grammars. As
discussed in Chapter 4, this work also fits into our general framework.

Another similar approach is given in Georgeff and Wallace [1984]. However,
they assume a probability measure is available over the space of structures, and
propose that descriptions have lengths proportional to entropic measures of self-
information. The resulting estimator is then the classical MAP estimator, and the
language is actually irrelevant.

Classical methods of detection for choosing among hypotheses in a probabilis-
tic context began with Thomas Bayes [1763]. These fundamental ideas have been
developed into a broad and deep field of probability theory, stochastic processes,
and statistical inference which is both mathematically elegant and extremely pow-
erful in real applications. An excellent compendium is Van Trees [1968]. The
most important limitation of these techniques however, is that estimation must
take place either (1) in an algebraic context, a vector space, in which the number
of degrees of freedom is prespecified, or (2) in the context of detection within an
unstructured set.

For problems of system identification, in which not only the parameters, but
also the order of a dynamic system must be determined, additional techniques have
been developed. In essence, they allow estimation in a family of vector spaces with
different dimensions, with the proper dimensionality being one of the parameters
to estimate. Ljung [1986] is an excellent text in this field. Two notable information
criteria have been developed for system identification purposes.

The Akatke Information Criterion (AIC) [Akaike, 1974, 1981] provides an
estimate of the expected reduction in residual errors when model order is unnec-

essarily increased by one dimension. Whe:. coasidering two models of different
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order, the AIC chooses the smaller unless the reduction in residual error with the
higher order model is greater than the expected value. This provides the essential
tradeoff betweén simpliesty, in the form of low model order, and fit to.the data, in
the form of low mean square residual error.

The second information criterion developed for system identification is Rissa-
nen’s Minimum Description Length (MDL) criterion [1978-1983], which has been
a major influence on this work. Rissanen presents binary-string codings of au-
toregressive moving-average (ARMA) linear djrna,mic systems and data, and by
minimizing code-length, derives a measure similar to the AIC. He. suggests [1978,
p. 465| that “by' finding the model which minimizes the description length, one
obtains estimates of both the integer-valued structure parameters, and the real-
valued system parameters” [emphasis mine|. The differences between Rissanen’s
MDL approach and ours are given in Section 2.11.

Rissanen has more recently applied MDL estimation to the problem of data
compression via estimation of the structure of a Markov source [1983-1986]. His
emphasis is quite different from that in Chapter 4 below in that he again selects
a particular integer coding with binary strings, and relies upon an integer enu-
meration of the possible structures rather than a versatile description mechanism.
He is not concerned with reasonable estimates of structure so much as the asymp-
totic properties of the compressed data. Accordingly, the structure estimators fare
poorly when given short input strings. This work is discussed in more detail in
Section 4.1.

Artificial Intelligence (AI) emphasizes flexible descriptive formalisms, a con-
cept essential to this framework. It is attributed to John McCarthy that “you can

not expect a computer to learn a concept if you can not tell it about the concept
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directly” [Winston and Brown, 1979, p. 342]. We read “estimate a structure” for
“learn a concept”, as concepts in AI are represented with formal structures, and
learning is seen here as one case of estimation. A wide variety of representation
techniques have been proposed for Al applications, including lists of relations,
propositional logic statements, semantic networks, and frame systems. Note that
these are all syntactic methods that require some vocabulary of symbols and con-
ventions for arrangement which can be formalized wfth a PSG.

From Syntactic Pattern Recognition (SPR) we take the notion that classes
of patterns can often be described with sentences generated by a PSG. Many of
the particular problem domains and grammars that have been examined in the
SPR framework (e.g. Fu [1975], Grenander [1976]) might well be re-examined and
extended with an M1 point of view. The major difference is that SPR methods only
classify an input as in @ set or not according to whether or not some description
of the input can be parsed with a pattern grammar. In forming a description
of the input, the SPR paradigm tries to eliminate “noise” or variability, in order
to simplify the grammar and parser. The maximum degree of variation which
is allowed within a class is then specified not only by the grammar, but also by
the nature of the “noise filtering” in the encoding process. In contrast, the MI
~approach requires that the “noise” be explicitly described in order to measure the
ﬁt between a structure and the input. An MI estimator can thereby select among
a set of descriptions the best classification of the input, rather than merely list the
set of descriptions which are compatible with the input.

Formal language theory (Hopcroft and Ullman [1969, 1979], Kohavi [1978])
suggests a variety of formal description models which could serve our purposes.

Of these, the context-free phrase-structured grammar appears to strike a proper
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balance between flexibility and manageability. They are used exclusively in this
work. Of course, in other applications it is possible that other description models
will be more appropriate.

From classical information theory (Hartley [1928], Shannon [1948]) come two
concepts of coding and information. A combinatorial notion of information arises
by counting the number of bits required to code one of a finite number of possi-
bilities with a fixed-length binary string. If there are n possibilities, log,(n) bits
of information are required, independent of the outcome. In a more restricted
context where variable-length codes are permitted and a probability distribution
on the possibilities is available, an entropic notion of information can be employed
in which the information in each possible outcome is a function of its probabil-
ity. These two notions of information can be combined and extended to apply to
formal descriptions.

Algorithmic information theory (AIT), proposed by Solomonoff [1964], Kol-
mogorov {1965], and Chaitin [1966], provides a third notion of information, defined
by the lengths of Turing Machine programs which generate a string. The algorith-
mic notion of information, should it be known for a set of possibilities, is easily
adapted into this framework. It is not likely to be useful however, as it is not
computable. A more important contribution of AIT is the philosophical notion
that complexity of an individual object can be meaningfully measured outside
the restricting context of a probability distribution. Our complexity measures on
structures can be viewed as special cases of the algorithmic notion of the informa-
tion in a structure. The set of Turing Machine programs has been replaced with a
set of simpler, more relevant, and more tractable representation functiéns, which

incorporate our structural unknown as a parameter.
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Finally, from the field of combinatorial optimization (e.g., Papadimitriou
[1982]) we take two important ideas. The first is the method of optimization
to a local maximum using local search techniques and a neighborhood structure.
Although our overall framework is amenable to a wide variety of optimization tech-
niques, the case studies in later chapters are all handled reasonably with simple
one-pass steepest-descent (“greedy”) optimization techniques, using a syntactically
defined neighborhood structure.

The second idea from combinatorial optimization is that of measuring the
size of input data using an information measure. For the purpose of quantifying
computational complexity, it has proven fruitful to analyze the space and time
complexity of algorithms in terms of their order of growth relative to the size
of the input. For example, a certain sorting algorithm might require a number
of operations, and hence time, proportional to nlog(n), where n is the length
of the input list; an algorithm to find the minimum distance between nodes in
a graph might take time proportional to n2, where n is the number of nodes in
the graph. Measuring the length of a list to sort is relatively straightforward and
unambiguous, but to measure the size of a graph requires an implicit description
language and information measure. In practice, graph size is variously measured as
either the number of nodes or arcs. The descriptions and measures to be developed

in Chapter 4 for directed labeled graphs can be viewed as more explicit and precise
versions of the size measures which originated in the analysis and classification of
graph algorithms.

Relative to the above ﬁelds, the major contribution of this thesis is in the

synthesis of these ideas into a structure estimation framework. We focus attention
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on the benefits of estimation by means of a formal description language in asso-
ciation with an information measure. In particular, the enormous flexibility and
versatility of the resulting technique allows a single estimation criterion to apply

to, and unify, a wide range of fields.

1.4 The Finite-State Machine Estimation Problem

Before proceeding further, we briefly sketch a concrete motivating example,
involving complex and flexible structures, in order to illustrate some of the major
issues. This problem, taken from Chapter 4, is to estimate the structure of a
finite-state machine (FSM), or equivalently, to infer a regular grammar [Hopcroft,
& Ullman 1979]. This class of discrete finite-memory structures is chosen because
the estimation required is essentially structural, rather than numeric, and it is
important and familiar in many fields. Furthermore, it illustrates the thesis that
when facing a complex structure-estimation problem, one often has no probabilistic
models or assumptions to rely upon.

As input to the estimator, we have available a finite sequence of observations
which result from an unknown function of the state transitions. As an exam-
ple, consider the FSMs of Figure 1.1, any of which might generate the particular
observation sequence -

Z = ABCABDABCABDA

In these graphs, the nodes indicate the allowed states of the FSM, the directed
arcs indicate the allowed state transitions, and the labels on the arcs indicate an
observable which occurs during the associated state change. We assume the FSM

operates for a time and the observables are gathered in sequence without error.
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Figure 1.1 Finite State Machines Which can Generate the String ABCABDAB-
CABDA
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Our problem is that we are given the observation sequence, Z, and we wish
to form an estimate of the FSM which generates it. But this problem is hopelessly
underdetermined. An infinite number of possible structures, of many different
complexities, are candidates in addition to those shown. The MI approach provides
a method for regularizing this problem, suitable even if there is no relevant notion
of aﬁ a priori probability measure over the FSMs.

As example applications, consider that the observation sequence could be
events which we record while watching the behavior of a clockwork toy, body
movements of a dancer, motors and valves in a washing machine, or animated
characters in a computer video game. We wish to form a FSM model which in
some sense captures the dependencies between the behavioral events we recorded.
In these examples, we are unlikely to have a probabilistic notion, for example of
folk-dance movements. In practice, our criteria will involve simple models and
models which fit the data well, so we need to formalize these ideas.

The essenfia.l difficulty in designing an estimator for this problem is thus to
choose from the infinite number of possibilities a reasonable balance between sim-
ple FSMs and FSMs which fit well to the data. FSM simplicity may be measured
in many ways, but if we quantify it as number of states and/or arcs, then the can-
didates of Figure 1.1 are ordered roughly by decreasing simplicity, i.e., complexity.
The notion of an FSM which fits the data can be understood as one which not only
can generate the input, but which also tightly constrains the set of pessible obser-
vations. Comparing Figure 1.1a with Figure 1.1d, We see how these are opposing
tendencies in the space of FSMs. The simplest FSM which generates the data, Z,
also generates all conceivable observa.tibn sequences over the same alphabet. It

does not fit Z especially well, because it could be chosen for any input sequence.
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Figure 1.1d on the other hand fits the data extremely well, but it is quite complex.
- Intuitively, we seek a balance between these extremes such as Figure 1.1b or 1.1c.
The description-based MI estimator of Chapter 4 can make this tradeoff. We
first need a formal language which specifies a set of sentences for describing FSMs
and inputs. There are many ways this could be implemented. The approach of
Chapter 4 is to have primitive tokens for describing states and labels, then to
build clauses describing the arcs from these elements, and finally form a complete
description of the FSM out of the clauses for the different arcs. Given the FSM
structure, the observation sequence is described with a clause which indicates the
starting state and the route through the states. Notice how in structures with
no branching, such as Figures 1.1c and 1.1d, nothing needs to be said aboﬁt the
route. The route only needs description at states for which there is more than
one exiting transition. The complete sentence, jointly describing the FSM and the
data, is the concatenation of these two clauses.

For the purposes of this introduction, the information content of a sentence
can be measured by its length. With these descriptions, and this measure, simple
FSMs result in the first clause being short, while good fit to the data results in the
second clause being short. With the measure discussed in Chapter 4, the shortest
description of Z overall uses the FSM of Figure 1.1b. In this sentence, neither of
the two clauses is as short as possible, but their combined length is. A tradeoff is
made between fit and simplicity. If the input data were extended, with C and D

| continuing their alternating pattern, then after a few repetitions, Figure L.1c would
be chosen as the estimate. It provides a better fit, but is also more complex, and
~ a longer input is required before it can be justified. The mechanism by which this

occurs is discussed in Chapter 4.
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1.5 Overview

The core of the framework is presented in Chapter 3. This is preceded by
background information in the first two chapters, and is followed by four chapters
of case studies and a final chapter of discussion. In Chapter 2, we discuss a
number of different approaches to structure determination, and various criteria of
complexity, which have appeared in the estimation literature. The FSM estimation
problem is used as a concrete example in pointing out the limitations of these
existing methods. |

Chapter 3 presents formal-language-based minimum-information structure es-
timators. Necessary properties for the formal languages and information measures

‘are developed. Speciéxl properties of the languages and information measures, for
which the method reduces to the criteria of Chapter 2, are pointed out. Techniques
for optimizing the resulting criterion over a space of sentences are also discussed.

Chapter 4 considers several examples. First, the nonprobabilistic FSM exam-
ple is presented more completely. Then it is extended to a probabilistic context
in which a Markov source is estimated from a sample of its output. Finally, an
estimator for a set of independent FSMs is developed, and the results of a simple
computer implementation are shown.

In Chapters 5 through 7, three other case studies are presented. The first ex-
ample comes from the field of pattern recognition. It is a cluster analysis problem
similar to the original Wallace and Boulton [1968] study, except that no proba-
bilistic assumptions are made. The structural issue is the number of clusters to
use in the analysis. The next case study is a simple signal processing problem
in which a one-dimensional function of time is segmented into piecewise constant

segments. The structural question here is also one of selecting an appropriate
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number of components. The final example is a two-dimensional generalization
of the signal processing example, coming from the field of machine vision. The
problem is to estimate the piecewise-constant structure of a visual image in the
presence of noise. In the latter two examples, probabilistic noise models are as-
sumed and incorporated into the estimator, but no probabilistic assumptions are
made concerﬁing the distribution of the structures.

Chapter 8 contains a summary of the framework, a diséussion of the method
from several points of view, and a section suggesting possible extensions and ap-
plications. One concern about our method is that is not always clear what the
resulting estimator corresponds to. The general technique allows one to quickly
and easily generate optimization criteria for a wide range of problems, but it is
not always clear how to understand the criteria, or relate them to others. Some
possibilities are discussed in Section 8.2, in which we show the method can not
be validated on purely logical grounds, yet it can be supported by ihtuitive and
'psychological arguments.

In the Appendix, a residential energy monitoring application is described
which served as the motivation for this work. It directly suggests three of the case
studies.

The major contributions in this work are in the problem formulation and
suggested framework for estimation. In addition, the various case studies present
simple, computationally tractable solutions to difficult structural estimation prob-
lems which can be directly employed or adapted in a variety of applications.

The focus throughout is on breadth and flexibility. We try to illustrate the
fundamental issues and relations in structure estimation as we see them, but this

is very much a report on work in progress. There are many thorny and vexing
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issues in any methodology which induces generalities from specific input data. We
explore problems and solutions of this character from a range of points of view,
presenting as much perspective as we can. However, we have no illusions that this

work is, or may ever be, complete. In particular, there is no way to prove the
validity of the framework presented, although the case studies support a strong

inductive (nondemonstrative) argument for the MI approach.
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Chapter 2

APPROACHES TO STRUCTURE ESTIMATION

Before formally presenting the description-based MI approach to estimation

in Chapter 3, we briefly examine a number of other approaches which have been

applied to problems of estimating structure. A survey of the literature in a range

of fields suggests the following methods are widely used, although they are not all

recognized or named as such. For reference, they are gathered together in one list:

-
=)

S R i

Maximum Likelihood Estimation

Ockham’s Razor

Falsifiability

Maximum A Posteriori Estimation

Estimating Substructures of a Largest Allowable Structure
Simplest with Acceptable Fit

Finding the Knee of the Curve

Hypothesis Rejection

Maximum Entropy Estimation

Ad Hoc Methods

. Minimum Description Length Estimation

Many of these techniques pervade the literature in a variety of applications, and

cannot be specifically referenced. Some incorporate classical techniques as “sub-

routines”, others rely on simplicity or good fit alone. These methods will be seen to
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have inherent limitations which are serious for many applications, but acceptable
in others. Their place within the general framework presented here is discussed
in Section 3.4, where they are all shown to be special cases of MI estimators in

which special description languages and information measures are assumed.

2.1 Maximum Likelihood Estimation

Although quite powerful in many situations in which the structure is fixed,
Fisher’s Maximum Likelihood (ML) estimation technique is generally unsuited for
structure estimation problems. In most applications with unknown structures, a
structure with a large number of parameters can be selected and adjusted to fit
the data more closely than a structure with few parameters. As the ML criterion
selects the model which maximizes the conditional probability of the observation
given the structure, the complexity of the model is not penalized. Therefore, com-
plex estimates frequently result, in which the large number of degrees of freedom
effectively model the process noise or observation noise rather than the structure
being sought. Comparatively, simple structures are penalized, and an estimate of
the greatest allowable complexity generally results.

The resulting estimate is generally inappropriate because it emphasizes fit
to the data, and ignores simplicity. Generally, ML estimatofs are suitable for
structure estimation only if either (1) the application can tolerate very complex
structures, (2) the possible structures are considered to be of equal complexity
so that it is. reasonable to measure structural complexity as constant, or (3) the
structures are not “nested” in a way which allows more complex structures to
provide better fits, e.g. if only one structure can be used in the description of the

data, the most complex structure is a reasonable estimate.
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In the FSM case, an unconstrained ML estimate for the input above will result
in a structure such as Figure 1.1d, which exactly describes the observation, but
makes no prediction. However, in many applications, models are being estimated
specifically to make use of their predictive power. For such purposes, the ML
estimate is the worst of the estimates in Figure 1.1.

A more precise analysis, of course, requires a careful formal model of Markov
sources, as in Chapter 4. Here, it is sufficient to note that if the interpretation
of Figure 1.1d includes the fact that the leftmost state is the starting state, and
probabilities are somehow assigned to the different transitions out of a state, then
the input, Z, results with probability 1, and Figure 1.1d is at least a ML estimate,

if not the ML estimate.

2.2 Ockham’s Razor

Ockham’s Razor is a principle for choosing among theories that is commonly
advocated by philosophically inclined analysts. This “principle of parsimony”
states that one should select the simplest structure which is compatible with the
data. Alt;hough compelling, and sometimes useful, especially in the philosophy
of science, the principle is difficult to apply rigorously as there is no universally
accepted notion of simplicity.

In our framework, the information measure on descriptions provides a precise
definition of structure complexity, and it is interesting to see what Ockham’s razor
leads to in such a context. Although a complete presentation will not be given
until Chapter 4, Figure 1.1a will be the structure of minimum information that can
generate Z, by any additive measure of information, built on clauses describing

states, arcs, and/or labels. It has the minimum possible number of each type
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of component. Accordingly, an estimator which chooses the simplest possible
structure compatible with Z will choose the FSM in Figure 1.1a. Unfortunately,
this estimate, like the ML estimate in Figure 1.1d, has no predictive power. All
the symbols in the set {ABCD} are possible successors to any input string. The
criterion of simplicity is therefore of little use. |

(Note, incidentally, that this is also true if applied literally in the philosophy of
science. I claim that the simplest physical theory comp-atible with our observations
of the world is “Anything can happen”. But such a theory is quite poor relative to
most of the other physical theories. Ockham’s razor is a poor guide not because we
don’t agree on what is simple, but because we can agree on a simple, but useless,
theory.)

From the point of view of MI estimation, Ockham’s razor, in its most general
interpretation, focuses on simplicity to the detriment of fit. As the degree of
compatibility between the data and the structure does not affect the estimate,
the estimate is not sufficiently tailored to the input. In a setting of constrained
optimization however, Ockham’s razor is more useful. In the FSM example, if
Figure 1.1a and others with poor fit are eliminated from the structure space by
some application-specific constraint, then Figure 1.1b might be left as the simplest

structure.

2.3 Falsifiability

Again following the lead of philosophers of science, we might seek an estima-
tion technique which results in FSMs that give strong predictions. Popper [1962]
claims that the “best” theories are those which are most falsifiable, arguing that

science progresses as we find counterexamples to old theories, and we are forced to
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amend them. This view is based on the asymmetry between possible and impossi-
ble events. If we err on the side of expecting very few things are possible, then new
observations can cause us to modify our theories, and hopefully progress. But, if
we err on the side of expecting that too many things are possible, then we can’t
correct the theory, as the world only presents positive evidence. By this argument,
a theory should allow for the smallest set of possibilities compatible with what has
already been observed. This can be viewed as resulting in an expanding sequence
of possible outcomes generated by the sequence of theories.

In the context of our problem, the natural interpretation of this approach
is to select FSMs which generate small languages, in the sense of set inclusion.
Thus, of two contending FSMs which generate Z, for which the set of strings
generated by one is a subset of the strings generated by the other, the one with
the smaller language is preferred by the criterion of falsifiability. There is a larger
set of logically possible observations which could serve as counterexamples. In the
FSM problem, this is a natural principle because our model only allows “positive
evidence”. A finite input sequence can never imply that some other sequence of
observations can not be generated by the “true” FSM.

The falsifiability criterion is closely related to ML estimation in that it ignores
the complexity of the structures and so is likely to choose a very complex model.
It can be seen as a special case of a ML estimator in which all observations are
considered equally likely, so the highest likelihood results from a model with the
fewest possible outcomes. For structure estimation, the principle of falsifiability
has little value in a setting of unconstrained optimization. For the FSM estimation

problem above, the most falsifiable structure is Figure 1.1d. This FSM allows the
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input to be generated, but nothing else. It makes too strong a prediction; it is too
falsifiable.

(The analogous problem in the context of physical theories is the theory “The
world can only be just what it has been, and it will end right now” which is always
falsified immediately. Somehow this must be eliminated from the set of putative
theories.)

If acceptable constraints can be placed on the set of allowable models, so
that such trivially falsifiable models are eliminated, the falsifiability criterion can
be quite useful, at least in nonprobabilistic settings with only positive data. Of
course, falsifiability is not applicable in a general estimation context unless the
input can be viewed as a sequence over a one-dimensional parameter such as time,
and the notion of a predictor is relevant. Many estimation problems can be stated

in this format, however.

2.4 Maximum A Posteriori Estimation

In principle, a balance between simplicity of models and fit to the data can
always be effected by Bayesian estimation. Of the Bayesian estimators, only the
maximum a posteriori (MAP) estimator is appropriate for estimating structure.
The MAP criterion selects the structure for which the conditional probability,
given the data, is maximum.

(Minimum mean-square error eStima.tion, and other Bayesian estimators de-
rived from cost functions on the estimation errors, are not meaningful outside the
context of a vector spa.cé; structures can not be subtracted. It may be reasonable

however, to formulate certain structure estimation problems in metric spaces as a
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minimization of the expected value of a cost function on the distance between the
true structure and the estimate. This is briefly discussed in Chapter 8.)

With MAP estimators, if complex structures are given low a priort proba-
Bilities, they will not be selected merely because they fit the data slightly better
than simple models. The MAP formulation ensures that the improvement in fit
be sufficient to outweigh the decrease in a prior: probability. The difficulty with
such an approach, of course, is that there is no way to assign a priort probabilities
to different structures in real applications. In the vast majority of cases, the very
notion of a probability distribution on the possible structures is suspect. In com-
plex estimation problems, probability measures can be very poor models offering
little insight or guidance.

In our context of FSM estimation, the problem would be to assign probabilities
to the structures in Figure 1 in a way that makes sense. However, in most of the
applications for which FSM models are appropriate, it is not clear how to make

this into a meaningful question.

2.5 Estimating Substructures of a Largest Allowable Structure

One common technique for estimating structure is to organize a problem so
that all the allowable structures are substructures of a given structure of maximum
complexity. Parameter estimation is performed by classical techniques, with thc
number of degrees of freedom in the largest structure, and then the estimated
parameters are examined to see which substructure is indicated. For example, in
system identification, when identifying a system which is expected to be second,
third, or fourth order, one can estimate the parameters for a fourth order system,

and if the fourth order, or third and fourth order, coefficients are “sufficiently
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close” to zero, choose a third, or respectively second, order system. An analogous
technique is often used to choose the order of a polynomial as a least-squares fit
to data. Typically, this technique is used only to select a model order, and then
the parameters are reestimated with the selected number of degrees of freedom in
order to determine more precise values.

A major difficulty with such techniques is in the characterization of sufficient
closeness. The minimum degree of deviation from zero for which the paramei;,er
can be declared statistically significant is not generally clear. A second problem
is that it is not suitable for estimation problems in which an upper bound for the

complexity is not given.

2.6 Simplest with Acceptable Fit

smallest order for which the fit is within the acceptable bounds is then accepted as
the strucfure. Note how this is the dual of the classical technique of preselecting
a model structure, and minimizing the residual error within that class of models.
It is also a special case of Ockham’s Razor in which the criterion of compatibility
with the data is determined by the fitness measure.

One problem with this technique is the restriction to one-dimensional struc-

tures. A much more serious problem is that a rigid criterion of fit is rarely given

Chapter 2 Page 39



as a true constraint. If the smallest order with acceptable fit were found to be
much greater than a very simple model which just missed being acceptable “by
epsilon,” one would be inclined to adjust the constraint slightly and accept the
simpler model. One would like to adapt the degree of fit in a way which depends
on the relation between simplicity and fit for the particular class of models and

data at hand. This is the intention of the following method.

2.7 Finding the Knee of the Curve

A closely related technique, also popular for syst;am identification and polyno-
mial order determination, involves finding the knee of the curve. Assuming again
that the structural unknown is one dimensional, a measure of lack of fit, such as
residual error, is plotted versus model order, and generally is found to decrease
with increasing model order. Typically, this curve is not of constant slope, but
decreases rapidly at first, and then slowly. A point in the curve at which the slope
begins to “level off” is termed the knee and the corresponding model order is se-
lected as the estimated structure. The slight increase in fit to the data for larger
orders is deemed not to be worth the cost of the more complex structure. Relative
to the method of the previous section, this has the advantage of not requiring that
a degree of fit be prespecified independently of the data.

The technique is commonly applied in system identification and curve fitting,
when model order is essentially one dimensional (within the family of models of
interest) and mean square residual error is available as a measure of fit. When
the structural question is not one dimensional, the method can often be adapted.

In these more complex structure spaces, if a complexity measure from structures

Chapter 2 Page 40



to the real numbers is available, it provides a way of “one-dimensionalizing” the
space.

The fundamental problem with this method is in choosing an appropriate
degree of leveling off. A simple visual knee is often selected, but this is actually
quite arbitrary. The same data will appear to the eye to have very different knees
if the dimensions of the units on the axes are changed, e.g., from volts to millivolts,
or if the scaling is changed, e.g., from linear to logarithmic.

If, however, a criterion is available for choosing the critical slope, the method
can be very effective. Akaike’s Information Criterion is such a criterion. The
description-based MI technique provides other criteria, as will be seen in Chap-
ter 3. Both complexity and fit are measured with an information measure, and

the critical slope is unity.

2.8 Hypothesis Rejection

Fisher’s method for rejecting hypotheses can be used to choose between two or
more structural hypotheses. The method requires that probability distributions
be derived for one or more statistics which are modelléd as random variables
conditioned on the hypotheses. If the actual inputi data falls suffictently far into
the “tails” of the distributions, the hypothesis is rejected.

There are serious problems with this technique, even in those contexts in
which probabilistic models are natural. The most obvious difficulty is that there
is no principled method of choosing an appropriate degree bf distance into the
“tails”, or confidence level, to define the critical regions of the distributions. A
second problem is that the method can provide ﬁo provision for confirming hy-

potheses, and there is generally a nonzero probability of erroneously rejecting a
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“true” hypothesis. The result of this is that with a sufficiently industrious appli—
cation of the method, i.e., with a large number of statistics, one is certain to reject
any given hypothesis, including true ones.

A more subtle problem with the method lies within the very notion of a “tail”
of a distribution. Given a statistic in a totally ordered space (e.g., real numbers,
integers) with a unimodal probability distribution, there is an intuitive naturalness
to grouping together a “ray” of values which does not include the mode as a
“tail”, but there is no logical basis for doing so. Consider that any permutation
of the space defines a new statistic with an arbitrarily different set of tails. By
an appropriate permutation, any arbitrary set of values of a given statistic can be

grouped together and made into the critical region of an isomorphic statistic.

2.9 Maximum Entropy Estimation

The Maximum Entropy (ME) technique of Jaynes [1982], employing an anal-
ogy with statistical mechanics, selects the probability distribution with maximum
entropy that is compatible with partial observations such as various moments. Al-
though we have not seen the ME principle applied to problems of the type we term
structure estimation, it has been applied to a range of problems, including image
reconstruction. In examples we have considered, ME, like ML, leads to the most
complex estimates possible. But, we include it here because there is a potential fit
between the method and these problems, especially in the context of constrained
optimization. Thve ME technique can simultaneously estimate an arbitrary, even
infinite, number of parameters.

Note, incidentally, that Watanabe [1985] defines a Minimum Entropy notion

of pattern recognition. This does not refer to an estimation criterion however.
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The phrase summarizes the process by which a large amount of information in the
data is “boiled down” to one bit of information in the output: the data fits or

doesn’t fit a pattern class.

2.10 Ad Hoc Structure Estimators

Many practical problems have necessitated the development of some kind of
estimator in applications where structures are uncertain. In the absence of an
estimation framework, or applicable criteria which can be effectively minimizea,
various ad hoc procedures have been developed and implemented. Often, the com-
bination of necessity, expertise in a complex domain, and engineering j>udgement
results in estimators which serve their purpose very well. The problem of FSM
inference has seen many such estimators. Image processing (e.g. Pavlidis [1977])

is another field rife with ad hoc structural estimators.

2.11 Minimum Description Length Estimation

The use of information measures in structure estimation, as developed by
Wallace and Boulton {1968, 1973, 1975, and Rissanen>[1.978—1986], allows a quan-
tified tradeoff between model complexity and fit to the data. In the framework we
are proposing here, these measures are defined on sentences in arbitrary languages
for describing structures and data. However, in the previous work they were de-
rived in the context of binary codes for explicit applications: clustering, ARMA
model order estimation, data compression. It was not immediately obvious how

to generalize the technique from these special cases.
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Rissanen’s MDL estimation technique determines model complexity by: (1)
truncating the real-valued parameters in a class of models to an adjustable pre-
cision, thereby producing a countable set of approximate models; (2) encoding
the structures within this set as a positive integers with an enumeration function;
(3) assigning a probability distribution over the structures, based on binary codes
for integers, using the log* function on positive integers, as discussed in Chap-
ter 3; and (4) measuring structure complexity and fit with probabilist;ic notions of
information.

A major portion of his work, which is distracting from our viewpoint, is
devoted to the problems of “rounding off” the uncountably infinite number of
possible real-valued inputs to a finite precision, so that they can be described with
the countably many binary strings. The approach is adapted from that of Wallace
and Boulton [1968].

We see this is a special case of a more general description-based estimation
technique. Particular choices as to the method for describing structures and mea-
suring their information content have been chosen which are appropriate to the
applications. Four crucial differences distinguish our work from the above, which

generalize the approaches of Wallace and Boulton, and Rissanen:

(1) Rissanen has considered only integer-valued structure parameters,
e.g., model order, whereas we propose an adaptable formal-language
framework. This allows MI criteria to be quickly and easily gen-
erated for more complex estimation problems, including those with
recursively specifiable structure, and nc meaningful enunzeration by
integers. Our description languages are also made to provide neigh-
borhood structures for local search techniques.

(2) We distinguish cleariy between a description language and an in-
formation measure. They have different properties and serve differ-
ent functions, but are blurred together when the language is binary
strings and information is measured as length. The virtue of this
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distinction becomes very clear when an MI criterion is to be mod-
ified. Our breakdown allows us to change only the portions which
we want to change, but a binary coding formulation requires a code
and its length to change in tandem. Measuring information, rather
than constructing codes, also allows noninteger information quan-
tities, which have to be excused somehow when considering code
lengths.

(3) We choose more complex problems which are naturally suited to
description with a countable language, and thereby avoid the dis-
tractions of rounding off real-valued input data. Because a space of
structures generally lacks the simple ordering of the integers, con-
siderable attention must be paid to the problem of optimization.

(4) A general MDL approach allows arbitrary binary codings as repre-
sentation functions for a problem domain. This introduces a generic
problem with the technique which comes about because there are
no universally appropriate codes or measures of information. The
coding function which defines a particular MDL estimator can be
compounded with any permutation of the set of binary sequences
to form a new coding function and new estimator. Almost all such
choices will result in very poor estimator performance. We therefore
explore those properties of representation functions which result in
acceptable estimates, and recommend a structural isomorphism be-
tween the structure space, the language for describing structures,
and the definition of information.

This MDL framework requires that structure be coded as binary strings in
which information is measured as length. The versatility of the method was not
widely noticed, and information measures have not been widely applied for struc-

ture estimation. We argue, of course, that they should be.

2.12 Conclusions

In this chapter we have reviewed a variety of techniques which have been used
for estimation problems in structure spaces. Each follows from certain choices as
to how to process the data. The intent of the MI approach is to make as explicit as

possible the choices required for structure estimation. By doing this in as general
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a context as possible, we will see that special cases of the MI parameters result in
each of the structure estimation methods of this chapter.

Relative to these methods, we feel that a formal-language-based MI technique
hé.s certain general advantages. In particular, a wide range of structure estimation
problems can be directly approached using the framework of a formal language
and an information measure. Simplicity and fit can be given appropriate weights.
The main difficulties with this approach will become apparent in Chapter 3. A
formal language must be designed, information measures must be specified, and
a combinatorial optimization problem must be solved. We do, however, provide

guidelines and heuristics for each of these steps.
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Chapter 3

FORMAL MODEL

This chapter gives a more formal presentation of the minimum information
framework for estimating structures, which was outlined in Chapter 1. Section 3.1
describes the properties we require of phrase structured languages, and their inter-
pretations as structures and data. Ideally, they should be unambiguous, uniquely
interpretéble, and structurally homomorphic to elements of the structure space.
Information measures on PSGs are developed in Section 3.2. Their definitions
follow the defnitions in the grammar. The MI estimator is then defined to select
a sentence with minimum information that describes the input data. Techniques
for optimizing the MI criterion, especially those using the neighborhood relations
induced by the PSG, are discussed in Section 3.3. Finally, special values of lan-
guages and information measures for which the MI estimator reduces to the various

methods of Chapter 2 are discussed in Section 3.4.
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3.1 Description Languages and Their Interpretations

Our approach to estimation centers on the design of formal languages (e.g.,
Hopcroft and Ullman [1969, 1979]) for describing structures and observations.
To construct an estimator, the system designer must specify a formal grammar
which generates a set of sentences, a language. The grammar also determines a
structural analysis of each sentence into nested components, clauses, which in turn
are composed of subclauses, etc. This set of structured sentences plays four critical

roles in the overall process.

(1) Sentences generated by the grammar are interpreted as descrip-
tions of structures and of inputs. There must exist functions which
uniquely determine the structure and the input described by each
sentence of the language. This will be specified hierarchically, by
defining a function which interprets clauses in terms of the inter-
pretation of their subclauses and their manner of combination. In
this we follow Frege’s principle of compositionality, put forth as a
principle of how natural language is interpreted.

(2) Sentences of the language contain information which can be formally
measured. The information measure is also specified hierarchically,
so that the information in a clause is a function of the information
in the subclauses.

(3) Sentences of the language may be similar or dissimilar according to
a netghborhood relation which is true of pairs of sentences that are
sufficiently similar. These neighborhood relations can be defined in
terms of the grammatical structure of sentences

(4) Sentences of the language are strings of symbols and may be easily
manipulated by a computer executing an estimation algorithm.

We can not give a “cookbook” method for constructing a formal language meeting
these needs for any particular application. We do not give a specific theory so much
as a theory schema. Certain general properties seem natural for all domains, and
have been incorporated into our presentation, while the particular details of the

description language will vary from application to application. Out of a range
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of formal language options, we have selected phrase structured grammars, first
formalized by Chomsky [1956], as the core of our framework.

Under the general heading of Syntactic Pattern Recognition (e.g., Fu [1982]),
this class of languages has been used for a very wide range of structural domains,
including bubble-chamber particle trace analysis, chromosome recognition, and
fingerprint identification. Because phrase structured grammars are almost ide-
ally suitable for the formalization of many diverse applications, we do not feel
overly restricfive in focusing our attention on this one class of grammar. There is
enormous flexibility within this class to tailor a grammar to a problem domain.

In principle, any one-to-one mapping between a set of structures and a set
of strings provides the basis of a description formalism, but almost all such map-
pings will have very poor properties for estimation. We must restrict ourselves to
mappings which are “natural” for the estimation purpose. This is not a definable
concept, as it is relative to our purposes and understanding of the set of structures
in question. One general characteristic we consider essential to natural descrip-
tions is a structural homomorphism between the constructs of the language and
the elements of the structure.

Our general expectation is that the types of formal representations which a
computer scientist would “naturally” propose as data structures for describing
models in the class of interest, and input data relative to the models, will usu-
ally have the appropriate properties for syntactic estimation. We can proceed
then by exposing the principles developed in the training of a computer scien-
tist, which result in “good” data structures. Much has been written in the field

of Artificial Intelligence concerning representations. We require, as a minimum,
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that the language should be defined with constructs that allow naming of rele-
vant substructures, and make combination and alternatives explicit. Statements
are built compositionally, combining clauses which describe the substructures that
combine to form larger structures. When alternative substructures are permitted
in a structural context, the grammar should allow alternative clauses in a parallel
syntactic context. In addition, definition clauses may allow relevant items or sub-
structures of interest to be described once and named, then referred to elsewhere
in the description as required. Various types of clauses may concatenate to form
larger clauses, while maintaining an homomorphism between the phrase structure
of the statement, and the hierarchical structure of the objects being described.

In describing complex structures, there may be several intertwined structures
around which to organize a description. For example, to describe possible states of
an internal combustion engine, for the purpose of estimating a diagnosis of a fault,
it is not immediately clear how to organize the relatedrdescriptions of mechanical,
electrical and fluid systems. Here, the general context of the estimator will have
to be considered to determine the appropriate organization.

Phrase structured grammars can meet the criteria above. They have been
formalized in various ways, and we briefly outline one method of definition. Rig-
orous definitions can be found in the references cited above. To illustrate the
terms, we give an example which is used later in Chapter 4. Formally, a sentence
of a language is a string, or finite sequence, of terminal symbols, e.g. characters.
The accepted sequences of symbols are specified through an intermediary set of
nonterminal symbols, which correspond to the types of phrases or clauses in the
grammar. The grammar specifies a production rule for each type of nontermiﬁal

symbol defining how it is constructed in terms of terminal and/or nonterminal
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symbols. The grammar itself can be formalized as a four-tuple consisting of the
nonterminal symbols, the terminal symbols, the production rules, and a selected
nonterminal, designated as the root symbol. The root symbol, usually “S”, defines
the clause type of a sentence. The terminals and nonterminals must be disjoint.

There are many options for specifying the production rules. We restrict our-
selves here to two kinds of primitive rules, and later define two other types of rules
as abbreviations for sets of primitive rules. The first rule permits concatenation
of clauses. We write

A—-BCD

to indicate that a clause of type A is formed by conjoining clauses of types B, C,
and D in that order. A must be a noptermina.l symbol, while the right hand side
of the rule may contain any number and combination of terminal or nonterminal
symbols. The second form of primitive rule indicates alternative forms of a clause.

We write

A— B|C|D

to indicate that a clause of type A may consist of any one of the clause types
on the right hand side. Again, A must be nonterminal, and the right side of the
rule may contain any number of terminals and/or nonterminals. We require each
nonterminal to appear on the left side of exactly one production rule.

Finally, a derivation of a nonterminal symbol, A, may be defined as a sequence
of string rewritings starting with 4. In each rewriting, a nonte: minal symbol is
replaced according to the production rule in which it appears on the left. If the
rule is a concatenation rule, A is replacéd with the complete sequence of symbols

on the right side of the rule. If the rule is an alternation rule, 4 is replaced with

Chapter 3 Page 51



any one of the symbols on the right. A derivation is complete if it terminates in
a string of terminal symbols. We are only concerned with complete derivations
below. The final rewriting of a complete derivation of the root node is a sentence,
and the language generated by a grammar is the set of all such sentences.

We now extend the set of allowable productions with two useful constructions
which combine concatenation and alternation. By defining these constructions as
abbreviations, we can make use of their convenient forms without having to explic-
itly complicate the definitions of information in Section 3.2. The first abbreviation

is to express alternative concatenations such as

A— BCD | E|FGHI

which is understood as an abbreviation for a set of productions with certain non-

terminal symbols implied:
A— Al |A2|A3

Al—)BCD
Az—)E

Secondly, we allow a superstar notation to indicate an especially common alterna-
tive concatenation in which a clause type may be repeated any number of times,

including zero. The production

A— B*

can be interpreted as an abbreviation for the infinite sequence of rules abbreviated
by

A— )| B|BB|BBB|BBBB|...

where A indicates the null sequence with length zero.
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As an example, we define a grammar for describing directed labeled graphs,
such as those used in Figure 1.1, to represent finite state machines. We assume the
notions node, arc, label, source and sink for such graphs are already defined. This
particular grammar will be restricted to the set of directed, labeled graphs, G, with
a maximum of N nodes, and labels in the four-character alphabet {4, B,C,D}.
The root node of this grammar will be the nonterminal symbol Graph. The
first production specifies that Graph may be rewritten as a sequence of clauses
of type Arc, which describe the arcs of a gfaph. Our grammar will describe an
arc with a clause describing its source, sink, and label. The s;)urce and sink are

nodes of the graph, which we describe with numbers.

Graph — Arc*
Arc — Source Sink Label
Source — Node
Sink — Node
Node — 1[2|8|...|N
Label — A|B|C|D

For any derivation, there is a corresponding derivation tree in which the nodes
are labeled with symbols to indicate the rewritings ‘Which occur in the generation
of a sentence. Each node and its daughters in the tree correspond to an application
of a rewriting rule in the obvious way. The root of the tree is labeled with the root
nonterminal symbol, and the leaves of the tree are labeled with terminal symbols.

For example, the grammar above generates the sentence
12A21B22C

with the derivation tree shown in Figure 3.1. The figure also indicates pictorially

a directed labeled graph which is our interpretation of this sentence. Note that
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Figure 3.1 Derivation Tree, and Interpretation as a Directed Labeled Graph,
of the Sentence 12A21B22C.

in the derivation tree we have included the nonterminal Graph; implicit in the
superstar notation. (This grammar is too specific in that it restricts the number
of nodes to N. This will be modified in Chapter 4.)

The nontermina.l symbols of the above grammar were selected tendentiously,
to convey the interpretation of each clause as a description of a component cf a
directed labeled graph. This can be formalized for this example in the obvious
way. A sentence, S, is an interpretation of va directed labeled graph, G € G, iff
there exists a one-to-one function, f, from the nodes of the graph into the set
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of Node symbols, {1,2,...,N}, and a one-to-one relation between the arcs of G
and the Arc clauses, such that the terminal symbols [N; N, L] constitute an Arc
clause corresponding to an arc in G labeled L from a node n; to a node n, with
Ny = f(n;) and N, = f(ns).

This grammar contains no examples of recursion—no node can expand in a
way which includes another node of the same type—so the maximum depth of
the tree is therefore bounded. For other classes of structures, although none of
the case studies in this thesis, recursive grammars will be appropriate. Examples
would include estimation of mathematical formulas, algorithms, fractal structures,
and architectural structures.

This interpretation relation is many-to-one from the language to the set of
directed labeled graphs. Every sentence is a description of only one graph, but
there are many sentences to describe each graph. For a graph with V vertices
and E directed edges, there are generally (f,’)V!E! different descriptions, as there
are (1‘\,’) sets of numbers which can be permuted V! ways in identifying the nodes
of G with terminals in {1,2,...,N}, and for each numbering, the Arc clauses
can be arranged in E! permutations. (These Arc permutations will not all be
distinct however in cases where the graph contains more than one arc with the
same source, sink and label.) For example, the graph of Figure 3.1 can also be
described in this grammar with the sentence 21B12422C in which the Arc clauses
have been permuted, or with the sentence 48484B88C in which a different node
numbering function is employed.

This many-to-one relation is typical for our applications. There are gener-

ally many ways to describe a given structure unless we specifically constrain the
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grammar not to allow multiple descriptions. This is a standard problem when de-
scribing sets with sequences, because the elements of a set are not ordered, while
the elements of a sequence are. For reasons concerning the information measure in
the following section, we will often want to eliminate multiple descriptions and se-
cure a one-to-one relation between sentences and interpretations. This will require
the introduction of some dependencies between various clauses of a sentence, and
reduce the independence assumed above for the rewriting of nonterminal nodes.
In principle, there are three ways this can be achieved: in the syntax, the inter-
pretation, or the information measure. |

Synta,ctically, we can eliminate multiple descriptions with constraints which
choose a preferred description over others. For example, wé can reduce the E!
permutations of the Arc clauses to a single acceptable order if we constrain the
sentences of the grammar to those in which these clauses are in a specified lex-
icographic order. Syntactic constraints with this effect can be added as distinct
component of the grammar, they can be buried in a complex set of production
rules of the above type which obscﬁre their effect, or they can be implemented
with context sensitive production rules which specify allowable contexts for each
production.

Most multiple descriptions could also be eliminated by modifying the inter-
pretation to make the alternative sentences be descriptions of other objects. For
example, we can define all sentences which do not meet the lexicographic constraint
on Arc ordering to be interpretations of the null graph. This results in every graph
having a unique description except the null graph, which has infinitely many de-
scriptions. We will avoid this option, as it requires an unintuitive interpretation

rule for arc combination. The third method of dealing with multiple descriptions
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does not eliminate them from the grammar, but adjusts the information measure
so that sentences are measured as if descriptions were unique. This is generally
the clearest solution to the problem, and is discussed in Section 3.2.

A better solution might be to define two types of combination rules, corre-
sponding to the ordered and unordered properties of sequences and sets. Then
two different information rules could apply. We do not formalize this here.

A more fundamental problem of multiple description is that there are many
different gfammars and interpretations which might be proposed for describing
structures in any application. We could, for example, describe a graph with a
sentence composed of clauses which describe the nodes of the graph, rather than
the arcs. Each node term of the description could list the identifying number for
the node, and contain a subclause describing the arcs which have the node as
source (or sink). These subclauses would describe the label and sink (or source,
respectively) of the arc. Another organization for the grammar and interpretation
could be centered on labels.

For general applications concerning graphs, the principle of structural homo-
morphism suggests arcs, nodes, or labels be the principle clause type, depending
on the interpretation. In more specific contexts, e.g., cyclic or complete graphs,
other forms of description will be more appropriate, and a language would have
to be proposed which is organized in a manner relevant to the purpose.

We will require one further property from our formal languages. For sentences
to describe structures, it must be possible to reconstruct the structure of a unique
derivation tree for any given sentence. This is required because we will define the

information in a sentence in terms of its derivation, and we want the definition
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to be unique. A grammar with this property for every sentence in its language is
termed unambiguous.

The graph grammar above is unambiguous provided we clarify that numbers
and labels are always simple terminal elements. For example, we do not use a
sequence of terminal digits to represent a number which is written with several
digits in decimal representation. If we were to do this, the language would be
ambiguous v&;herever two such numbers appeared in a row, e.g., 12 and 3 versus
1 and 23. Without an intervening delimiter there is no way to determine the
interface between the clauses. Instead, we allow N distinct characters in the Node
term above. For a similar grammar which allows an unbounded number of Node
terms, the set of terminals may be countably infinite.

The structure grammar described thus far is not sufficient for our purposes.
Sentences of our languages must describe more than structures; they must also
describe the input data to the estimator. The compositional way to describe data
which is interpreted in terms of a model is combinationally, with a two-clause
sentence describing a structure and a realization. The first clause can describe a
structure which is either a model for generating the data or a “structural param-
eter” in such a model. This will be a sentence in a “sublanguage” for describing
obje<-:ts in the structure space. The second clause then must describe whatever
other information is required to specify the input data given the model. The in-
terpretation function gives a problem-specific definition of how this information
is combined with the structure to identify the input data. The exact nature of
these two components and their relation will vary with the application, and there
is a very wide range of possibilities here. The general guidéline for the reé,lization

clause is that it specifies one observation among the full set of variations which
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are compatible with the structure. The examples in the next four chapters are the
best guide we can give for indicating of the flexibility of this combination.

The root node of our data-describing grammars will be termed S (Z,6), indi-
cating that the grammar must be able to generate sentences which jointly describe
any input, Z with various structures §. This node can be rewritten as a combi-
‘na.tion of two clauses which describe a structure, 0, and its realization, which
specifies Z given . This second clause we denote S (Z|6), and the root production
is

5(Z,6) — 5(6) S(z9)
S(0) then expands as the root node of the sublanguage for describing structures.

In the FSM example, this will be
S(6) — Graph

using a graph grammar based on the one above. The realization of a graph as

observation data is described with a Route term in Chapter 4.
S(Z|0) — Route

In other applications, such as the cluster analysis example in Chapter 5, we will
not be strict about the separation between the description of the model and the
realization at the root node. The clauses which would assemble into the two
primary clauses above can be interleaved and distrituted throughout a sentence
as long as the grammar and interpretation aliows the structure and data to be
determined uniquely.

We term the interpretation fﬁnction from sentences to data, fz. The re-

quirement that fz exists ensures that the “noise” in the input is fully and exactly
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described in S(z,6). This is a major difference from the descriptions typical of syn-
tactic pattern recognition. This requirement will result in an information penalty
if a great deal of “noise” must be invoked in order to describe the input in terms
of . We will often be interested in just the subset of the language which describes

the given input data, and define for any input, z,
L. = {§|fz(S) = z}

Any instance of an MI estimation problem, as defined by the input, z, will engender
an instance of a combinatorial optimization problem in the space L,. We also have
occasions to refer to the function fs(S), which we define as interpreting just the
structural clause, S(f), of a sentence, to give an element of the structure space.

To summarize, phrase-structured grammars, perhaps with context-sensitive
dependencies, are the natural formal language model for structure estimation. The
particular grammars chosen should be unambiguous, and allow a homomorphic
structural relation between the language and the structure space. The adaptabil-
ity of this class of grammar allows languages to be designed for virtually any ap-
plication we can describe in natural laqguaée. However, there is a certain amount
of “art” in the generation of an appropriate grammar for any particular estimation
problem, and the choice is never unique.

A conceptual limitation of the method is that a counta.Ble description language
requires that there be a countable structure space. Thus a real-valued parameter
in a structure can not be estimated to arbitrary precision, and real-valued numbers
can not;. be used as input data unless they are discretized to a countable number of
possibilities. This is not a practical limitation however, as the actual optimization
of the information measure will necessarily be performed on a computer which is

also limited by the countability constraints.
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3.2 Information Measures and the MI Estimator

In this section, we consider the properties of the information measure which
is defined on the sentences of the language, and define the Minimum Information
Criterion for estimation. Although information measures for languages generated
by PSG’s are easily and naturally defined, we have not been able to find a reference
prlicitly using this notion. (This is probably because the asymptotic properties
of the measures, as sentence length increases, do not have the useful entropic
properties of the corresponding notion for Markov sources.) . We will therefore
develop a notion of information from those developed for other contexts. Because
there is no universal notion of information, appropriate information measures,
like appropriate languages, are not unique. We wish to allow information to be
defined appropriately for each application, in accord with Bateson’s rather general
definition, that information is “a difference that makes a difference” [1972, p. 315].
Intuitively, and in various formal incarnations, the notion of information satisfies
two properties, additivity and comparability, in ways to be discussed below. We
wish to relate these properties to the two type of primitive production rules allowed
in our grammars.

Kolmogorov [1965] discusses and contrasts three types of formal information

Ineasures:
(1) Combinatorial, based only on the number of possivilities;
(2) Entropic, based on the probabilities of the different outcomes; and

(3) Algorithmic, based on the computational complexity of each out-
come.

We will allow these three types of measures to be combined in defining information

measures for the strings of a language. No specific information measure is forced
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by the techniques. The system designer has the freedom to select appropriate
information measures in much the way that classical estimation theory allows one
to specify relevant probability measures.

There are at Iea.stb two other formal notions of information. Fisher [1925]
introduced a notion of statistical snformation as the inverse of the cova.xjiance of
aﬁ estimate about a true parameter. It can be related to the entropic measure, as
in Kullback [1959]. A notion of useful informatibn in a string, relative to a class
of models, is defined by Rissanen [1986] as the amount by which a string can be
compressed into a ‘shorter string using models in the class. We will not pursue
these two notions.

The combinatorial notion of information originates with Hartley [1928], and
is defined for communication contexts in which one of a number of outcomes may
occur. If there are N possible outcomes, the combinatorial information content of
an outcome is log N, and is independent of which outcome occurs. The rationale
given for a logarithmic measure is that it satisfies the intuitive notion of additivity -
when different possibilities combine independently in the construction of more
complex possibilities. Furthermore, the monotonicity of the logarithm gives it a
comparative property.

The entropic notion of information was developed independently by Shan-
non [1948] and Wiener [1948]. It is suitable for situations in which a probability
measure is defined over a space of possible outcomes. The self-information in the
occurrence of an event X with probability P(X) is defined as —log P(X). This
is now a function of the event, and is again justified on grounds of additivity and
comparability. This notion of information has been developed into an elaborate

system of concepts and relationships; see e.g., Gallager [1968]. In the case of
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a finite number of equiprobable possibilities, the entropic notion reduces to the
combinatorial notion.

The algorithmic notion of information is philosophically the closest of these
three notions to our requirements. It was proposed independently by Solomonoff
[1964], Kolmogorov [1965], and Chaitin [1966]. A generally acceptable set of defi-
nitions has not yet crystallized, and various approaches are given in Kolmogorov
[1968], Fine [1973], Chaitin [1977], and Solomonoff [1978]. The central idea is to
measure information of individual sentences of a language in terms of the lengths
of Universal Turing Machine (UTM) programs which can generate the sentence.
Information in this sense is a function not only of the particular item whose in-
formation is measured, but also of the particular UTM. A UTM provides an in-
terpretation for representing strings of a language with other strings which are
interpreted as programs. There is no unique UTM however, so algorithmic infor-
mation is relative to what amounts to a particular language and interpretation,
rather than a probability distribution.

Algorithmic information can be shown not to be computable, so it is not
likely to be of great use in specific estimation problems. However, in principle
it could be incorporated into our estimation framework if it were provided by an
oracle as a table of values. Lacking such oracles, we restrict ourselves mainly
to combinatorial and entropic information measures in defining information on
sentences. The relation between algorithmic information and MI estimation is
discussed further in Section 8.2.7.

Our definition of an information measure requires that it bé a function from

a language to the real numbers, defined recursively on the sentences of a language.
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Following the compositional form of sentences and interpretations, we require in-
formation to be defined on clauses in terms of the information in their constituents
and the type of production rule used to form the clause. Corresponding to the
two primitive types of production rules, combinational and alternative, there are
two forms for combining information when a clause is constructed, an additive rule
and a comparative rule. For rules which concatenate subclauses, the information

in the clause is the sum of the information in the subclauses.
I(A) =I(B)+I(C)+ ...+ I(D) whenever A — BC...D

Note that for this to agree with our intuitive notion of information, it assumes a
notion of independence between the combined clauses.

The second information rule applies when an alternative production rule gen-
erates a clause. We wish here to allow comparisons among the different outcomes
allowed by the rule. As certain alternatives are judged to be more complex, more
unlikely, or more random, than others, we wish to measure their description as

containing more information. In general we will allow the rule
A— A1|A2[...|An

with n alternatives, to be associated with a table of n arbitrary constants, {I;},
determining the information content associated with each of the alternatives, A;.
To this we add the information in the particular subclause chosen, to determine

the information in the clause A.
I(A) = I(A;) + I when A is rewritven as A;

With a combinatorial notion of information, I; = logn. For an entropic

notion, probabilities P(A;) must be given for the n alternatives, and I; =
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—log P(A;). These two measures induce a form of normalization for the infor-
mation measure—the different values may not all be chosen independently. The
analogous property does not hold for certain definitions of algorithmic informa-
tion, and we do not require it here as a condition on the I; values. However, we
point out that one must be careful if choosing arbitrary values of I; to balance the
different types of terms reasonably, or a single term might dominate the expression
when they are added. For this reason, we stick close to combinatorial and entropic
measures below, but are willing to approximate them when convenient.

Finally, to complete a recursive definition of information, we need a base clause
defining the information in the terminal symbols of the language. The appropriate

value here is zero!
I(A)=0 when A is a terminal symbol

This may appear surprising at first, but given that we have defined information
in terms of which rewriting rules apply, the particular terminal symbols in the
sentence are redundant. They add no information.

Note that the additive information law has the effect of preferring nonredun-
dant models, and models with “independent” clauses. For example, if a clause is
formed by repeating a subclause verbatim a number of times, the intuitive notion
of information does not multiply, but the additive rule has the effect of making
the redundant statement more costly. If the interpretation of the language is such
that the two clauses describe the same input, the redundant models can never be
selected by the MI criterion.

Entropic measures will be used frequently in the following chapters. They

have the virtue of allowing asymptotic consistency of the estimators to be shown
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in certain applications in which MI estimators can be designed to operate on larger
and larger inputs. They also provide a way to specify nonzero probabilities to a
countably infinite set of alternatives. If, for example, the term A is given the
production rule

A— AIIAZIA3| e

the combinatorial approach is not available, as the logarithm df the number of
possibilities is infinite. But by selecting a probability distribution over the positive
integers, we can let I; = —log, P(i). Rissanen [1983], based on universal binary
codes developed by Elias [1975], suggests a particular distribution for positive

integers in which

P(5) = 2~ (Io8" i+log; ©)
where ¢ ~ 2.865. Rissanen defines log* (nonstandardly) as
log* i = log, ¢ + log, log, 7 + log, log, log, & + . ..
summing all the positive terms. From this we define
I*(7) =log* ¢+ log, c
which is reasonably approximated to give
I (?) = log, ct

Note that it has the effect of making smaller integers less costly to incorporate in a
description than larger ones. Elias and Rissanen demonstrate that this distribution
has a certain asymptotic universality with respect to this property, and Rissanen

makes extensive use of it, as he codes all structures as integers.
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This measure can be used for the superstar abbreviation which summarizes
an infinite number of alternatives. Suppose the term A expands into n clauses of

type B in the application of the rule
A— B*

We can measure

I(A) = I*(n) + Z I(B;)

where the I(B;) terms depend on how each of the B clauses expand. (This is not
exactly correct, as I* was deﬁﬂed above for positive integers, and we are using it
here for nonnegative integers. Rather than introduce separate notation, we can
read I*(n+1) for I*(n) in these cases.) Because the I* term assumes a probability
distribution which decreases monotonically with n, this measure will often be
inappropriate. In some situations, we may prefer to use an entropic measure
based on a probability distribution which peaks at some particular number of B’s.
For infinite alternatives, another form of information measure is uniform up
to some bound which depends on each sentence. As each sentence is finite, there
is 2 maximum value, N, for the values of n over the set of expansions of 4 in any
given sentence. A combinatorial measure of information,
n
In(4) =log, N + Y _ I(B;)

i=1
is nétural if we have no preferences within this set. However, this is not a recur-
sively specifiable information rule, as I(4) for a given term depends on N, which
is a property of the whole sentence, not just this clause. This is easily remedied

with a context-sensitive rule
N
——
A—-B|BB|BBB|...| B...B
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which requires that N be specified elsewhere in the sentence with a rule
N —1)2]3]...

The net effect of this is to add I*(N) to the total information just once, and allow
a combinatorial (or other) measure over a finite set of alternatives, each time 4
appears.

In situations where our grammar allows multiple descriptiéns of the same
interpretation, we may want to modify the definition of an information measure.
For example, if we wish to use a combinatorial measure of the information in a
term A, but we know that our language allows k equivalent descriptions of each
interpretation, rather than add constraints to the grammar we may adjust I (4)
by subtracting log k. This amounts to a combinatorial notion of the number of
interpretations, rather than the number of alternative clauses. Formally, this is
carried out by allowing a third type of rule, defining I (A) as the information in
the set, rather than the sequence, of constituents of A. It can be viewed as an
abbreviation for a different grammar which describes structures in a unique way.

Finally, we present the minimum information estimator. We select the sen-
tence of minimum information which describes the input data, and extract the

structure it uses as the estimate.

8(2) = fo(argminI(s)))
s€Lz

Because our first production rule is

S(2,6) — S(6) S(2|6)
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the additive information rule for concatenation rules automatically rephrases the

MI estimator as

0(2) = srgminl1(5(6) + 1(5(2)0)]

whe_re it is understood that the two clauses in this expression are part of the same
sentence, S(Z,0). This gives the essential tradeoff: the first term emphasizes
simple structures, while the second term encourages good fit.

In summary, we allow a,v very general class of measures as information mea-
sures. They are defined recursively on derivation trees and incorporate additive
and comparative notions. A large information content can correspond to notions
of complexity, improbability, and/or randomness. Because we do not require in-
formation to have the normalization properties of an entropic measure, we gain a
very wide class of estimators. When information is measured as length, as is nat-
ural with prefix-free binary codes, the MI estimate seeks out the structure coded
in the shortest description of the data. Rissanen develops this special case of MI
estimation, emphasizing the coding point of view. We have recommended a, clear
separation between descriptive formalisms and information measures for reasons

discussed in Section 2.11.

3.3 Optimization

Given a language, an information measure, and an input, the problem of
how to find the particular statement in the description ‘language with minimum
information now looms before us. In principle, the problem can be solved as long
as the interpretatioﬁ function on sentences iis computable, and the language is

recursively enumerable in order of increasing information. The language can be
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searched in order of simplest to most complex until the first statement is found
which describes the input. An upper bound on the required computation time
can be found in applications which allow at least one description of any input
to be easily determined. For practical purposes however, enumeration is not a
reasonable option as the number of sentences of a given measure generally grows
exponentially with the size.

In the types of applications we have considered, this pattern is typical, and we
can expect the optimization problem to be NP-hard (see e.g., Garey and Johnson
[1979]). Therefore we will not seek an algorithm which is guaranteed to exactly
optimize the MI criterion, in any but the most trivial problems. Instead, we
aim for the more modest goal of finding an algorithm which will find reasonable'
solutions in a rea.sona.blé amount of time. The full range of heuristic techniques for
finding approximate solutions to NP-hard optimization problems should therefore |
be considered.

A widely applied and often successful method is the local search technique.
A set of transformations for incrementally improving an estimate are repeatedly
applied until a local optimum is reached from which none of the transformations
result in improvement. As it is straightforward to compare the information mea-
sure of two statements of the input once they are specified, local search techniques
within Lz are appropriate for consideration. These techniques require that one
prespecify a set of transformations, {T:}, which when given a statement in Lz,
“generate” alternat= statements about Z in L.

In addition, given Z, one must be able to form at least one statement in
Lz' from which to begin searching. Such a statement might involve the simplest

allowable structure, and describe Z entirely with the realization clause. At the
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other extreme, it may incorporate a very complex model which can only generate
Z, so that only the simplest realization clause is required.

The algorithm proceeds in general by transforming a candidate sentence, s,
(or the members of a set of candidates) to determine related sentences {T;(s)}. Of
these new statements, one or more for which I(Ti(s)) < I(s) are adopted as new
candidates. In one version of the method, the set of transformations is scanned in
some prespecified sequence until the first is found which results in some information
improvement. In the “greedy” approach, the entire list is scanned and the best
sentence or sentences in terms of the information measure are adopted as ﬁew
candidates. The procedure terminates at a local minimum of I with respect to
the transformations.

There are three general difficulties with local search techniques. Because
this is a “heuristic® approach, we can not expect that the global optimum will
be found, and the quality of the local optimum relative to the global optinum
can not usually be determined. Secondly, it may be quite difficult to decide on
a set of transformations to implement; usually heuristic arguments are the only
guide. Thirdly, these algorithms are quite difficult to analyze before they are
implemented, so it is typical that the set of transformations must be adjusted
after initial trials. Nevertheless, the algorithm is generally easy to implement, and
in many situations, the local optimum is satisfactory. In Aa.ddition, local search
techniques have the adva.nta.ge that they easily accomodate arbitrary constraints
in the search.

As an aid in selecting a set of local transformations, we can suggest that
the grammar for describing structures be used as a guide. Syntactic operations

which insert or delete clauses, or replace clauses with alternatives, are suggested
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by direct examination of the production rules. More complex transformations
may merge, split, or variously exchange parts of different clauses. If descriptions
are structurally homomorphic to their interpretations, then these syntactic oper-
ations will correspond with various structural changes in the estimated structure.
Associated with changes in 5() must be related changes in S (Z|6) which insure
that T;(s) € Lz. Conversely, if changes are made in the S (Z16) clause, S(8) will
require compensation. The examples in following chapters operate directly on the
structure clause, and then modify the realization clause appropriately.

In general the syntax will suggest an enormous number of possible transfor-
mations, of which only a small fraction can be implemented. One formal condition
is that the transformations should be complete in the sense that the entire space
can be reached from the starting point. There is little else that can be sajd in
general however, and at this point an understanding of the problem domain must
be invoked in order to select effective transformations.

The above methods, because of the syntactic nature of the search space, can

’be seen as special cases of genetic algorithms [Holland 1975, Davis 1985]. The

genetic approach treats descriptions of solutions as analogous to chromosomes,
and generates new candidate solutions from existing candidates via mutations,
crossovers, and inversions, invoking the metaphor of evolution through adapta-
tion. While the transformations we have implemented transform a single sentence
into another sentence (i.e., mutation), the genetic approach also suggests transfor-
mations in which parts of two distinct sentences are combined (i.e., crossover) to
give “offspring” which may combine favorable portions of the two “parents”. Al-

though we have not employed transformations of this class, they may be valuable
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in other applications, as they have been observed to allow escapes from certain
types of local optima.

Given that approximate methods are being employed in the optimization,
it is tempting to inject approximations at another level as well. Rather than
approximately minimize the exact MI criterion, it is usually much easier to direct
the search with an approximation to the criterion which drops various small order
terms. The logarithmic information terms created by superstars in production
rules are tempting candidates when they appear in addition to a linear term. The
 validity of these approximations is arguable in each example, but no serious harm
appears to result from the approximations made in the various case studies.

In the case studies of Chapters 4-7, greedy local search a.lgoritfuns are used to
optimize the MI criterion, with good success. Other optimization techniques will
certainly be appropriate for other problems. The particular nature of the relations
between statements, inputs, and interpretations will determine what is appropriate
for each application. Branch and bound algorithms, stochastic relaxation, and
dynamic programming techniques, for example, may all be suitable in certain

cases.

3.4 Special Cases

It is insightful to relate this estimation technique to more traditional estima-
tion techniques. Because general description systems and information measures
are extremely flexible tools, it is not surprising that many other types of estima-
tion criteria can be phrased as MI criteria. In this section, we point out how the
various structure estimation techniques of Chapter 2 are special cases of MI esti-

mators. In some cases a fairly contrived language and unnormalized information
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measure is required, however. In framing these methods into the terms of the
complexity and fit measures of MI estimation, we will see that the methods fall

into the following trichotomy:

1. Maximum Likelihood estimation and Popper’s Falsifiability criterion
focus on fit between models and data, while ignoring complexity.

2. Ockham’s Razor, the method of choosing a substructure of a most
complex structure, the method of choosing the simplest model with
error in some tolerance range, and hypothesis rejection, all focus
on choosing the simplest structure in some set of compatible struc-
tures. Fit is only examined in a qualifying manner, as acceptable or
unacceptable.

3. MAP estimation, the “knee” of the curve technique and Minimum
Description Length estimation make a quantified balance between
simplicity and fit.

As Rissanen [1978, 1983] points out, a Maximum Likelihood (ML) estima-
tor is the special case of an MI estimator in which the information measure on
the fit is entropic, based on a “transition mechanism” with a conditional prob-
ability P(Z|6). The information measure on structure descriptions is ignored or

treated as constant. Letting
1(5(2160)) = - log(P(2[0))
and
I(s@)=c

the MI estimator reduces to the ML equation:

8(2) = argmax P(Z|6)
6
Popper’s falsifiability criterion can also be formulated as an MI estimate, at

least in the case where the number of observations compatible with each structure
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is finite. This criterion can be interpreted as choosing the structure, out of those
compatible with the data, which allows the smallest number of other possible
observations. It ignores the complexity of the structure. This can be formalized
as a variant of the ML criterion in which a combinatorial measure of information
is used to measure the description of the given input out of the set of possible

inputs. If there are Ny possible observations compatible with 0, and we measure

_ | log Ng, if Z,0 compatible
1(5(216)) = {oo, otherwise

and I(¢) = C, then the MI criterion reduces to

a

6(Z) = argmin Ny
6

The effect of the oo term is just to restrict the set of structures to those compatible
with the data. We include it here for completeness, but its effect is more likely to
appear in the grammar and interpretation functions.

Ockham’s Razor is a dual to the ML estimator. It selects the simplest struc-
ture compatible with the data, by some interpretation of compatibility, and ignores

fit. To restrict the estimation to compatible structures, we define

_JC, if0,Z compatible;
I(s(zl6)) = {oo, otherwise

Simplicity of structures is quantified as the minimum information required in their

description. The MI criterion then reduces to

6(z2) = arg;ninI(S’(ﬂ))

where the minimization takes place over only those structures compatible with Z.
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The method of selecting a substructure out of a largest allowable structure
can also be seen as choosing the simplest structure compatible with the data.
Recall that this is the method of using traditional estimation techniques within
the parameter space of a complex structure, and eliminating from the estimate
those portions of the structure with coefficients “sufficiently close” to zero. This
can be interpreted as a variant of the Ockham’s Razor approach. Complexity
is being measured as the number of components in the estimated structure. A
structure is considered compatible with the data if it contains at least all the
components with coefficients not sufficiently close to zero.

For example, the following method is often applied to the problem of esti-
mating the order, 6, of a polynomial which fits a data vector, Z. Given aﬁ upper
bound, N, on the order, coefficients, co, ¢1,. .., cn are estimated using least squares
techniques. A tolerance, ¢, is given, and the lowest order, 8, is chosen for which
¢; < € for all 7 in the range # + 1 < ¢ < N. This is equivalent to an MI estimate

of & where I(S(6)) = 6 and

__ J oo, ife; > eforsomei >0
I(s(z]6)) = {C, otherwise.

The method of choosing the simplest structure with an acceptable fit is an-
other variant on this method. ‘Here I(S(Z|0)) is again quantified with zero or
infinity, but the criterion of compatibility depends on meaﬁ squared error, or
some other me#sure of fit. Any complexity measure on § may be specified, and
the effect of the MI estimate is to choose the simplest structure with an acceptable
fit.

Hypothesis rejection is yet another variant on the method of choosing the

simplest structure with an acceptable fit. The fit here is defined as acceptable
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when the test statistic falls outside of the critical range, and measured as infinite
when in the critical region. The null hypothesis is measured as simpler than
other hypotheses, and the MI principle reduces to Fisher’s hypothesis rejection
technique.

Rissanen [1978, 1983] points out the relation between MI estimators and
Bayesian estimators. If an entropic notion of information can be used to de-
fine I(S(0)) and I(S(Z6)), then the MI estimator becomes the logarithmic form
of a MAP estimator.

6(2) = exgmx llog P(6) + log P(210)]

By identifying the corresponding components, we see that the MI estimator is
often isomorphic to a MAP estimator in which an a prior: distribution over the
space M is defined by the grammar for S(6).

In many applications Bayesian estimation would be a natural tool except
that we can find no grounds for choosing any particular a prior: distribution in
a complex hierarchically-structured space in which different models have vastly
differing numbers of degrees of freedom. The formal language technique suggests
that by describing the space syntactically we can induce an implicit distribution
by normalizing

P(6) = —log I(5(9))

Selecting concise grammatical structures to describe the types of model structures
which the system designer expects to find corresponds to reducing their a pri-
ori probabilities. This strict Bayesian interpretation is not always so natural or
insightful however. In particular, it is not generally possible to construct a prob-
ability distribution from a general information measure, unless )P 2-1(9) is finite

so it can be normalized.
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The “knee of the curve” technique selects a structure according to a specified
slope in the error vs. complexity curve. This can be effected by weighting the
I(S(Z|6)) and I(S(6)) terms with « and f respectively. Minimizing the weighted
~sum then is equivalent to choosing the slope —%.

Minimum Description Length estimation, as formulated by Rissanen, is an-
other form of MI estimation which balances between simplicity and fit in a quan-
tified manner. As discuésed in Section 1.3, we have generalized the method by fo-
cusing on flexible formal languages, distinct from information measures. Another
difference is that we do not require the information measures to be normalizable.

Maximum Entropy estimation is shown to be a special case of MI estimation,
at least for the case of a finite sample space, in Rissanen [1983] and in Feder [1986].

In summary, the various approaches for estimating structure which have ap-
peared in the literature all imply simplicity, fit, or both, as goals. Expressly stating
the balance between the terms implicit in these techniques exposes their relations,

and their status as special cases of a general MI estimator.
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Chapter 4

FINITE STATE MACHINES AND MARKOV SOURCES

In this chapter we consider the problems of estimating the structure of a
Finite State Machine (FSM) and a Markov Source (MS). We also consider a prob-
lem, motivated by considerations in the Appendix, of estimating a set of FSMs
with interleaved outputs. In Section 4.1, we examine existing methods for solving
these and similar FSM and MS problems. With this background, the description-
based MI technique is applied to the FSM problem in Section 4.2. Languages
for describing FSMs are presented along with the related information measures,
and methods for optimizing the MI criteria are discussed. It is shown that the
resulting MI estimators have a number of desirable properties. In section 4.3, the
FSM model is extended, with a probabilistic component, to MS models, and a
form of optimality is demonstrated. The multiple FSM problem is presented in
Section 4.4, and the results of a simple simulation are shown.

The basic FSM problem was illustrated in Section. 1.4. The estimator is given
a string (or a set of strings) which is modelled as the output of a grammar. The
estimator must produce a grammar capable of generating the strings. In the form

we consider, there is only “positive evidence”. A more general problem aliows
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“negative evidgnce”—we could be presented with a second set of strings and told
that the estimated grammar may not generate them. In either case, the problem
will be underdetermined. As illustrated in Section 1.4, there are generally an
infinite number of grammars compatible with given observations in any nontrivial
problem. Our approach is to regularize the problem by introducing simplicity and
fitness measures based on descriptions of grammars and descriptions of the input

as realizations of grammars.

4.1 Approaches to Grammatical Inference

The relation between grammars, FSMs, and automata are presented in many
sources, e.g., Kohavi ‘[1970]. The problem of estimating a FSM structure which
generates observations is equivalent to the problem of inferring a regular grammar.
The “decisions” which occur at the branch points of these models are c-onsidered
unknown, but nonprobabilistic. If probability distributions are assigned to apply
independently at the various decision points in the structures, Markov Source
(MS), or stochastic regular grammar estimation problems result. A third method
of modelling the “decisions” is to specify an input string to the model, and have
a rule for making state transitions as a function of the current state and the next
input symbol. This gives rise to problems of automaton tdentification, rather than
grammatical inference. The estimator is then given, or may create, an explicit
control sequence of input symbols along with the observation sequence. Hennie
(1968], Trakhtenbrot [1973], and Rivest [1987] contain discussions of methods for
these problems. We do not consider these controlled FSMs here.
| Another class of problems related to FSM and MS estimation involve estima-

tion within the set of phrase-structured grammars (PSG). This class of grammar
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is demonstrably more powerful than finite-state grammars [Chomsky 1956]. In
Chapter 3, these were presented a.nd used in a nonprobabilistic manner, but if
probability distributions are assigned over the various options in each alternative
production, a stochastic contezt free grammar results which assigns a probability
to each string it generates.

An enormous variety of grammatical inference techniques have been published
for grammars of the above classes. An excellent recent review of this literature is
given by Angluin and Smith [1983]. Earlier reviews can be found in Fu and Booth
[1975], and Biermann and Feldmann [1972]. A large portion of the literature,
beginning with Gold [1967], concerns enumeration methods in which all grammars
in a class are examined in order of increasing complexity to find the simplest which
is compatible with the data. While not computationally tractable, these methods
can at least show certain negative results when the data does not contain enough
information for any algorithm to infer the simplest grammar. From our point of
view, these methods are inadequate in that they ignore the issue of fit, except
in an all or nothing manner. Many other methods are of an ad hoc nature, or
apply only to restricted subsets of the grammars in a class. We will not discuss
these here as we are interested in general techniques which address the issues of
simplicity and fit.

Summarized below are references which make tradeoffs between simplicity and
fit, and can be placed into a MI framework. Their authors do not present them
in terms of a formal descriptive framework for describing data and grammars, but
they can be translated directly into those terms by constructing the authors’ tacit

description languages. These works all concern probabilistic grammars, which
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define probability distributions over the language they generate. The input data
is measured in terms of these distributions to determine entropic measures of fit.

Solomonoff [1964] addresses the general question of induction, and develops
an algorithmic notion of a priors distribution, based on the lengths of Univer-
sal Turing Machine programs which generate binary strings. He applies this to
the problem of extrapolating sample data which can be generated with PSG and
Markov-like models. Although Solomonoff’s general apbroach allows arbitrary
UTMs to generate data, he suggests that for data which can be generated by
these more restrictive modelé, the shortest UTM program typically will only make
use of the mechanisms allowed by these more restrictive models. Accordingly, he
develops coding schémes for describing models of these classes and their outputs.
We will not summarize these examples here, as the codes are somewhat arbitrary
and unenlightening, but we mention them as they were a major influence in our
thinking. Solomonoff’s examples can be interpreted from the MI point of view
as using combinatorial information measures. He also describes a local search
technique for one example.

Cook et al. [1976] propose an information-theoretic cost function which mea-
sures the complexity of a stochastic context-free grammar and the discrepancy
between the input sample and the grammar. This cost function is used to direct
a local search through a set of grammars, starting at a very complex grammar
constructed to have an exact fit to the input data. The local transformations em-
ployed have the effect of introducing new nonterminal symbols, ccmbining rules
into alternative productions, and removing superfluous productions. In every re-
spect, their method fits into the framework pres;ented herg, even to the extent

that they note the complexity measures on grammars can be derived through a
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grammar for describing grammars, as we would recommend. Cook et al. apply
the method to a variety of examples with good results, finding simple grammars
with good fit to the data. Certain grammatical configurations which confuse the
local transformations from finding global minima are also noted. Horning [1969] is
cited by several authors for a similar approach, but is reported to use an exhaustive
search method to search the space of grammars.

Gaines [1976] presents a framework for MS estimation which involves spe-
cific complexity and fitness measures, but does not try to trade off between them.
Rather than propose a combined measure to optimize, he separately measures com-
plexity as number of states, and fit entropically, and then plots the fit/complexity
curve. Admissible models are defined as those which are optimal in fit among those
of a given complexity, or minimal in complexity among those of a given fit. An
algorithm generates the simplest admissible models by enumerating, and testing,
all structures up to a half dozen or so states. “Knee of the curve” techniques are
invoked in several examples to select a particular structure. Gaines applies the
method to examples of MSs and automata.

Van der Mude and Walker [1978] address the same MS problem, but give
a specific method of balancing simplicity and fit. Transition probabilities in the
grammar are restricted to rational values, and complexity is measured as the sum
of the denominators required to express the probabilities in lowest terms. This
gives a measure they term a probability, but which is not normalized. When the
conditional probabilities for transitions 01\1t of a state are uniform for each state,
their complexity measure reduces to a count of the number of arcs in the Markov
source diagram. They develop a branch and bound algorithm, using state-splitting

transformations, to exactly optimize the criterion, and apply it to small examples.
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Rissanen [1983, 1986] uses the MDL criterion for adaptive data compression
purposes. He presents an algorithm to encode an input string into a shorter string,
by making use of redundancies in the strings which can be captured by Markov
models. Rissanen is not directly concerned with the problem of estimating the
structure of a Markov source, but an estimator of this type is embedded within
his data compression algorithms. In keeping with the integer-based approach
outlined in Section 2.11, he assumes an enumeration is given for the set of FSMs.
FSMs are ordered and indexed in any way which gives FSMs with more states
higher indices than an FSM with fewer states. This type of integer description
contrasts strongly with the formal graph language method for describing FSMs
outlined in Section 3.1. There is no structural relation between FSMs and their
representations, and the method leads to peculiar estimates, except asymptotically.
This is not a criticism of Rissanen’s work however, as his goal is asymptotically
optimal data compression, not reasonable structure estimates from small data sets.

Given the integer enumeration of FSMs, the information to describe an FSM
is specified by the I* function of Chapter 3, and the information in a string given
the structure is specified entropically. The FSM which minimizes the total infor-
mation is then a MI estimate of the structure, but one that incorporates a peculiar
description mechanism and complexity metric. In general, we can expect such es-
timates to have little correlation with the structures we might choose given data,
such as in Figures 1.1b and 1.1c of Chapter 1.

Rissanen [1986] allows only a restrictéd class of FSMs, odd from our structure
estimating point of view, though reasonable for adaptive data compression pur-
poses. The structure of an FSM is constrained so that out of each state, exactly

one arc exits for each label from the output alphabet. Furthermore, each of these
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arcs must have a nonzero probability, so that any string of observations may be
generated starting at any given state of the FSM, and the resulting state of the
FSM is uniquely defined. The advantage of this constraint is that from any state,
the next observation may always be described with a finite code length, or amount
of information.

This gives a form of one-step predictor which is used to avoid separately
describing an FSM while describing its output. The first symbol may be coded
arbitrarily. For each symbol from this point on, the compressed data for the first
n input symbols determines the observations uniquely. This, in turn, defines a
member of Rissanen’s restricted class of FSMs, along with its “current state,”
via the MDL estimator above. This FSM and its current state are interpreted
as a predictor for the n + 1% output character, which is coded using a minimum
expected-length code for the arcs out of the current state. As the decoder can
follow the same logic, the description of the FSM is never exﬁlicitly coded as such,
yet it can vary with time adaptively. The cost of this system is in the relatively
suboptimal routing codes for small amounts of data. The class of models does not
allow a FSM to have states with only one exiting transition, for which the next
state and observation is uniquely determined. Some non-zero probability is always
assigned to each possible observation, and a nonzero-length codeword is required
wher_e another FSM would require no code. |

Relative to the above works,‘we will propose a method of grammatical in-
ference in which a language is explicitly designed for describing grammars in the
class of interest. An information measure on sentences of the language then for-
malizes the intuitive notion of simple grammars. For probabilistic grammars, an
entropic information measure is appropriate for describing fit. For FSMs and

nonprobabilistic PSGs, other information measures are required.
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4.2 MI Estimation of FSMs

To describe a FSM, we use a language like the Graph language of Chapter 3,
which describes labeled directed graphs, making use of the isomorphism between
these graphs and FSMs. We will make some modifications to the language to
remove the u'pper bound on the number of nodes. Because we organize this lan-
guage around the arcs of a graph, the resulting information measure on structures
will have a dominant term which is linear in the number of arcs. This contrasts
with many other complexity measures which grow with the number of nodes, e.g.,
those of Gaines, and Rissanen, above. This decision is based on the subjective
criterion that as an estimate of FSM structure, a sparse graph is significantly sim-
pler than a dense graph with the same number of nodes, while a dense graph is
not significantly simpler than a sparse graph with the same number of arcs.

It is interesting to observe that other compositional alternatives for organizing
the grammar around nodes or labels also seem to require information dominated by
a term which is linear in the number of arcs. This suggests that the standard node
count as a measure of complexity, whatever its merits may be in computational
complexity studies, is inappropriate for structure estimation purposes.

To describe a FSM, we can use the following grammar:

Graph — Arc*
Arc — Source Sink Label
Source — Node
Sink — Node
Node — 1|2|8]...
Label — A|B|C|D

A change of terminology from Graph, Arc, and Node, to FSM, Transition, and

State, might be appropriate, but we will continue with the graphical terms. The
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set of labels in the rule for Label is assumed to match the input alphabet for the
data given in any instance of an estimation problem.

As there are three alternative productions in the grammar (including the
Arc* term), there are three points at which we must specify parameters to the
information measure. Lacking strong arguments otherwise, we use a combinatorial
notion of information for the Label rule, the I* measure for the Graph rule, and
the context-sensitive Iy measure for the Nodé rule. We do not claim that these
measures can be given more than intuitive justifications, however. These are
summed on the derivation tree for a sentence describing a graph. With K arcs

and N nodes, allowing an alphabet of M labels, this gives
I(Graph) = I"(N) + I'*(K) + K(2log, N + log, M) — log, K!

where the last term corrects for the fact that we are describing a set, not a se-
quence, of arcs.

By including the —log, K! term, we are making a choice as to how FSM
complexity grows with the number of arcs. Very dense graphs become relatively
inexpensive if this term is included. Note that once a graph is described to be very
dense, it is simpler to describe the arcs missing, rather than those present, and
complexity decreases as the number of arcs increases. If this is unreasonable in the
‘application, this term should be dropped. If the term is included, we must ensure
that each of the K Arc terms be distinct (because we are counting the number of
permutations). This results in a constraint that K < N2M, and the inforfnati(;ﬁ
is always positive.

To describe a realization of a FSM as an output string, we make use of the

given structure, and describe a starting state and a set of decisions which together
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define a route through the FSM. The starting state can be described as a Node
term. Each decision can be recorded with an index term, which is interpreted
relative to the “current state”, as defined by the earlier decisions. The index
specifies one of the arcs out of the current state. It may be described as an integer

between 1 and J,, if there are J, arcs out of the current state, s.

Route — Start Decision*
Start — Node
Decision — 1|2|...|J
We have been somewhat sloppy here, as the value of J depends upon the “current
state” in a way which is not reflected in the above grammar. We repair this below.

The Graph and the Route together constitute a sentence for describing the input

sequence.
S5(Z,0) — S(0) S(z|9)
S(6) — Graph
S5(Z|6) — Route

As we are describing FSMs, rather than MSs, a combinatorial notion of in-
formation is natural for the Start and the Decision terms, and we again use the

I* measure for the superstar. This gives

N
I(Route) =log, N + I*(L) + Z Vslog, Js

s=1
where L is the length of the route (and the input sequence), and V, is the number
of times state s is visited, so L = 23’:1 Vs. Note that this is identical to an
entropic measure for a MS with the same graph structure in which the sfarting
state is distributed uniformly, the conditional transition probability distributions
are each uniform, and the structure can only generate the input string via one

route.
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There are several ways the context sensitivity of the Decision terms can
be made explicit. The clearest is probably to record a sequence of nodes rather
than branch indices, and include a constraint that every pair of adjacent nodes
must appear as a Source-Sink pair in an Arc term. A combinatorial notion of
information again gives the expression above.

The final information criterion to minimize in selecting a FSM then becomes
1(5(2,0)) =I"(N) + I*(K) + K(2log, N + log, M) — log, K!

N
+logy N+ I'(L) + ) _ V,log, J,

s=1
with K < N2M as discussed above.
To see how this criterion trades off between simplicity and fit, we return to
the example of Section 1.4. Figure 4.1 shows eleven FSMs which can generate the
input

Z = ABCABDABCABDA

It includes the four figures considered in Chapter 1. Next to each is recorded the
information measures 1(S(6)), I(S(Z|6)), and their total, I(S(Z,6)). Of these,
the structure B has the lowest total, and is therefore most preferred by the MI
criterion. We can in fact show with a small amount of enumeration that it is the
global minimum for this data, out of all FSMs, not just those shown. This is
because if another arc is added in a structure with three or more nodes, then the
term in the structural description which is linear in K increases more than the
best possible reduction in the route term. So we only need to examine a small
number of FSMs with four arcs and at most three nodes. These are A,BE, F,
and G in Figure 4.1. Other conceivable FSMs with more than four arcs and no

more than three nodes are ruled out by the following considerations.
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Figure i.1 Finite State Machines which can Generate the Input String AB-
CABDABCABDA
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Figure 4.1 Continued Finite State Machines which can Generate the Input
String ABCABDABCABDA
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The grammar above allows graphs which we would never want as FSM esti-
mates, for example with two identical Arc terms, or with several noncommunicat-
ing components. It is easy to see that the MI estimate will never select a graph
with a duplicated arc, as an otherwise similar graph lacking the second arc re-
duces the information in both the Graph term and any Decision terms occurring
at the source of the duplicated arc. Disconnected graphs are never the output
of the MI estimator because the route is restricted to the component connected
with the Start state, so an estimate which eliminated the unvisited component(s)
can be used to describe the input data with a smaller information measure. More
generally, it is easy to see that the MI estimate will never include superfluous
structure which is not visited in the route, since eliminating it gives a structure
which results in a smaller information measure. This rules out Figure 4.1H for
this data, because it contains superfluous structure relative to Figure 4.1B. We
consider all these “simplicity properties” desirable in an FSM estimator.

Another satisfactory property of our estimator is that it only gives Nerode
minimal structures. Nerode [1958] defines an equivalence relation on FSMs which
partitions the set of FSMs into groups which generate the same set of strings. He
shows that within each group there is a unique minimal FSM with the smallest
number of states. We can show that MI estimates of FSMs will be minimal in this
sense. To illustrate the concepts, consider Figures 4.11, J y and K. These FSMs al]
are Nerode equivalent to the Nerode minimal Figure 4.1B.

Nerode’s proof involves associating each state in an FSM with the set of
strings which can be generated starting at that state. A nonminimal FSM has
more than one state from which the same set of strings can be generated. By

“merging” states that are equivalent in this sense, the min: nal FSM results, with
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Figure 4.2 Growth of Information as Function of Input String Length, for
Input (ABC ABD)", for Three FSMs of Figure 4.1

no two states equivalent. In Figure 4.1 the leftmost and rightmost states are
equivalent, and merging them together gives Figure 4.1B. In Figures 4.1J and K,
diametrically opposite states are equivalent. The MI estimator avoids Nerode
nonminimal FSMs because they require: (1) longer structural descriptions, having
more arcs and states than their minimal equivalent; (2) longer descriptions of the
starting state, as there are more choices; and (3) equally long descriptions of the
decisions, as equivalent states have the same number of outgoing arcs.

Let us return to the FSMS of Figure 4.1 ,and see how they compare as
the length of the input is increased. As a concrete example, consider an input
string, Zy, consistihg of n repetitions of the sequence ABCABD. The terms in

the information due to the structure and starting state are fixed, and the length
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terms, I*(L), grow equally, so it is the Decision terms we should examine. For
FSM A, J = 4 for each observation, so the information increases by 12 = 6log, J
every repetition. For FSM B, J = 1 at two of the states, which require no ex-
plicit decision information The information therefor increases by 2 = 2log, 2 every
repetition—one bit each time the state with two exiting arcs is visited. For FSM C,
every state has only one exiting arc, so the route contains no information. Plot-
ting the total information measures for these three FSMs as a function of n in
Figure 4.2, we see that each has a domain in which it is the prefefred estimate.
A is chosen for inputs of less than 11 characters, and C is chosen for da,ta.A larger
than 60 characters. In between, FSM B is chosen, out of these three, but we have
not shown that some other FSM might not be a .better estimate for some values
of N.

We can generalize this observation and show that for data generated by cyclic
FSMs, in which the arcs form a cycle with no branching, the MI estimate is
asymptotically consistent. By consistent, we mean that the estimate will be the
Nerode minimal member of the class of FSMs generating the data. Note that
we can not hope to distinguish between the actual FSM generating the data and
others to which it is Nerode eqﬁivalent, as théy generate exactly the same set of
strings. It is reasonable then to give the Nerode minimal member of this set as a
canonical form to represent the entire set.

To show that the MI estimate is consistent when the true FSM, X, is Nerode
minimal and cyclic, we show that (1) for any other FSM, Y, I(Zn,X) < I(Zn,Y)
for all n after some ny, and (2) for only a finite number of ¥ does I (Zn,X) >
I(Z,,Y) ever hold. From (1) we see that if the estimator reaches a limit, it is

the consistent estimate. From (2), and the observation that I (Zn,Y) - I(Z,,X)
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is a nondecreasing function in n, we see that it must reach that limit. The input
data, Zp, consists of n concatenations of a string Z;, which consists of the labels
of X in order of transitions. Property (2) results from the fact that information in
the Arc terms are bounded above zero and additive. To see (1), note that I (Zn,X)
grows at the slowest possible rate, I*(n) 4+ C, because I(Decision) = 0. So any
Y whiéh was preferred over X for all large n would also have to grow at this rate.
Only a cyclic FSM, or one which has additional structure from which the route
eventually enters a cyclic gubstructure, allows this low a rate. This cyclic FSM
or substructure can not have fewer states and arcs than X , because X is Nerode
minimal, so if I(Z,,Y) < I(Z,,X) for all n > N, then Y = X.

This special property for strings generated by cyclic FSMs results from the
fact that, asymptotically at least, almost all their information is in their length. A
finite FSM is generating a unique infinite string. The repeating strings generated
by cyclic FSMs are analogous in this sense to the notion of a nonrandom real in
algorithmic information theory.

We have not implemented a search algorithm specifically for this class of
structures, but see Section 4.4 for an algorithm for the multiple FSM problem. A
plausible approach is to begin with either the simplest or most complex FSM for
generating a string, i.e., Figure 4.1A or D, and transform it with state splitting or
merging transformations. State splitting is illustrated in the transformation from
Figure 1.1A to E, F, or G. These types of transformations are employed with good
succeﬁs by Van der Mude and Walker [1978]. Merging is illustrated by the inverses
of these transformations, and in the passage from C to L, in which the two marked

states of C are merged.
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We note that finding the exact MI estimate may be difficult. Gold [1978] and
Angluin [1978] show NP completeness results for the similar question of whether
there exists a deterministic automaton with n states compatiblé with given in-

put/output data.

4.3 Markov Sources

To extend the above ideas to Markov Sources, it is only necessary to incorpo-
rate the conditional routing probabilities in the description of the structure, and
ﬁake use of them in measuring the description of a route. There are many ways
to describe the sets of probabilities if we restrict them to rational values.

One method for describing rational values is to use a sequence of decimal or
binary digits, interpreted as if preceded with a decimal point (or binary point).
Another is to use a pair of integers, and interpret them as numerator and denom-
inator of a ratio. If two integers are used, all rational values can be described,
but irrationals are ineffable. If binary or decimal expansions are used, then only
certain rationals are describable. For example, % is not describable in a finite sen-
tence interpreted as binary or decimal digits. It is not clear what criteria should
enter into a choice of a language and information measure for the rationals. Note

how the relative information contents of the different values %, %, and % differ

“according to the choice. We will not propose a method here, as the one result of

this section is independent of this choice and how we measure the information in
rational numbers.
The most natural locus for the probability descriptions is in fourth element

of each Arc term.

Arc — Source Sink Label Probability

Chapter 4 ' Page 96



This introduces a consistency problem of making the probabilities of the arcs with
a common source sum to unity. Again, there are a number of ways this could be
effected, and we will not discuss alternatives here.

Interpretation functions from Graph sentences to MSs are also straightforward
to define, in analogy with the FSM case. Note here, that our countable grammar
allows M.Ss with all possible FSM skeletons, but only a countably infinite number
of probability distributions. The particular probabilities describable depend on
the grammar and interpretation for Probability. We take no stand on this issﬁe |
here, but simply let M denote the set Markov sources which can be described with
whatever grammar and interpx_'eta.tion is chosen.

The effect of imposing a probability distribution for the exiting arcs of each
node is that we can use it in defining an entropic information measure for the
Decision terms. Letting P(Ni4+1|Nk) denote fhe probability that the K + 15

state is described as Ny, given that the k*® state is N, we measure
I(Decision) = 2~ F(Ne+1|Nx)

This leads to a form of optimality for the MS estimate. If the data, Z,, is the
first n characters of a string generated by an ergodic MS, X € M, the MI estimate
of X will, with probability one, achieve the same asymptotic data compression

rate as X. The asymptotically dominant term of I(Z,,X) is the first term of

I(Decision®) =nH + I*(n) .
where H is the source entropy:
H=-)"m)_ P(jli)log, P(j]3)
t J
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The summations are over the set of states, and the 7; terms are the steady-
state probabilities of each state, which are guaranteed to exist by the ergodicity
- assumption. The expected information per Decision using X in the description
of Zy, is therefore the source entropy in Shannon’s sense, and with probability one
can not be reduced with any other MS. Note that this does not guarantee the
true MS is the MI éstimate, (not even with the probability one caveat), but it is
Jjust as good for data compression. By Shannon’s noiseless source coding theorem,
no other description results in a significantly lower information growth, but other
MSs can achieve equally good data compression.

Rudich [1985] and Rissanen [1986] show stronger consistency properties for
a reduced set of sources in which the state of the source is a function of the
previous state and output letter. These structure estimators can not give the

correct structure for most FSMs however, as discussed above.

4.4 The Multiple FSM Problem

In the mﬁltiple FSM estimation problem, we model the data string, Z, as
the interleaved output of n FSMs, where n is unknown, and part of the structure
to estimate. The individual FSMs may have distinct, overlapping, or identical
alphabets of labels. In addition to the n FSMs, an assignment function must be
estimated which indicates which FSM generated each symbol of Z. The subse-
quences associated with each of the FSMs must correspond to a valid path through
that FSM. This corresponds to a situation in which a set of FSMs operate inde-

pendently, and their separate outputs are “shuffled” together, into a sequence

Chapter 4 Page 98



preserving the order of each individual FSM’s outputs, but not necessarily follow-
ing any probabilistic interleaving rule. There are no requirements concerning how
observations from different sequences are ordered.

Given the FSM descriptions above, a description of a set of FSMs is naturally
given by

MultipleFSMs — Graph*

To describe the data we can continue to describe Decision terms as above, but
they must be paired with an indication of which FSM changes state. This can be
an index into the set of FSMs, with information measured combinatorially.

Summing these terms gives

N
I(Z,6) =I"(N) + nlog, N + > _ I(Z;,6;)
: i=1
to be minimized over the sets of FSMs. Here N is the number of FSMs in the
model, n is the length of the input sequence, and Z; is the subseqﬁence of the
input assigned to the ¢** FSM, ;.

Optimization of this criterion over sets of FSMs is an interesting problem.
The local search techniques discussed in Chapter 3 suggest transformations in
which arcs are inserted, deleted, or exchanged in the various FSMs. While we
are fairly confident that such techniques could be made to work, we follow a
slightly different method here. For trial purposes, we have implemented a simpler
algorithm which allows insertion transformations only. An arc is inserted either
between two existing states, or from an existing state to a newly created state.
These transforfnations may happen to any of the FSMs in a model, or a new

FSM can be created as a state with no arcs, before the transformation applies to
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it. To guide the search, it operates incrementally, scanning the input data one
symbol at a time, always keeping track of “the current state” for each FSM in
each possible set. The only transformations which change structure are those in
which an arc labeled with the next symbol of the data is inserted from the current
state of an existing or newly created FSM. A second transformation just ﬁpda.tes
the current state pointer when an arc labeled with the next symbol of the data
already exists out of the current state. These transforma.t.ions guarantee the data
can be generated by the structure.

We have implemented thié in a2 “best first” manner. After each symbol is pro-
cessed, only the best few estimates, in terms of an information criterion, are kept.
These are then tfa.nsformed according to the next symbol. The number of struc-
tures to keep at each iteration is a parameter of the algorithm. This technique’
can lead to poor local optima in the case where the path to the best structure
was evaluated as relatively poor at an early stage of the data, and was one of the
structures discarded at some iteration. If all possible transformations are consid-
ered, the algorithm will eventually find the optimum structure, but exponentially
many would have to be examined. The particular information criterion guiding
the search in our simble implementatidn is not the complete MI criterion above,
but only the dominant term, which counts the total number of arcs in all the
FSMs of the set. After all the data is processed, the best structure out of the final
hypotheses, using the complete MI criterion, is selected as the estimate.

The algorithm also allows two types of special constraints to be option;lly
imposed. These are natural constraints on the class of FSM models discussed in
the Appendix. The first constraint is to associate numerical values with each arc,

and require the loop sum of these values around any path in the FSM to be zero,

Chapter 4 Page 100

s g 1 semmsam——e v 4w < v mre o meee — an e aa



-a.nalogous to Kirchhoff’s voltage law in circuits. This is relevant in the special
éase where a variable takes a numeric value at each state, and the oBservations
correspond to changes in the variable. The second constraint which can be imposed
prohibits FSMs with more than a specified number of arcs of the same label.
This limits the maximum complexity of each FSM, and forces paths to loop back
through existing arcs rather than create long dangling chains of arcs. Because the
first constraint has the opposite effect of preventing loops from forming except
under specié.l'conditions, the combined effect of these two constraints, happily, is
to seriously reduce the set of fpossible structures. No constraints are used in the
examples of this chapter, but several examples are given in the Appendix.

Figures 4.3-5 show the output of this algorithm on three input strings con-
structed from different pairs of simple cyclic FSMs. The states drawn with doubled
circles are the estimates of the current state at the end of the data. In each case,
the input string wa.slin fact constructed by simulating the set of structures shown,
so the estimates are “éorrect.” Note that in the examples of Figures 4.3 and 4.5,
the symbol A is sometimes assigned to the first, and sometimes to the second of
the two FSMs. In Figure 4.4, the alphabets of the two FSMs are disjoint, and
reconstructing the two FSMs is equivalent to noticing that the pair A and B al-
ways alternate in the data, as does the pair C and D. This data string was then
modified by changing the D’s to A’s, to form the data for Figure 4.5.

The pfogra.m is implemented on an IBM PC in the Scheme language [Texas
Instruments, 1985|, and requires ten to fifteen minutes to generate each of the
estimates shown. This could be much improved with additional programming

effort.
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HYPFOTHESIS 7 of 8 aftexr ABACBADCDECDAR

Figure 4.4 MI Estimate of Multiple FSMs for Data ABACBADCDBCDAB
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Figure 4.5 MI Estimate of Multiple FSMs for Data ABACBAACABCA
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Our point in showing these results is not to advocate the details of this par-
ticular grammar, information measure, or optimization algorithm. However, we
do feel that it demonstrates a new approach to FSM inference, which can be fea-
sibly adapted to a wide range of problems. By balancing appropriately between
the simplest one-state FSM which generates any string, and very complex FSMs
which only generate the data, a reasonable estimate results. It is clear though,

that we have barely scratched the surface of this problem.
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Chapter 5

CLUSTER ANALYSIS

The following case study develops cluster analysis algorithms based on the
minimum information criterion. Cluster analysis is a classical problem in which
a “scatter plot” of samples is to be partitioned into groups which classify the
samples according to a data-dependent criterion rather than a prespecified decision
rule. The algorithm is designed to find natural groupings in the data, which
in effect implies that it learns decision rules in an unsupervised manner. The
simplicity /fit tradeoff arises when the number of classes is not known in advance.
Many criteria and techniques exist in the literature which are suitable for clustering
applications where the number of groups is prespecified (e.g. Anderberg [1973],
Hartigan [1975]). However, if the number of groups is not known, the estimation
problem becomes essentially one of structure, because a partition of the input is a
set which must be estimated. We only consider this more difficult problem here.

It was for this problem that Wallace and Boulton proposed »their minimum
information criterion. In two papers [W&B 1968, B&W 1973, they develop infor-
mation criteria for two specific clustering models, incorporating nonhierarchical

and hierarchical cluster structure, respectively. The philosophy tacit behind these
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methods can be directly generalized to the structure estimation framework we are
using here. The example we give in this chapter differs from those of Wallace
and Boulton in that we do not make any explicit probabilistic assumptions corre-
sponding to their assumption of multivariate Gaussian within-cluster probability
distributions. In addition, we are not concerned with the problem of discretizing
real data; we assume the input has been appropriately quantized.

We will consider here the problem of fdrming rectangular clusters of a “scat-
ter plot” in a discrete rectangular grid, as in Figure 5.1. In this 50 x 100 array,
indicated by the hatched background, the marked points constitute the input to
the estimator, and the rectangles indicate the estimated cluster structure. In this
example, there are 29 points in the input, and the estimated structure contains 4
components, including a singleton cluster which contains only an isolated point.
The numbers labeled Bits at the bottom of the figure indicate the reduction in
the information measure as the algorithm makes a sequence of three local trans-
formations, which are described in more detail below.

An informal statement of the problem of cluster analysis is that given a set
of observations, the data set, described as points within an observation space, we
wish to partition the set into groups such that the natural associations within
groups are large compared to the associations between points of different groups.
This reflects the desire to find “natural classes” in the data set, which is usually
considered to be a set of “mezsurements” of individuals of a population mixture.
In a vector or metric space, these associations can be quantified, and criteria

can be formulated so that intra-group distances are small relative to inter-group

distances.
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In one application, Fisher [1936], the observation space is a vector space with
components corresponding to the length and width of the petals and sepals of a
flower. These measurements are recorded for a large number of individual flowers,
and cluster analysis is invoked with the goal of automatically performing a taxo-
nomic classification of the individuals into species. With an appropriately defined
cluster analysis procedure, it is hoped that the resulting clusters will correspond
to “natural kinds” in the biological domain. Note that the algorithm is not being
called on to classify individuals into predefined species. The clustering algorithm
produces definitions for the species. It sﬁggests structure for the taxonomic tree.

The above example clarifies that cluster analysis is a particular case of pat-
tern recognition, and shares many of its typical characteristics. In particular, the
output of the algorithm can not be plotted as a point in a vector space of fixed
dimension, as the number of clusters is not known in advance. In addition, for
most pattern-recognition applications, there is no unique correct answer which can
be used as an acid test when evaluating the action of various algorithms. Accord-
ingly, we will not be able to say that the methodology below is correct or incorrect
in any fundamental sense.

The real problem of cluster analysis is to define what we mean by groups
or natural associations. This varies with the application, so we require a flexible
framework. We claim that the MI framework provides an adaptable means for
tailoring clustering criteria to problem domains in a manner which is be reasonable
in a wide range of examples. Furthermore, we support our claims by the fact that
the output of a simple implementation agrees well with .the clusters which human

subjects find in the data.
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If natural association can be quantified with a metric in the observation space,
the cluster analysis problem may be formulated as an optimization problem over
the set of partitions of the data set. The difficulty with this approach is finding a
reasonable criterion to optimize. It must evaluate how well a particular partition-
ing of a data set groups the data. In particular, it must make proper trade offs
between inter-group distances, intra-group distances, the number of points in each
cluster, and the number of clusters. Note for example that analyses at the two
extremes of simplicity and fit are always available. An algorithm might declare
that the data set consists of only a single large cluster, or of a large number of
singleton clusters. In either case, the criterion that the inter-group distances are
large relative to the intra-group distances might be justified as holding trivially.

Few explicit methods for selecting the number of clusters have been proposed
in the literature. Duda and Hart [1973] give a hypothesis testing method based
on the expected increase in fit when a Gaussian distribution is split into two equal
portions along its principle component axis. Hart [1985] gives a similar generalized
likelihood ratio test which does not assume the two portions are equal, however, it
is tailored towards a specific application. Hartigan [1975] and many other authors
rely on “knee of the curve” techniques to choose an appropriate number of clusters,
using Euclidean or Mahalanobis measures of fit.

We propose that, for practical applications where the number of clusters is not
specified in advance, the MI framework be used to develop and explore clustering
criteria and algorithms. Inforination measures can be constructed as additive
measures on “natural” data-description languages designed according to the types
of clusters we a.ccept as displaying natural associations in the data. We expect

that doing so will lead the system designer to develop pattern recognition systems

Chapter 5 Page 110



that are appropriate for the particular clustering application. The Boulton and
Wallace examples, along with the example below support this claim.

The MI approach does not provide a unique criterion for any particular cluster
analysis application, but rather, provides a methodology for generating criteria
which can be tailored to fit particular problems. The designer of the criterion first
creates a language for jointly describing partitions and data sets, which is tailored
to the types of clusters that are deemed to be acceptable. A concise way of doing
this is for a statement to first describe the cluster structure, and then describe how
the data set can be realized from it. The selection of a criterion is then largely
reduced to the design of a language. However, many of the details of the language
turn out to be unimportant, as only the information content of a statement affects
the final criterion.

The resulting function, which identifies the optimal clustering as a function
of the data set, is sometimes equivalent to some particular MAP estimator. From
the details of its construction, one might extract the equivalent of an a priori dis-
tribution for partitions, but no Bayesian or probabilistic assumptions are inherent
in the method.

In Section 5.1 below, we formalize a language for describing scatter plots in
terms of clusters, and develop an information measure. The example assumes that
rectangular clusterings are a natural form of association for the problem domain.
Section 5.2 then presents an optimization algorithm which uses local transfor-
mations based on the syntax of the language. It approximately minimizes an
approximation to the criterion. The algorithm is shown in Section 5.3 to produce
excellent results when the data set can be grouped in terms of the rectangular
model class. Finally, we discuss a probabilistic interpretation of the method, some

of its weaknesses, and methods of extending or improving it in Section 5.4.
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5.1 Description Language and Information Measure for Clusters

Probabilistic approaches are generally employed in clustering without enor-
mous justification. Although it is often reasonable to model measurements of
individual characteristics of members of a population as a sample from a probabil-
ity distribution, the particular forms of the individual and joint distributions are
usually selected arbitrarily, or for numerical or analytical convenience. We will
need to make analogous assumptions concerning appropriate methods for describ-
ing measurements.

In the example given here, these assumptions are in the rectangular form
being used to describe clusters. In data sets such as Figure 5.1, this class of models
suffices to define natural groupings in the input. Examples are given in Section 5.3
which show the results of the method when this class of models is not appropriate.
From a probabilistic point of view, these correspond to the assumption that within
a class, different measurements are independent and uniformly distributed (with
unknown mean and variance). Note that we are choosing a criterion based on the
group as a whole, rather than the usual pairwise distance relations between points.

The input to the estimator consists of an Nx by Ny array of pixels, each of
which is either “ON” or “OFF”. We wish to find a model of the data which de-
scribes the position of the ON pixels in terms of a set of No “natural classes”, each
of which has a rectangular form with a high density of “ON” pixels. Our model
requires every “ON” pixel be assigned to some class. We phrase our formulation
in the terms of a vision problem, with an array of pixels, in order to emphasize its
status as a pattern recognition probiem. It could be rephrased so that the input is

a set of observations, the (z,y) pairs of the ON pixels. The main difference is that
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this latter form allows observations to be repeated. The languages and algorithm
below allow this without modification.

Because the data must be partitioned completely into clusters, a natural de-
scription will be composed of descriptions of the elements of the partition. Each
of the cluster descriptions consists of its bounds within the grid. To this we attach
its portion of the realization, a list of the points within the cluster.

Cluster*

S —
Cluster — Bounds Point*
Bounds — X-value X-value Y-value Y-value
X-value — 1| 2} --- | Nx
Y-value — 1| 2] --- | Ny
Point — 1 ]| 2 | .-+ | < Area of Rectangle >

In describing a point within a cluster, we note that there are only as many pos-
sibilities as there are points in the rectangle, which we term the “area” of the
fectangle. Therefore a point can be described by its ordinal position in an al-
phabetic enumeration of the pixels which fall within the cluster bounds. It will
consequently take fewer bits to describe a general point within a small rectangle
than within a large one. This is desirable as it encourages rectangles which fit
snugly around the data. Two alternatives to this method of describing points are
considered in sections 5.3 and 5.4 below.

Formally, a listing of ordinal values requires a syntactic constraint that each
Point should not exceed the area of the rectangle described by the precedving
Bounds. This type of dependency may be handled in many ways, €.g. a context-
sensitive grammar. For our purposes, it is easiest to allow sentences which violate
this constraint to remain in the language, but have the algorithm ignore them by
assigning such a Point no point as its interpretation. As such a term adds formal

information without changing the interpretation of the sentence, these sentences
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are ignored by the estimator. The matter is irrelevant to the optimization below,
as the design of the algorithm ensures that all sentences considered satisfy the
constraint.

An additional constraint occurs within the expansion of Bounds. If the four
components are interpreted as the left, right, top and bottom extremes of the
rectangle, then our synfax allows boxes with a left side to the right of the right
“side, and/or a top below the bottom. These possibilities can be eliminated either
syntactically or semantically, as above. We shall bypass this decision by explicitly
defining the information measure for a Bounds term, rather than recursing down
to its components. A rectangle is defined by a lower-left corner and an upper-
right corner, both selected from among the pixels in the grid, and for each pair
of pixels only one of the two orderings is consistent with our interpretation. The

combinatorial notion of information gives
I(Bounds) = Ir = 2log,(NxNy) — 1

where we use the notation Ir as mnemonic for the information to describe a
rectangle. The information in Point* in the ¢*® cluster, using the I* measure for

the star, and a combinatorial measure for the positions, is
I(Point*) = I*(n;) + n;log A;

where n; is the number of points, and A; is the area of the :*® cluster. Adding
these terms for the N¢ clusters, and incorporating a I* term for the Cluster*

term gives

N¢
I(S) = I'(N¢) + Nclg + Y _|I*(n:) + nilog, Al
=1 :

which is to be minimized over the set of all statements which can descrite the

input.
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5.2 Optimization Method

In principle, I(S) can be minimized by evaluating each possible partition of
the input and choosing the optimum. In practice this is not feasible, as there
are O(N N) partitions of a set of cardinality N. Because of these combinatorial
difficulties, we settle for a local minimum with respect to certain neighborhood
transformations, instead of the global minimum.

Our algorithm begins with an initial description of the data set in terms of
the simplest possible model: a single cluster. This initial cluster is chosen as the
smallest rectangle in which all the given points belong. Because of our constraint
that every point must be inside some rectangle, and because the information grows
with the area of the rectangles, this will be the optimum rectangle if the MI
estimate requires only a single cluster.

The algorithm proceeds by local steps which replace a Cluster clause with
two clauses, thereby increasing the number of clusters by one. As the algorithm
proceeds, only the statement with the smallest information measure is retained.
The allowed transformations of a statement have the effect of splitting (partition-
ing) one of its clusters into two smaller clusters by considering all possible ways
of reassigning the points to two smaller clusters.

These transformations are considered one cluster at a time, and for eachv
cluster, either no split is found which reduces the information measure, or if one
or more transformations reduce the measure, the best such split is adopted. The
process terminates when no clﬁster can be split into two in a way that reduces
I(S). Conceptually, the search is isomorphic to a gradient descent through the
partition-lattice of the input set, selecting the branch with steepest slope at each

tier. However, only refinements of the partition are allowed—merges have not
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been implemented—so the “neighborhood relations” are not actually symmetric
in this space. This does not seem to be a problem in practice however; we have not
been able to construct an example in which the algorithm reaches a local minimum
which can be exited via a merge transformation. If we did find such cases, it would
be simple to extend the algorithm to include merge transformations.

In our implementation of the algorithm, a pruning technique based on the
geometry of the points within the rectangle can be employed to significantly reduce
the number of partitions which need be considered for splitting each cluster. It
does not affect the outcome of the algorithm as it guarantees the optimal two-way
split is not pruned. If all ways of dividing a set with n members into two nonempty
subsets were considered, 2”1 — 1 possibilities would have to be enumerated, and
the algorithm would require exponential time. However, most of these subsets
correspond to two clusters which overlap significantly, and would therefore increase
rather than decrease the information measure.

We can eliminate most of these superfluous partitions if we use the fact that
in an optimal split, each side of each rectangle will have at least one pixel ON
just inside each of the four borders. (This is because otherwise the border could
be translated inward one unit to reduce the area of the rectangle without affect-
ing cluster rr—lembership. As this would reduce the information measure without
affecting the interpretation, it can not be possible in an optimal split.) We can
therefore arrange four nested loops to loop through just those indices which satisfy
this constraint, and create all possibilities for the first rectangle in O(n*) time. For
each possibility of the first rectangle, the second rectangle is determined directly

from the remaining points. They can be gathered and boxed in with the smallest
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rectangle which contaiﬁs them in O(n) operations. Thus one split requires O(n®)
operations, and the complete analysis of the input requires O(n®) operations.
While this is not as low an order polynomial as one might want, the leading
coefficients are apparently low enough that the algorithm operates reasonably for
data sets under 40 points. The complete analysis, coded in Turbo Pascal [Borland
1984], requires up to five minutes on an IBM PC. For larger data sets, a number of
heuristics could be employed to reduce the search time significantly. This would
also be essential in higher dimensions, as the time required for a direct extension

of this algorithm would increase by a factor of O(N?) for each dimension.

To evaluate the information savings of a putative split, we need only examine
the portion of the data set within the cluster under consideration. Letting S be
the description of the data in terms of k clusters before a possible split, and Sk+1
be the description of the data if the split were accepted, the algorithm splits iff
I(Sk+1) < I(Sk). The terms in this expression concerning the other clusters all
cancel. Our implementation ignores the small log, % term, which results from
the two I* terms that almost completely cancel, and we elsewhere approximate

I*(z) as logy(cz). The test to determine whether or not the two smaller clusters

are preferable to a single cluster then becomes

N1 4Nn2

Split iff log, A{A—nez + log, cn;nz
[ c

< —1Ig

Here ny,n; and n. are the number of points in the two subclusters and the orig-
inal combined cluster respectively, (so n. = n; + nz), and the correspondingly

subscripted A terms are the respective areas.
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5.3 Results

The implementation of the algorithm is quite successful at finding rectangular
clusters. It can separate nearby clusters, find overlapping clusters, and even find
high density clusters completely embedded within other (low density) clusters.
This type of performance is typical for the algorithm. Figure 5.2 shows another
clustering result, somewhat more complex than the example of Figure 5.1.

The sequence of numbers labeled Bits at the bottoms of the figures indicate
the decrease in I (S) as the partition is refined. The first value indicates what I(S )
would be if only a single cluster were used to describe the points. The final value
is I(S) for the partition shown. (The sequence of intermediate partitions corre-
sponding to the intermediate values can not be reconstructed from the figures.)

Note that when a pixel appears inside of the geometric domain of more than
one cluster, the algorithm above automatically assigns its membership to the sub-
suming cluster which has the smallest area. The pixels in the common area thereby
contribute the least to the overall information measure.

The results in Figures 5.1 and 5.2 agree exactly with most observer’s subjec-
tive clusterings, with one possible exception concerning the “background noise”
which is discussed below. This agreement is typical of situations in which the sub-
jective groupings are reasonably fectangular, with aspect ratios not too far from
unity. However, the next two figures show that in other situations, the estimated
structures have a peculiar quality.

When the perceived clusters are poorly described as rectangles, the algorithm
fares less well. In Figure 5.3 we see the output of the algorithm when a long diago-
nal line of n pixels is presented as input. Here, the algorithm tries to describe this

nonrectangular group using its rectangular vocabulary, with somewhat surprising
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results. As one large cluster would be wasteful of area, and n unit rectangles is
wasteful of complexity, the estimated structure contains a sequence of rectangles
of intermediate size.

The optimal size is easily determined analytically in a simple example. Con-
sider the case of a square N x N input array consisting of a line of N pixels
ON along a main diagonal. From geometric considerations, the MI estimate of
its structure using the models above will consist of K subsquares exactly cover-
ing the diagonal in the manner of Figure 5.3, with 1 < K < N. By symmetry
arguments, we expect the K squares to be as nearly equal in size as the integer
constraints allow. Letting Sk be a sentence that describes the input in terms of
the K groups, we wish to determine %, the size of each group. We do this by
specifying the information measure above to this example as

I(Sk) = K[Ip + %Zlogz %
and differentiating with respect to K to get

dI(Sk) _ 2N
ok g N-1--7—

From this we determine the preferred size of each cluster:

N 2 1
K mzloe V-5

It is curious that the preferred cluster size is logarithmic in the grid size. This is
one of several scaling problems discussed in Section 5.4.

A second property of this clustering algorithm that may not agree with intu-
ition is demonstrated in Figure 5.4. Here we see that the criterion is quite content

to generate long narrow clusters which are not geometrically compact. They are
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Figure 5.4 Long Rectangular Clusters

Chapter 5 Page 122



quite small in terms of the area measure we employ however, and in hindsight are
to be expected. If we do not wish the estimator to produce such results, there
are several ways to proceed. One way to accomplish this is with an outright con-
straint in the grammar which simply prohibits clusters beyond a certain aspect
ratio. Another is to describe rectangles, not by their bounds, but by their centers,
and major and minor “radii”. An entropic information measure on the radii could
be designed which is biased agaiﬁst large values, or large differences between the
two values.

‘A final aspect of the results, which may be disturbing, concerns the large
diffuse clustersv of “background noise” such as that visible in Figure 5.2. It is
not clear what the “intuitively correct” clustering should be in this situation. The
constraint requires every point to be in a cluster, but a sparse set of points does not
appear to form a cluster. Are these points naturally associated? The alternative of
putting the individual “noise” pixels each into their own 1 x 1 rectangle certainly is
appealing—this is how the singleton pixel in Figure 5.1 is described. The effect of
the MI criterion is to use a diffuse cluster to describe pixels in a region of relatively
low density, as in Figure 5.2.

It is interesting to see how a simple modification of the description language
can be used to eliminate these diffuse “clusters” if we deem them uha.ccepta,ble.
The language above requires a description of each ON pixel associated with each
‘rectangle. If we want or expect relatively dense clusters to result from our estima-
tor, it seems more natural to describe the OFF pixels. After all, one might argue,
they are the unusual situation in a dense cluster, and so it is their information
we should measure. Implementing this involves only a trivial modification to the

optimization algorithm. As we still require each ON pixel to be in some rectangle,
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only the cost function for the pixels within a putative rectangle changes. The
remainder of the algorithm is unchanged. Implementing this gives mixed results,
shown in Figure 5.5. Dense clusters are now preferred, and the diffuse region of
Figure 5.2 is completely divided into the singleton rectangles. The denser clusters
remain unchanged, but other sparse clusters have also been divided into smaller

regions.

5.4 Discussion

We have selected one particular notion of natural association, and explored
how it can be formalized and proceduralized into a cluster analysis algorithm.
It bears emphasizing that this technique can be directly adapted to many other
clustering criteria. The technique would be geometrically more complex, but con-
ceptually unchanged, if cluster regions were different shapes, e.g., circles or el-
lipses, or were constrained tb certain minimum or maximum sizes or aspect ratios.
Higher dimensional variants are straightforward extensions, and entropic infor-
mation measures can be employed when relevant. The methods of Wallace and
Boulton are special cases of these variants.

Although we have only considered the problem in which the number of clusters
is unknown, there are many ways structural issues may arise even when the number
of clusters is known. There may be structural uncertainties to be estimated at
finer levels (e.g., the structure of the points within each cluster) .or coarser levels
(e-g., the structure of the relation between the clusters). For example, even if
one specifies the number of groups, an estimator can choose if each should be

rectangular or some other form.
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Figure 5.5 Clustering Resulting from Describing Pixels OFF, Rather than
Pixels ON (c.f. Fig. 5.2).
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Hierarchical relations between the groups are often of interest. The clusters
produced by our algorithm can be viewed as the leaves of a binary tree formed
by the sequence of splitting transformations. We have not shown the tree, but it
is defined by the intermediate descriptions during the operation of the algorithm.
If one were interested in the entire tree rather than just its leaves, one would de-
sign a description language for trees (e.g., the S ezpressions of LISP), and allow
“subclusters” to be described concisely by making use of the description of the
“parent” cluster. An approach to hierarchical classification of this form is devel-
oped in Boulton and Wallace [1975], who mention its application towards decisioﬁ
trees. Quinlan and Rivest [1987] present another example in which the structures
of decision trees are estimated using an MI approach. It can be interpréted as a
form of clustering.

One aspect of this cluster analysis method for which we have no entirely
satisfactory solution is the issue of scale invariance, or rather, lack thereof. If
the scale of the observation space is changed, the MI estimate of the structure
may change. We might change the scale of the observation space in two ways:
by keeping the distances between the ON pixels constant, or expanding them in
proportion to the space. (We ignore contraction scalings as they introduce certain
distractions when two ON pixels converge upon the same coordinates.)

In the first case, the data set is fixed, but we expand the linear dimensions of

the space by a factor E, so that the grammar allows

X-value —+1 | 2 | --- | ENx
Y-value -1 | 2 | --- | ENy

The information in the description of the data set given the rectangles remains

unchanged for any given clustering, because this depends only on the areas ~f
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the rectangles. However, I increases by 4log, E, as there are more rectangles
in the grid. As the same partition is now measured to have a greater complexity,
a coarser partition may result. In terms of the decision rule in Section 5.2, the
threshold for splitting, on the right side of the inequality, becomes more negative,
and only a subset of the splits previously allowed are still accepted. For large
enough E, the data set will be analyzed as a single group.

This strikes us as reasonable. It is analogous to standing at a distanc;a from an
image and being uninterested in details which are apparent upon closer inspection.
It also emphasizes the hierarchical naturé of the results. What appears at a
distance to be a splotch reveals itself as an intricate set of structures when we.
focus our attention on it. Howevei', these properties are not entirely satisfactory.
One could argue that the question of whether or not clusters are present in a small
region should be independent of the size of the universe.

The second form of scaling, in which we scale the coordinates of the ON points
in proportion to the space, results in a similar effect. As points recede from each
other in this expanding universe, the algorithm is again less willing to split, for
similar reasons. I again increases by 4 log, E, but now the areas of the rectangles
increase by a factor of E2. However, the effects of this increase on the parent and
daughter rectangles cancel, and the decision rule is the same whether we scale the
points with the space, or keep them fixed. For large enough E, the MI criterion
gives a single diffuse cluster.

The “correct” response to scaling in this case is less clear. From one point of
vie§v, we would like more, smaller, clusters. This expansion increases the distance
between pairs of points, and therefore reduces their associatiomn. Groups which

were previously clustered should then be separate. (This property can be achieved
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if we describe the OFF points rather than the ON points, and speaks well for that
method.) From another point of view, we would like the clustering to remain
unchanged, as the proportional distances within the space are unchanged. We
have not been able to work out a description and information technique with this
property.

Note that, in contrast to scaling, the criterion (and the algorithm) has the
correct invariance properties With respect to translations, rotations, and reflections
that map the data into other data sets within the same grid. If the data is rotated
'90° or 180°, is reflected through a horizontal or vertical line, and/or is translated,
the resulting clusters are transformed accordingly.

We have presented our problem in a form much like a vision problem, in which
each pixel is either ON or OFF. To see how easily this formulation is changed into
a plausible vision problem, consider a language in which we define “clusters” to
be linear arrangements of points, which we interpret as a line of pixels in the grid,
possibly diagonal. Such an arrangement can be described with a clause conjoining
descriptions of the two endpoints. By this means, the problem is transformed
into a plausible line detection problem, suitable for finding dark lines on light
backgrounds in somewhat idealized situations. A more realistic vision problem is
carried out in Chapter 7.

The ON/OFF formulation for the input is really designed to find the range of
variation of a group, and is not concerned with density changes within this range.
This will eventually lead to unsatisfactory results if the data is generated as sam-
ples from probability distributions with unbounded extent. Asymptotically, each
cluster would fill the entire input array, and no discrimination could result. We

are, in effect, assuming that only a fixed amount of data is available (as in a vision
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Suboptimal Optimal

Figure 5.6 Suboptimal Partition due to Binary Splitting Transformation,

and Optimal Partition which would Result if Ternary Splits were
Allowed.

problem), and would use other languages were the situation otherwise. The main
difference is that if the application allowed each point to be observed a variable
- number of -times, we would design the language accordingly, and not require the
point coordinates to be repeated for each observation. A more appropriate format
is to describe the coordinates only once, followed by a count of the number of
observations.

A number of questions concerning the optimization technique presented above
must be addressed, beginning with the set of transformations used. It is easy to
construct situations in which the algorithm becomes trapped in a local optimum.
Figure 5.6 shows a simple situation in which an initial binary division leads to a
suboptimal result compared to the global optimum. The global optimum is reached
if an initial ternary split is permitted. One might want to augment the two-way
splitting transformations with multiple-way splits and various types of merges,
to eliminate certain local pitfalls. There are also many possible extensions into
reé,djustment transformations which combine splits and merges. We justify our

simple choice by its performance.
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Figure 5.7 Erroneous Association which would Result if Optimization Re-

lied on Agglutinative Transformations, Using Finest Partition as
Initial State.

An alternative optimization method, which also reQuires only a single transfor-
mation, would be to start with the finest partition—singleton clusters—and merge
clusters into a larger cluster whenever the information measure is reduced. If this
could be made to work, it would be a computational boon, as all possible merges
can be considered in O(N?) time, compared to the O(N?®) time explained above
for splits. This agglutinative approach has a great potential for error however,
as it is easily misled by local properties of the data set. For example, Figure 5.7
shows a situation in which elements of two distinct rectangular clusters would
be erroneously merged because outlying points of the two clusters happen to lie
close to each other. The local transformation is oblivious to structure which is
determined by the global context. Because configurations of this nature are not
uncommon, we selected the top-down, divisive approach which takes advantage of
large-scale statistical averaging. Note that Figure 5.1 includes two clusters related

as in Figure 5.7, and demonstrates that the algorithm performs properly in this

respect.
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The fact that this algorithni easily resolves these adjacent clusters, which
causes problems for many other algorithms, is noteworthy. This conﬁguration
is included in a list of problematic configurations which confuse many clustering
algorithms, in‘Patrick [1972, p. 358]. The crossed clusters, overlapping clusters,
and embedded clusters of Figure 5.2 are also included in this list. We therefore
endorse the MI approach to clustering as outperforming many other approaches.

However, the time required by thfs particular implementation, five minutes
for 40 points, combined with its growth rate, O(N°®), condemn it to laboratory
a,pplicatiohs only. For many “field applications” where cluster analysis is employed,
rapid analysis of large data sets is required. This time results from the fairly
exhaustive set of transformations considered. Many heuristics seem plausible for
accelerating the optimization by reducing the set of splits considered for each
cluster. We will not consider them here however, as we are more interested in
demoﬁstra.ting the general utility of the MI criterion than in the fine details of
this particular example. As an alternative approach, we suggest that a multigrid
optimization method, roughly along the lines of Section 7.2.1, seems quite plausible
here, although we have not worked out its details.

A final note about the optimization of this criterion is that it would be inter-
esting to compare the local optima of Figures 5.1 and 5.2 with the global optima,
if they differ. After all, one might argue, it is possible that the MI criterion would
give very poor results if actually optimized, and what we see and approve results
from failings in the optimization! As we have no general way to find the global
optimum in such a large space, we must learn to live with this possibility.

Our final set of comments concern the relztion between this method and

probabilistic approaches. The immediate Bayesian reaction to the MI criterion is
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that it is isomorphic to some MAP estimator. The information in the description
of the Bounds terms increases linearly with the number of rectangles, independent
of their position. The estimator is therefore isomorphic to some MAP estimator
with an a priort distribution for rectangles which is exponential in their number
and uniform in their placement. The two ways for describing the pixels within a
cluster, listing the ON pixels or the OFF ones, then correspond to two different
conditional probability distributions, P(z|6).

A third method of describing the pixels, and an associated information mea-
sure, are suggested by this probabilistic point of view. Rather than list the posi-
tions of points of only one type, we could describe every point in the rectangle,

with a sequence of 1’s and 0’s.
Points — {0|1}ATe?

From a coding point of view, this results in a more compact representation for
all but the smallest rectangles. The information in the sequence would then be
measured as proportional to the length of the sequence, which is the area of the
rectangle. The constant of proportionality would be the sample entropy if an
entropic measure is used. We are uncomfortable with this entropic measure how-
ever, as it favors highly sparse rectangles over slightly sparse ones, which is not a
desirable property in clusters.

One further probabilistic comparison is of interest, concerning the decision
rule at the end of Section 5.2. Curiously, this rule has a very similar form to a
likelihood-test rule derived using the assumption of a mixture of two Gaussian

distributions. For this model, one [Hart 1985] can derive the rule

Split  iff nylog|Z;|+ nzlog|Ss| — nelog |Z¢| < v

Chapter 5 Page 132



where 7 is a constant threshold, and the |Z|s are the determinants of the covariance
matrices of the parent and two daughter distributions. The analogy arises from the
fact that the determinate of the covariance is a measure of the area of the portion
-of the distribution within a constant-probability ellipse. There is a difference
however in that our decision rule also has second-order terms resulting from the
log* terms in I(S), which measures the increase in structure. This is analogous
to Rissanen’s [1978] addition of second order terms to Akaike’s [1974] information

criterion.
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Chapter 6

WAVEFORM SEGMENTATION

This chapter considers an apparently simple, yet subtly difficult problem of
waveform segmentation, from the field of signal processing. The essence of vthe
problem exists in a variety of applications, but its structural characteristics are
not generally pointed out. The general problem is to partition a time period into
contiguous segments which are modelled as uniform with respect to some given
properties. The input data is a sequence of observations, z(t), as a function of
quantized time, and the output of the estimator is a partition of the time axis into
contiguous segments, along with a description of the properties of each segment.
Traditional spectral approaches to signal analysis are of little help, as they do not
approach the fundamental issue of complexity.

The most difficult part of this problem may be realizing that it is an ill-posed
structural estimation problem. The tradeoff between simplicity and good fit comes
about because at the two extremes, the analysis could be that there is only a single
long segment in the partition, or that there are as many segments as observation
times. The simplest structure, that of a single segment, will generally have the

poorest fit to the data, as all of the variation in the data must be described as
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within-segment variation. The most complex structure, in which each observation
constitutes a separate segment, generally has the best fit to the data, as there is
no remaining variation to describe if the one observation can simply be described
as a constant. An MI estimator can provide the additional structure necessary to
balance these two extremes, so as to derive an appropriate degree of structural
complexity relative to the class of models and the input data.

The case study presented here uses the simplest possible within-éegment
model: each segment is constant at some z value, and z is a scalar quantity. The
example also assumes there is no between-segment “dynamics”—once a segmen-
tation is chosen, the models within each segment may be selected independently
of the neighboring segments. It would not be difficult to modify the method
however, to allow for more complex models in each segment, such as vectors in
which each component is a polynomial of fixed degree. One method for doing this
is discussed in Section 6.4. Inter-segment constraints, such as the continuity of
derivatives commonly implemented with cubic splines, could be incorporated with
more difficulty.

More interesting segmentation problems would involve more complex within-
segment functions, such as models appropriate for phonemes in speech processing,
instrumental notes in music analysis, or electrocardiograms and other medical
waveforms. These extensions are discussed in Chapter 8. A brief survey of other

waveform segmentation techniques can be found in Pavlidis [1977].

6.1 Languages and Information for Segmented Models

The details of this problem come from the application described in the ap-

pendix. We are given a discretized sampled input waveform which is well-modelled
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as piecewise constant, with additive Gaussian noise of unknown variance. We have
no probabilistic models concerning the number, duration, or levels of the constant
segments. The estimator must determine the boundary points between these in-
tervals, the constant value during each period, and the variance of the noise.

In order to use a description-based method on inputs which are to be analyzed
with a segmented model, we need a formal language which can describe the number
and position of the segments, the model function within each segment, and the
difference between the input data and the model function value. We assume the

input is given as a function of T uniformly spaced sampling times.
z(t) fort=1...T

For convenience, we further assume that the z values are integers in the range from
1 to N. This is an appropriate model for computer applications in which data has
been digitized by an analog-to-digital converter. The choice of N will introduce
scaling issues similar to those discussed for the clustering problem in Section 5.4.

A waveform segmented into M periods will be described as a set of func-
tions, {f;}, for 1 <7 < M, and starting points, {t:}, which satisfy

t1=1
b <tipa fori=1...M -1
tM<T

For convenience in the definitions, we let tps,; be defined as T + 1. The model

function within the sth segment is the function f;, so
2(t) = fi(t), whent; <t <ty

is the complete estimate of the noiseless data. The estimation error is modelled

€(t) = 2(t) — 2(¢)
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Our formal language describes the segment starting times, {¢;}, with a clause,
s(t); the individual functions, f;, with clauses, s(f;); and the estimation error with

a clause, s(€). The root productions define s(6) to be the concatenation of s(t)

and the s f,‘ .
) s(z,8) — s(8) s(z]6)

s(6) — s(t) s(f)*
s(2]8) — s(c) s(e)
The natural method of describing the set {t:} is with an enumeration of its
elements:

s(t) — s(tl)s(tg) cen s(tM)
Given the ordering constraints between the segment starting times, it is inconve-
nient to assign a quantity of information to each separate starting-time description,
as they would have to be contextually defined. A combinatorial measure of the
information in all M times as a whole is

T(6() = loga(7) + 1oz, (3 )

because t; = 1 and the other M — 1 starting times can be chosen as a group from
the T — 1 time samples. The log, (T) term, which is a combinatorial measure of
the information in the description of M, may be ignored, as it is independent of

the {t;} and {f;}, and only appears once in the final MI criterion. It therefore

does not affect the estimate.

For large M and T, the factorials in the second term may be approximated, if

computationally desirable, with the dominant terms of Stirling’s formula, to give

I(s(t)) = (T — 1) log,(T ~ 1)) — (M — 1) log,(M — 1) — (T ~ M) log,(T - M)
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More drastically, for the common situation where M < T, the approximation
I(s(t)) =~ Mlog, T — log, (M)

simplifies the optimization.

Note that the information measure above penalizes complex models for the
information in the description of the segment borders in addition to the informa-
tion in each segment function, which will be described below. This is more of a
penalty in complex models than a less natural, but plausible, alternative which
might be reasonable if T is fixed for the application. In this latter situation, one
might allow that each of the

T-1 _ a (T - 1)
27 =2 (m-a
segmentations are equally complex, in which case the description of the segmenta-
tion does not affect the estimate. Complex models would still be penalized however
in the description of the {f;}, which grows with N, but the segmentation itself
need not be penalized. In what follows, we use the former measure of information
rather than this latter one.

The information in s(f;) will depend on the class of functions allowed for each

segment. We consider the simplest example, in which each function is a constaht,

so only this constant value need be specified.
s(f) = 1)2]...|N

We allow the function to take on any value that the input can, so a combinatorial

notion of information gives
I(s(f:)) =logy, N
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for each segment and

I(s(f1) s(f2)...s(fnm)) = Mlog, N.

One method of extending the description and information measure to polynomial
functions is discussed in Section 6.4.

To describe the fit between the segmentation and the input data, we assume
a probabilistic additive noise model in which the error at each time se,mple is
independent. In the simulations below, an additive Gaussian noise model with
unknown variance is assumed. This allows a simple least-squares computation of
the constant levels, and information in the fit, for any given time segmentation.
This form of noise model is reasonable for the context in which this problem arose,
which is described in the appendix. We are not concerned with the details of the
description of the 'va.riance, o?, since we will measure its information as constant,
so it will not directly affect the MI criterion. Its effect will be indirect, through
the information in s(e(t)). The error is therefore described with the production

rule
s(€) — s(o)s(e1) s(ez) ... s(er)

With this model, an entropic information measure for the description of the

error at each time sample is

1 _ <
I(s(er)) » —logy(—=—e"27)

Vano

where we use the value of the normal density as a rectangular approximation of its
integral over a one z-unit interval. This approximation is valid for o > 1, which

is the interesting case, for if the noise level were very low, the solution would be
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trivial. Edge effects, due to the truncation of the tails of error distribution at z —= 1
and z = N are reasonably ignored, as long as we can assume the true models and
the input data are well described with integers from 1 to N. Summing the above

information measure over the entire time period gives

log, e T
I(s(e)) = Tlog, 0 + 2022 ; €2 + Tlog, v2r

in which we can drop the last term, as it does not affect the minimization.

The MI criterion then says to choose the model, §, which minimizes

A T-1 1 T
I(s(2,0)) = log, (M_1)+Mlog2N+Tlogza+%22—e €2
t=1

6.2 Optimization Methods

Optimization of this criterion will be approximate. There are 271 partitions,
so an exhaustive search is intractable. We rely instead on local search techniques
as outlined in Section 3.4. Descriptions of partitions are transformed into coarser
ones when the information measure is reduced, starfing with the finest partition
as an initial state.

The minimization of the criterion is organized about two parameters, o and
the set {t;}. The set of possible o is considered to range from 1 to 50 in increments
of 1, which are searched exhaustively. The exact range and step size are not crucial
to the method, as will be seen below. The point of an exhaustive search is that it
is simpie to implement and guaranteed to work. It is generally the best technique
when there are a small number of states in the space to search. Here, the fifty

values are a reasonable space, because this search can be intimately intertwined
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with the segmentation optimization in a manner which allows both searches to
occur in parallel. We show below that we do not need to optimize o separately
for each value of {t;}, or vice versa.

To see how this occurs, assume first that the optimal value for ¢ is known.
The structure {¢;} is then chosen with a one-pass steepest-descent method starting
with the finest partition as initial stat_;e, described as T segments, with ¢; = i. The
local transformations simply merge a pair of adjacent segments into one combined
segment. There are M —1 such transformations on a description with M segments.
The time structure of such a merger is simple: the new segment spans from the
starting point of the earlier segment until the ending point of the later segment.
This is effected syntactically by simply deleting a node s(t;) (other than s(t;),
which is fixed as 1). To determine the 2-value for the new segment, we use a
well-known property of the Gaussian noise structure: minimizing the expression
for I(s(z,0)) with a fixed segmentation results in a least-squares estimate of the
2-values within each segment. As there are no weightings in the squared-error
summation, this is the simple average of the z values. It is implemented recursively
by forming the 2 value for a new segment as the average of the 2 values of the two
merging segments, weighted by their lengths.

The one-pass steepest-descent algorithm simply considers each of the M — 1
possible mergers of adjacent segments and performs whichever reduces the in-
formation criterion the most, assuming the information does decrease with some
merger. It is straightforward to calculate the increase in squared error, Ae, and
the decrease in model complexity when two segments starting at ¢; and ¢; merge.

By additively updating the length of each segment as /; = ¢;;, — t;, and the sum
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of the z values for each segment as s; = ::tl;_l 2(t), every time two segments

merge, the test becomes

merge iff Al = "’T?,‘,_‘AG — log, (N T;{I\f-li-l) <0

where
2
s sin _(si+siq1)?

Ae= "+
li  lig Li+ iy

This is repeated with whichever segment most reduces the total information cost
until no merger can reduce the information with the particular o chosen. -

At this point we can examine how the optimization over different values of
o interacts with segmentation. From the form of AT above, it is clear that any
merger which takes place at a given value of o would also take place if o were
increased. This makes intuitive sense; at higher noise levels, we have less reason
to suppose that a given change in z values is really a valid segment border. Thus,
an algorithm could scan throu‘ghva set of increasing values of o, and for each select
the segmentation which is optimal by the above local search technique, always
starting with the finest partition. However, all of the merges at each o value
would be repeated needlessly at the next larger value of ¢. It is more efficient to
start at a small value of o, find the best partition, then increase o, and further
aggregate the segments until the segmentation is again locally optimal. These
operations repeat alternately until the maximum value of ¢ is reached. From
another point of view, the optimal segmentation at each ¢ value is. being used as
a starting point for the local search at the next larger value of o.

At some point along the way, the information will be minimized, and the algo-

rithm stores this segmentation as the MI estimate. Note that this algorithm does
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Information

I\

Optimum

Time

Figure 6.1 Changes in information as M decreases and ¢ increases.

not decrease the information measure with every operation. When o is increased,
the term T'log, o in the definition of I(s(z,8)) increases. Therefore, it is necessary
to verify that the algorithm does terminate at some point. That this is so is indi-
cated in Figure 6.1 which shows how the total information in the description of the
data varies over the course of the algorithm. The downward steps at constant o
levels correspond to mergers which reduce the total information, while the upward
steps occur when o is increased. The exhaustive search for ¢ allows some constant
number, C, of upward steps, depending on the resolution desired, and there are
at most T' — 1 downward steps before the analysis returns a single segment. The
“outer loop” of the algorithm therefore requires at most T + C — 1 operations.
The “inner loop” of the algorithm finds the segment which best merges with the
following segment. As there are M —1 values of AT to compare, and this is always
less than T, the search is complete in time O(T?). The local optimum is indicated

schematically with an asterisk on Figure 6.1.
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6.3 Results

Figures 6.2-5 show typical results of an implementation of the above opti-
mization scheme with N = 50 and T = 100. In each of these figures, the points
indicate the input data and the horizontal lines depict the output of the esti-
mator. For the first three figures, the data was generated using the same “true”
segmentation, but with different pseudo-random Gaussian noise levels. The “true”
model, used to generate the data, was very close to the estimated model shown
in Figure 6.2. That estimate is correct vertically, and the segment borders appear
within one pixel horizontally of the “correct” locations. For variety, Figure 6.5
uses a different “true” segmentation. Notice in the first three of these figures how
the three leftmost segments, which are distinguishable at the lower noise levels,
become merged into a single segment at the highest of the three noise levels, Fig-
ure 6.4. The values of 8, printed at the lower right of each figure, are the estimated
standard deviations, in units of vertical pixels. These estimates are correct in the
figures shown. The types of results shown are typical for the algorithm.

The algorithm was coded in Turbo Pascal [Borland 1984], and runs on the
50 by 100 arrays shown in approximately 30 seconds on an IBM PC. It was not
specifically coded for speed and could certainly be improved by a factor of 5 to 10

with minimal effort.

6.4 Discussion

It is insightful to look at the above segmentation algorithm as a form of
nonlinear filtering. Both the input and output are one dimensional functions

in the same discretized space. Compared to linear filtering techniques, such as
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Wiener filtering or Kalman filtering, the method makes very different types of
assumptions, and the resulting filter has very different properties. Instead of the
statistical assumptions required for linear filtering, we are assuming that our a
priori knowledge indicates this segmented class of models is appropriate. When
this class of models is valid, as in the application described in the appendix,
estimators based on them should perform far superior to linear filters.

The resulting nonlinear filters have very different characteristic properties
from linear filters. As is typical of nonlinear filters, the results in the above
section show “graceless degradation” as the noise level is .increased. The filter
operates quite well, with little or no error, up to a certain critical noise threshold,
at which point the estimate suddenly diverges drastically from the true structure.
A linear filter could be designed which shows at least some dip in the top left of
Figure 6.4 in the region where the nonlinear filter completely misses the change
in level. On the other hand, no linear filter could perform as well as the nonlinear
filter in figures 6.2 and 6.3. In these cases, the nonlinear filter simultaneously
eliminates noise and sharpens the edges of the signal at the segment boundaries.
As these characteristics both involve the high frequency components of the signal,
the former attenuating them and the latter amplifying them, no linear filter can
have these properties.

It is also worth pointing out that the above computation method is naturally
parallelizable. With an appropriate linear arrangement of processors, the cost, or
savings, in information by merging a segment with its neighbor to the right can
be computed simultaneously for each segment. The merger of maximum savings
can be located in log, M time, and the maximum total time for up to T segment

mergers is reduced to O(T log, T).

Chapter 6 Page 149



Extension of the technique to vector constants is straightforward if the indi-
vidual components can vary independently. We merely describe each component
individually, so the information in I(f;) is multiplied by the dimension of z.

However, more complex families of functions present some conceptual difficul-
ties if they are not naturally associated with the discrete z values. For example, it
would be interesting to apply this method to curve-fitting of polynomials. It is dif-
- ficult to describe these however, without encounte-ring problems of truncating real
numbers or assigning complexities to the rationals. One approach, which naturally
generalizes the constant function case, is to describe k*® order polynomials with a
sequence of k + 1 values for 2, distributed evenly across the segment. For example,
a first order‘polynomial on the ith segment, t; <t < t;11, is a line, which can be
described by specifying its two endpoints, 2(t;) and 2(ti+1 —1). Then f;(t) can
be interpolated linearly between these two values. A rounding convention, e.g. to
round off Z-values to the nearest integer, must be assumed in the interpretation.

More generally, a k*® order polynomial can be specified with k + 1 2-values,

200 (1) ,3(9), as the unique k%2 order polynomial, fi, such that
20 = £,¢f)

where the time values, tEo), tEl), ceny t,(k), are spread maximally and evenly across

the segment, eg., Wlth
] J
tsJ) = t{ + —l (t,‘+1 -1- t,)

Because the interpolated polynomial can exceed the range 1 < f;(t) < N, we could
incorporate an additional convention in the interpretation: values of 3 greater than

N or less than 1 are truncated to these extreme _values.
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Although it is not altogether clear what set of N*t! polynomials can be de-
scribed in this manner for k intermediate between 0 and the length of the segment,
they do form a reasonable set at the two extremes of this range. The zero'® order
polynomials are constants, described by a single z-value, the first order polyno-
mials are described by their two endpoints, and the most complex polynomials
are described by listing each of thé z values the polynomial passes through in the
segment. In this last case there are exactly N*+1~* such functions, one for each
set of possible input values for the segment, so the fit can always be made exact.
We hasten to point out that we have not implemented this class of functions, or se-
riously examined optimization methods for the structural portion of the problem.
As discussed in Chapter 8, we leave this as a problem for future research.

Finally, we should mention that the above problems may be solved with many
different optimization techniques other than the simple approach implemented
here. Rather than this one-pass merge-only algorithm, a combination of split and
merge transformations, starting from a number of random segmentations, is more
likely to avoid local maxima. It is also possible to develop recursive approximations
to the criterion which work in real time, but with some delay, for applications such
as in the Appendix. Other techniques, such as dynamic programming, are also
feasible.

The MI framework gives a new perspective to a large class of important
segmentation problems. Two obvious ones are the segmentation of continuous
speech and music. Another is the detection of times at which changes occur
in the parameters, or order, of a dynamic system, due to operator a.djustments
or component failures. Medical waveforms, such as electrocardiograms, provide

other interesting segmentation problems. In chapter 8 we suggest these as areas

for future research.
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Chapter 7

IMAGE PROCESSING

As a final application of the MI framework, we propose a new approach to
machine vision problems, based on the notion of “image complexity.” We take
a simple problem from the field of image processing, and pose it in terms of
structure estimation. The problem here is to reconstruct simple binary images by
“eliminating noise”. By binary tmage, we are restricting ourselves to images which
are describable as a rectangular array of {0,1} values. For example, the image in
Figure 7.1 is a 128 x 128 array of pixels, each of which is either ON or OFF, with
no intermediate grey levels. In this model, noise has the effect of inver‘ting’a, bit,
from 0 to 1, or from 1 to 0, i.e. it is additive, modulo 2. Given a noisy image,
such as Figure 7.1, we wish to estimate the “structure of the image.” We will
present an estimator which produces Figure 7.2 as an estimate of the structure of
a noiseless image for this particular input. Possible applications of this, and similar

problems, may be found in the field of industrial robotics, in situations where a
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Figure 7.1 Noisy Binai'y Input Imagé to Process

noiseless binary image is sufficient information for parts location. A survey of
other image segmentation techniques can be found in Pavlidis (1977].

In order to reconstruct images in this v&ay, the MI framework first requires
that a language be designed for describing images, and that we have some prior
notion of simplicity and complexity for images. For illustrative purposes, we take
a very simple model of image structure which is appropriate only if our a priors
knowledge is to expect “boxey” rectangular images such as F igure 7.2, in which all
boundary lines are orthogonal to the array borders. As discussed below in section
7.5, more versatile image models can be incorporated into the same framework.
A measure of the fit between an input, such as Figure 7.1, and a model, such as
Figure 7.2, is easily obtained by counting the number of pixels of the image which
agree with the model. This will be modified somewhat below to incorporate a

probabilistic noise model.
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Figure 7.2 Reconstrucfed Imagem

It is insightful to think of this problem as a two-dimensional generalization of
the one-dimensional segmentation problem of Chapter 6. The trade off between
simple models and good fit comes about in an analogous manner. Here, the
simplest model will be the null image—a blank image is easily described—and
Figure 7.1 can be described as a null image in which all the pixels that are set
ON are described as noise. At the other extreme, every pixel in the figure can be
described as part of the image structure—Figure 7 may well be a noiseless image
of many small random squares and rectangles—but it would be'a very complex
image to describe. The estimator which we will develop below chooses Figure 7.2
as the model of intermediate complexity between thesé extremes which, along with
a description of the pixels where Figures 7.1 and 7.2 differ, gives the mos. concise
description of Figure 7.1.

Compared to the one-dimensional segmentation of Chapter 6, this problem

incorporates the simplification of models restricted to binary values, so there are
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only two possible levels for each segment. The problem of estimating the level,
given the structure, is therefore easier. But the segmentation problem is much
more complex, as each region of the plane might have a boundary of any com-
plexity. In the linear segmentation problem, only the number of segments and
the positions of their endpoints had to be determined. Here we must determine
the number of regions in the pl_ane, the number of bordering segments for each
region, and the positions of each border. The structural possibilities are far more
complex.

We should note that this problem comes from Marroquin [1985], but here we
use a very different class of models and method of solution. In Marroquin’s ap-
proach, an image is modelled as a Markov Random Field (MRF), and a stochastic
relaxation solution technique is employed. The underlying similarity lies in the
fact that both classes of models incorporate some sort of local spatial interactions,
but ours are geometric, based on properties of descriptions, while Mérroquin’s are
probabilistic. Because our “boxey” model class has very different properties from
the MRF model, the solutions display very different properties. A comparison of

the two methods is made in Section 7.3.

7.1 Languages and Information for Binary Images

In a visual field discretized into N pixels, a binary image, 7, can be represented
as a point in a N-dimensional vector space where each component is restricted to
the field {0,1}. Some ordering of the pixels, e.g., lexicographic on the X and Y im-

age axes, can be specified to determine the vector indexing. Similarly, an estimate
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of an image, ;', and the noise, n, which corrupts this image can also be represented

as points in this space. With the additive noise model described above, we have
i=14+n withii,ne {0,1}¥

where the addition is modulo 2.

We can describe such images with different forms of image description lan-
guages, each designed around different types of image structure models. Thé most
common model describes an image as a sequence of N pixel descriptions, where
a pixel is described with the terms “0” or “1” to denote its being off 6r on. This
form of pixel by pixel description, or “bitmap”, is formalized by the grammar

BitMap — P, P,...Py
P; — 0|1
Such a description can be interpreted as an N-vector in the obvious way. A
combinatorial notion of information gives
I(P) =1
I(BitMap) = N

If we interpret an image as noise, then different languages and information
measures are called for, depending on the structure of the noise. Given our noise
structure, in which pixels are randomly inverted independently of each other, and
with unknown probability, p, we augment the syntax above with a term P to

describe p, and employ an entropic measure of information for the pixels.

noitse — p BitMap
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N _ Jlog, B, if P;=1;
I(P) = {log2(1 —$), ifP=0.

The choice of syntax for describing p will not affect anything below. One
option is to use an integer between 0 and N, interpreted as the numerator over
a denominator of N. Because the information, I(p), is assumed constant, and p
appears exactly once in the overall description, we may ignore its contribution to
the total information. Then, by Gibbs’ theorem, the value of  which minimizes

I(noise) for any given bitmap is the sample probability,

_ M
P="N

where N; is the total number of times that “1” appears in the bitmap.
Measuring the information in 5 as constant is reasonable because only an
extremely narrow and high a priori probability distribution for p would have any
affect on our estimate of the noise. For a reasonably sized image, such as the 214
pixels in any of the figures in this chapter, the description of the bitmap within
the noise term is expected to contain 21 H(p) bits of information, where H is the

standard entropy function.

H(p) = —plog, p — (1 — p) log,(1 — p)

Then I(noise) = NH(p)+ C. A coefficient of 214 will cause this term to outweigh
the information in the description of p, unless p is known in advance with far more
accuracy than is reasonable for a noise model.

For noise models with correlation, e.g. diagonal stripes or the short horizontal
bars of television “snow” , other description languages and measures would, be

more appropriate.
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To describe noiseless images, we need to employ a notion of simple images
which is relevant to our particular vision application. In a simple industrial
robotics application, for example, this might consist of templates, translations
and rotations of views of an inventory of components to be located. In the most
general context, one would want to describe images in terms of “the furniture of
everyday life,” such as tables, chairs, people, faces, etc. We wish here to use a
picture description language of intermediate versatility between these extremes,
but far more general than templates. For demonstration purposes, we émploy a
very simpie notion of a connected rectangular image (cri), which is bounded by
a simple closed curve of horizontal and vertical segments. (We diséuss. below the
effect of relaxing this simple-closed curve condition.) Figure 7.2 contains four cre’s,
corresponding to the outline and three “holes” in the picture.

To describe a ¢ri, we could list the coordinates of the vertices in a cyclic order

around its perimeter with
cri — V1V2 ...Vk

Vi = (X,Y)
X —1J2]...[128
Y - 1)2|...[128

and measure information combinatorially as
I(X)=I(Y) =log,128 =7

for our 128 x 128 images. However, given our constraint that the segments are
either horizontal or vertical, the X or Y value (alternately) repeats from the
prévious vertex, and half of the description is redundant. Accordingly, we can

either adjust the language to eliminate the redundancy with

cri—= XY XY... XY
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or change the information measure to I (V) =17, without recursing down to the X
and Y terms. In either case, a connected rectangular image with k vertices would
have I(cri) = Tk. More generally, this will be

log, N

I(crd) ~ s

k

Note k must be even because horizontal and vertical segments alternate in the
cycle.

At a finer level of analysis, we may wish to eliminate the redundancy allowed
by the language in the & cyclic permutations of the sequence for listing the vertices.
We could for example require the first vertex listed to be the first according to some
exogenous ordering, such as the lexicographic ordering. We may also account for
the V* term with an information term such as I*(k), as discussed in Section 3.2.
But as these two factors respectively subtract and add terms of order log k, which
largely cancel, we are content to measure I(cri) as given above. We also ignore
the fraction of descriptions corresponding to images which are not simple closed
curves; this becomes significant with large k, and suggests an interesting, but
difficult, counting problem.

We interpret the connected rectangular image description as an image vector
in which the pixels interior to the perimeter are ON and those exterior to it are
OFF. The notion of “interior” is well defined here whether or not we restrict
descriptions to those where the edges form a simple closed curve.

The next step is to combine a set of m connected rectangular images into a

general rectangular image (gri), with

gri — €1y Crig...Crig,
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which we interpret as the sum modulo 2 of the individual images. For reasons
discussed below, we do not wish to allow the case in which some of the connected
rectangular components partially overlap. In measuring I(gri), we again ignore
the I'*(m), and the redundancy in the m! possible orderings.

Finally, our complete description of an image combines a general rectangular

image and a noise image.
s(z,0) — s(8) s(z|9)
s(6) — gri
s(z|6) — notse

The interpretation of the image is again the sum modulo 2 of the interpretation

of the components. The final MI criterion is

logy N
2

I(s(2,0)) = K+ NH(p)+C

where K is the total number of vertices, summing k over the connected images,
and p is the fraction of pixels set ON in the description of the noise, i.e. the
sample probability. The computational convenience of a complexity measure that
is a function of K rather than the m values of k will be seen below. It allows an
algorithm which operates in the image plane, rather than syntactically, and is the
real reason for ignoring the logarithmic tefms above.

Note that our language incorporates a slight asymmetry between ON pixels |
and OFF pixels. A completely null image is described by the null sentence, but an
input of all 1’s requires a four-vertex description of the entire array. (This asym-
metry appears in the optimization algorithm below as a boundary value condition
on the estimated structure. We fix a border of 0’s around the array storing the
estimated structure.) The slight preference which results for black images on a 7
white background, as opposed to the reverse, could be eliminated, if desired, with

a syntax for a gri that includes one bit of information for inverting an image.
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7.2 Optimization Methods

The problem of minimizing I(s(z,6)) for this problem is formidable. In terms
of bit inversion in the image plane, the search space is a hypercube of 24 dimen-
sions. There are 22"* distinct images which can be described as a general 128 x 128
rectangular image, and could therefore be the output of our estimator. Exhaustive
search is not an option. In syntactic terms, the space is even larger, as each image
has an infinite number of distinct descriptions. Furthermore, in addition to deter-
mining the structure of the general rectangular image, we also need to determine
the noise parameter, p.

There are many ways this criterion might be optimized, at least approxi-
mateiy. Our concern here is not to find the best optimization method, so much as
to demonstrate that the MI criterion itself is a viable way to approach vision and
pattern recognition problems in general. Accordingly, we have developed a simple,
fast algorithm for approximately optimizing the criterion which, we feel, demon-
strates the feasibility of the method. For actual machine vision applications, more
attention would have to be paid to the optimization techniques, in order to avoid
some of the local minima which befuddle our simple algorithm. Thesé problems
and possible improvements to the algorithm are discussed below.

We again rely upon local search techniques, bﬁt here we embed them in a
slightly more sophisticated multigrid superstructure. The multigrid approach in-
volves successive approximations to an estimate using successively finer levels of
resolution. In the image processing literature, this superstructure is often réferred
to as a quartic picture tree, or pyramid, and is used in a variety of image processing
algorithms. This approach will be seen to allow a very simple éet of transforma-

tions to quickly lead to a local minimum which avoids many possible local pitfalls.
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It does have some trouble at the levels of high resolution however. We therefore
augment our first set of transformations with a different class of transformations
which make adjustments at the finest level of resolution. The multigrid technique
is presented in Section 7.2.1, and the follow-up “slide” transformations are given
in Section 7.2.2.

Although these sections are very specific to rectangular images, and involve a
considerable amount of implementation details, the reader should not lose sight of
the bigger picture. Both sets of transformations are centered on local operations
which are suggested naturally by the clause structure of the grammar for describing
images. As outlined in Chapter 3, the transformations can be described as adding,
deleting, splitting, or merging the clauses which describe connected rectangular
images. They are performed whenever the information measure in the complete
sentence is reduced. The algorithm terminates when no further local improvements

are possible.

7.2.1 MULTIGRID ALGORITHM

The multigrid portion of the algorithm involves repeating the same generalized
transformations at increasingly fine levels of resolution. The set of transformations
we employ can be stated either in terms of syntactic transformations which modify
descriptions, or directly as operations on pixels in the “image plane”. An interplay
between these two modes of analysis is developed and exploited, to find a fast
algorithm in the image plane that ina.inta.ins the properties we specified in the
description space.

Let R be the resolution index, which will vary here from coarsest, 7, down to

finest, 0. More generally, for a square array of N pixels, where the number of pixels
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on a side is some power of 2, R varies from b—ggi to 0. For each resolution value,
we allow only certain restricted classes of descriptions. Specifically, we constrain
the set of X and Y values which constitute the vertices in the description of a
rectangular image to be multiples of 2. At the finest level, the coordinates are
unconstrained, being multiples of 2%, i.e. arbitrary integers. At each level of
resolution, the algorithm searches for a locally optimum estimate, using the best
estimate from the previous, coarser, level of resolution as the initial va,lué.

We index each pixel at the finest level with (z, y) coordinates ranging from 1
to v/N. The fundamental transformation we employ is easiest to describe in the
image space: we insert or delete a unit square at the current level of resolution.

By “unit square” we refer to a block of pixels with (z,y) coordinates satisfying
1228 <z < (i +1)2% and 7,2® < y < (4, + 1)2% for some 7,4,

The 7, and ¢, terms are the coordinates of the unit square in the grid at level R,

and satisfy

0< 1,1y < 2—\/1{7

Following the greedy approach discussed in Section 3.4, we wish to consider
all possible transformations, and perform the one which results in the largest de-
crease in I(s(z,0)), repeating this until no transformatior. results in an information
savings. At multigrid level R, there are 27 2% NV unit squares to consider inverting.
For any inversion, there will be some chaﬁge, AK, in the total number of vertices

required in the image description. Geometric considerations show AK can take

only five values, hecause rectangular images always contain an even number of
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vertices, and inverting a single rectangle can change the number of vertices by no

more than 4. Therefore,
AK € {—-4,-2,0,2,4}

There must also be an inversion within the corresponding unit square of the
noise description: the 0 and 1 descriptions of the pixels within the unit square must
change to 1 and O respectively. This is required in order that the sum mod‘ulo 2
of the various contributions to each pixel remain invariant. In other words, when
we change s(f) we must adjust s(z|) appropria;tely, so that the complete sentence
remains a description of z. From the form of the MI criterion at the end of
Section 7.1, we know the effect of inverting a unit square is to increase I (gr?) by
(log, VN)AK, and change I (noise) by a term which depends on the number of
{0,1} values of the pixels within the unit square, and the value of p. We first
address the determination of AK.

The effect of these unit-square inversion transformations on the descriptive
complexity, I(gri), depends on the local context of the inverted square. Nine of
the 256 possible local contexts in which a unit square might be inserted (set to 1)
are indicated pictorially in Figure 7.3. Inserting or deleting a unit square has
different affects on AK depending on the eight surrounding unit squares. It is
independent of the remainder of the image however, because whether each corner
is or is not a vertex in the most concise description of the gri depends only on the

four squares meeting at the corner, and only the four corners of the square which
inverts may change their vertex status.
Each row of Figure 7.3 shows a separate example. For each, in passing from

the left figure to the right, the central unit square of a 3 x 3 group of unit squares
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Figure 7.3 Local Image Transformations, and Effects on Complexity
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is inserted (set to 1). The net increase in K, the total number of vertices in the
entire figure, is indicated in the column AK. The transformations are reversible,
so transformations in which unit squares are removed (set to 0) correspond to
passing from a figure on the right to a figure on the left. The associated change
in K will then be the negative of the quantity printed.

The types of transformations shown in Figure 7.3 suggest themselves natu-
rally when one seeks ways of perturbing a rectangular image into a similar image.
The pdrticular transformations we have implemented are restricted to squares on
grid boundaries however,- while one would generally want the affine rectangular
transformations. This leads to a class of local search failures discussed below. Cor-
responding to these unit square inversions are various syntactic transformations of
the description of the image which involve adding, deleting, merging or splitting
terms describing connected rectangular images. Respective to the rows A-I, the

syntactic operations are to:

(A,C) Insert a new cri term with four vertices in the gre list.
(B) Increment or decrement a single X; term by 2.
(D) Insert an X term and a Y term (adjacently) into a cri list.
(E) Insert four terms, X Y X Y, into a crs list.
(F,G,I) Various forms of splicing two cri lists together or dividing one into
two.

(H) Deleting an XY pair from a cri list.

~ Admittedly, these and other operations are unified and more concisely described in
terms of image plane operations than in terms of syntactic descriptions. However,
it is important to note that they can all be formalized as local syntactic trans-
formations, and we require that the change in complexity of the description be
determined before a transformation is effected, in order to ensure the MI criterion

always decreases. The syntactic statements of the transformations also have the
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advantage of generalizing immediately to the affine rectangular boxes, where the
image-plane versions would be more complex. The unification of the transforma-
tions by means of unit boxes is only allowed because we can develop a measure of
chahge in descriptive complexity based on local image properties.

For example, the top row of the figure indicates that inserting a unit square
which is not adjacent to any other picture elements increases the total number of
vertices by 4. Conversely, deleting an isolated square eliminates four vertices. The
second row indicates that sliding a vertical edge to the left or right only adjusts
the lengths of segments, and does not affect image complexity, and so AK = 0.

Row C illustrates a rather subjective judgement of image complexity. The
restriction mentioned above, that the edges of a connected rectangular figure form
a simple closed curve, was implemented so that this configuration is just as complex
as one in which the central square does not share a corner vertex with the region
in the upper right. In other words, we give no benefit, in terms of simplicity,
to diagonal adjacencies. If the perimeter of a connected rectangular image were
allowed to intersect itself, two rectangles with a single common vertex could be
described as one object with six vertices, rather than two objects totalling eight.

Similarly, the restriction that two connected rectangular images not partially
intersect is implemented because we feel the left image of row G is more complex
than the right image, and should be measured as two notched objects with six
vertices total, rather than two overlapping squares totalling only two vertices. We
therefore require that no image borders, whether in the same object or two distinct
objects, may cross. Complete images may be embedded in other imageé however,

as in Figure 7.2.
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Figure 7.4 Sixteen Combinations of 4 Squares Being ON or OFF, and Cor-
- responding Number of Vertices Required to Describe the Local
Portion of the Image

For computational purposes, we need an algorithm which gives us the value
of AK as a function of the eight surrounding squares. One way to develop this
algorithm is to begin with thg observation that a grid point either is, or is not,
a vertex of an image as a function of the four squares which meet at the grid
point. Figure 7.4 indicates the sixteen possible arrangements in which four squares
surrounding a grid point may be independently ON or OFF. The corresponding
number indicates if the central grid point must be described once, twice, or not
at all, in the shortest description of the image. The eight arrangements with an
odd number of squares ON each require the center grid point to be part of the de-
scription of the image, because a horizontal and vertical segment meet there. The

two “checkerboard” arrangements require two descriptions of the vertex, because
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of our constraint that borders not cross. The remaining six configurations require
no description of the central vertex.

(Note incidentally that the algorithm would be simper without the border-
crossing constraint, as then the vertex count would simply be the parity of the
number of squares set. Casual experimental comparison of these two complexity
measures did not show a systematic significant difference in the final estimate. All
the results presented here use the constraint.)

The patterns of Figure 7.4 are easily recognized, so an algorithm can straight-
forwardly determine the number of vertices in a 3 x 3 group by adding up this
quantity for each of the four 2 x 2 groups within the 3 x 3 group. By doing this
once for a givén 3x3 arrangement, and again for the same arrangement but with
the central square inverted, the difference between these two quantities gives the
AK value of Figure 7.3. These values can be computed once and stored for the
256 possible contexts of a unit square.

We now address the question of how the noise term changes when a unit
square is inverted, and the problem of estimating . As mentioned above, the 0’s
and 1’s in that portion of the bitmap which describes pixels in.the inverted unit
square must invert to 1’s and 0’s respectively. This ensures that the interpretation
of the description remains unchanged. Thus, the number of noise bits described
with a “1” in this region changes from its current value, ny, to Ap — ny, where
Ag = 2% is the area, in pixels, of the unit square at resolution R. The increase in
“1” bits in the bitmap is then AN; = Ag — 2n;. The exact increase in I (noise),
taking into account the optimal change in $ due to the change in N; is then

Al(noise) =(Ny + AN1)logy(p+ Ap) + (N — Ny — AN) log, (1 — 5 — Ap)
— [N1logy p + (N — N1) log,(1 — 5)]

Chapter 7 Page 169



where Ap = A—Isrl. Ideally, this would be computed for each inversion, and P
would be updated. Rather than compute this each time however, it is reasonable

to linearize it by holding p constant. The increase in I (notse) then becomes

-~

Al(noise) ~ (2ny — Ag) log,

A

This is a quite innocuous approximation because the area of a unit box is typically
much smaller than N, so Ap for any inversion is quite small.

The algorithm then operates as if p wére a known constant during each multi-
grid level, using the value of p estimated from the previous level. In practice this
converges rai)idly to its correct value. This could be modified if desired, by re-
peating the analysis at the same level with a new 5, alternately estimating the
structure and estimating p in the manner of the EM algorithm [Dempster 1977,
Feder 1987], until they convergéd. However, we expect this would run slower and
produce identical results, because the coarser levels exist essentially to provide an
initial description to modify at the finest level, where previous errors can generally
- be corrected.

Combining the changes in information due to the complexity, AK, and the

fit, AI(noise), we get the following decision rule:
Invert unit square if v = (log, VN)AK + (2n; — Ap) log, T—ﬁ_ﬁ <0

which we interpret in the usual “greedy” manner, always making the transforma-
tion of maximum ifnprovement. This is easily implemented by storing a table of
the decision variable, v, for each unit square. This is searched for the most ﬁeg-
ative eritry. Note that after a transformation takes place, at most nine entries in

this table must be updated, the inverted square and its eight neighbors, because
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the structural change affects the 3 x 3 neighborhood which determines their AK
term. (This locality is the real computational benefit of linearizing the AI(noise)
term. In the nonlinear form, the value of v for every unit box would have to be
updated slightly after every transformation.)

This multigrid optimization, although quite effective, utilizes local transfor-
mations, and can not be expected to find the global optimum. After implementing
it and watching it succumb to a certain type of problem, a second class of local

transformation suggested itself.

7.2.2 SLIDING TRANSFORMATIONS

The problem with the multigrid method is that at the finest level or two of
resolution, the number of pixels in a unit square is quite low. The maximum
savings in noise information is then less than the information required to describe
two new vertices. Accordingly, the decision rule allows no structural additions.
(The size at which this happens depends on p. The algorithm can detect this and
terminate the multigrid operations without making any computations at the finest
levels.) It often happens though, that if a line of pixels in a row or column, or a
rectangular group of unit squares, were all inverted together, the noise savings in
this larger region would pay for the complexity.

A general fix for this problem is to consider all possible rectangular groupings
of unit squares, and try to invert an entire group when no single square can. But
at the finest resolution there are NTz such rectangles, and we do not wish to spend
the time to try all possibilities. Since the most common error we noticed after the

multigrid operations was a segment which should be translated one or two pixels

to its side, a reduced class of rectangles suggested itself. As indicated in Figure 7.5,
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Figure 7.5 Effect of Sliding Transformations

we consider inverting a rectangle formed by translating an edge segment one unit
its side. By iterating the operations, extended “slides” are possible, as long as
each step reduces information.

Syntactically, this operation simply increments or decrements a single X or Y
term in a cr7 description, but does not add complexity. Accordingly, the operation
reduces the information measure whenever the line of pixels under consideration
contains at least one more noise pixel than non-noise pixel (assuming, of course,
~that p # 0.5).

As with the implementation of the multigrid algorithm, .our implementation
of this transformation is in the image plane rather than in the space of descrip-
tions, but it is conceptually clearer in descriptive terms. Our implementation first

finds all vértical boundaries, tries sliding them left or right, and then tries to slide
horizontal edges up or down. These operations are repeated until no transforma-
tion is found which improves the information criterion. (In the image plane, a

pixel by pixel scan is undertaken. A segment border is detected by the presence
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of two neighboring pixels at which the estimate differs. The edge is followed, and
the number of noise pixels along either side of the border is tabulated. If more

than half are noise, the edge is translated.)

7.3 Results

Figures 7.6-8 show thé results of the above optimization algorithm on a se-
quence of similar images, with progressively increasing noise levels. In each case,
the upper image is the input, 2z, and the lower image is the the estimate, f. These
three inputs are all constructed from the same simple rectangular figure, corrupted
by adding different pseudorandom noise images, with the indicated density of pix-
els independently set. We hé,ve therefore constructed an input in accordance with
the noise model assumed above. The underlying figure from which the images
were constructed happens to be identical with the lower image in Figure 7.6; the
estimate here is exactly correct.

The types of performance shown in these figures is typical. For relatively
low noise levels, (0 < p < 0.25), the estimate is generally exactly correct if the
“true” image is truly boxey. At a higher noise level, such as in Figure 7.7, where
p is 0.3, the estimator loses some of the finer details of the figure, but finds the
larger structures. Increasing the noise level to 0.35 in Figure 7.8, large features
are typically missed. The algorithm returns just the torso when p = 0.40. (At
p = 0.5 the input is totally noise, independent of the underlying figure, and the
algorithm returns a null image.)

The analogy between this two-dimensional segmentation problem and the
one-dimensional problem of Chapter 6 is evident. These properties are typical

of nonlinear filters, and it is again insightful to think of the estimator in these
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Figure 7.8 Input and Estimated Structure, p = 0.35
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Figure 7.9 Image Restoration Based on Markov Random Field Model, from
Marroquin [1985]. ’

terﬁs. The estimator_ filters the input image in a nonlinear way to arrive at the
output image. A nonlinear filter has the advantage that it can simultaneously
reduce noise and sharpen edges, which no linear filter can do. It has the disad-
vantage however, that above some critical noise levels it begins to make serious,
unacceptable, estimation erroré.

To compare our approach with a more linear approach, consider Figure 7.9,
from Marroquin [1985]. From left to right, the figure shows a synthetic figure sim-
ilar to ours, a noise-corrupted input (with p = 0.35), and a maximum likelihood
estimate using a first-order Markov random field model. The details of Marro-
quin’s method do not concern us here, but the general properties of his estimator
do. It is not truly linear, as no method can be, with only binary values for out-
put. However, a linear approach, such as a simple spatial filter, passed through
a threshold cbmpa.rator, would have similar characteristics. A linear technique is
expected to provide at least a rough approximation to large features, even in high
noise, and would give some indication of the leg amputated in Figure 7.8. On the
other hand, a linear method will always give the type of textured edges seen in

Figure 7.9, rather than the sharp edges of Figures 7.6-8.
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If the noise levels are not too high, and the rectangular model is appropriate
to the image processing task, then this descriptive MI approach is clearly supe-
rior, because it incorporates the correct a priori information. For other classes
of images, a different description language would be required. For example, in
Figure 7.10 an image containing rectangular, triangular, and elliptical substruc-
tures is estimated with the rectangular algorithm. Not surprisingly, rectangular
approximations to the nonrectangular c;)mponents result. A more general image
description language would incorporate terms for describing diagonals and curves.

The aigorithm is coded in Turbo Pascal for an IBM PC, and runs in less
than a minute for a 128 x 128 image. The program Was developed with a higher
priority given to the programmer’s convenience than speed. A small effort would
probably speed it up by a factor of ten. (For example, the determination of AK
as a function of the 3 X 3 neighborhood is computed anew for every inversion
considered. Much time would be saved if the values had been precomputed and
stored in a table of the 256 possible contexts. Additional improvement would result
if Turbo’s 64K-byte memory capacity limitation were sufficient to allow various

images to be byte-mapped rather than bit-mapped.)

7.4 Probabilistic Interpretation

There ai'e two ‘ways for a strict Bayesian to interpret this example probabilis-
tically. One could look at the language and information measure as specifying an
a priori distribution for all images, or one could interpret the resulting decision
rule as specifying an a priori distribution for each unit square as a function of the

eight surrounding squares. In the first case, the probability of an image could be
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interpreted to be the normalization of the function, 2= ¥ , of the complexity of the
image.

It is more interesting to examine the multigrid algorithm as if it were a likeli-
hood ratio test technique for selecting between structures with known conditional
probabilities. Rewriting the decision rule of Section 7.2.1 (for the case < 0.5)
gives

«: . n s Aﬂ lo \/ﬁ
Declare square “inside” if n; > =+ —5—.-2 log 1=E AK

This makes intuitive sense, because 423 is the decision boundary if the image does
ot change in complexity, e.g. for a “slide” transformation, and higher values of
ny are required in proportion to the increase in complexity, AK. At higher noise
levels, a larger number of bits are required in the fit, to justify the complexity.
Under the assumption that the unit square in question is entirely outside
of the true image, our noise model makes n; the sum of Ar Bernoulli trials,
i.e. a Bernoulli random variable with parameter p and mean PAgr. Under the
assumption that the square is inside the image, the parameter becomes 1 — p. The
likelihood ratio test that chooses between these two hypotheses, under the a priori
assumption that a box is inside the image with probability P;, and outside the

image with probability 1 — P;,, is

og 1=Pin
Declare square “inside” if n; > A& 4 —— Fin
2 2log 1=p

P

By equating corresponding terms of these two decision rules, we obtain a
relation between AK and P;,. The two approaches make the same decisions

when
1

1+VNH
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Corresponding to the five possible values of AK, we get the following rather strong

table of relations for our implementation in a 27 x 27 array.

AK P;
4 ~ 228
2 ~ 214
0 0.5

-2 ~1—2"14
—4 ~1-—2728

One éould, if one were a strict Bayesian, interpret our method as one in
which we merely selected these values as a priori conditional probabilities for
a unit square being inside the true image, conditioned on knowledge of the eight
surrounding squares. For each of the example contexts in Figure 7.3, we are making
decisions as if the context told us the a priori probability of the center square being
in the image. However, we view this as a rather roundabout interpretation of the
results. We certainly did not design an estimator with any such probabilistic
model in mind.

It is interesting to note that this gives us a Markov random field interpretation
of our model. Each pixel has a conditional probability distribution determined
by the values of the pixels in its neighborhood. It is not clear however, if this
probability distribution satisfies the consistency conditions for a MRF. If so, this

suggests that other methods, such as stochastic relaxation, may be useful for

finding the MI estimate.

7.5 Extensions

The descriptive model and optimization algorithm above might be useful

for severe data compression applications. However, they are intended merely to
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demonstrate the concepts and practicality of structural estimation of images, and
not as an end in itself. There are many ways to improve the optimization of the
given criterion, and even more ways to develop more versatile criteria.

The optimization method would benefit from additional transformations
which allowed arbitrary rectangles to invert, rather than only unit squares at the
current multigrid level. For example, the missing appendage of Figure 7.8, which
is clearly visible to the eye in the input, is missed because of weaknesses in the
combinatorial optimization, rather than the MI criterion. If the correct rectangle
were available as a transformation, the criterion would say to invert it. Many
possible ways of increasing the quality of the available transformations without
searching through the complete set of rectangles come to mind. There is no point
in expounding on these here however, as the rectangular class of images is only of
limited applic;a,tion.

For completeness, we should note that other optimization methods are al-
ways worth exploring in difficult combinatorial problems. Stochastic relaxation
techniques would sometimes allow transformations in which information increases
in the hopes of climbing out of certain local minima. Rather than always start-
ing with the null image, multiple initial descriptions based on randonﬁ rectangles,
linear filters, or various heuristics could also lead to better minima. (In an ap-
plication in which video images are to be compressed or analyzed, the estimated
structure of the previous frame would be another good initial description.)

The locality of the transformations and de;ision rules presented above make
them highly parallelizable. For example, each unit square at a given resolution
level can be analyzed in parallel by a separate processor in a rectangular grid of

processors. Another form of parallelization can be implemented by arranging a
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cycle of processors corresponding to the cycle of edges or vertices defining a con-
nected rectangular image. Many of the transformations above can be implemented
by having each processor responsible for just those transformations which change
its local geometry. Increased complexity would be accompanied by the splicing of
additional processors into the loop.

Another interesting direction for future work is to develop other picture de-
scription languages, of grea,ter‘eloquence, yet which also lead to efficient algo-
rithms. Objects with curved borders seem, at this point, to be a difficult exten-
sion as they are generally computationally burdensome. A more promising step
would be to design a language for arbitrary polygons. They are easy to describe in
terms of pixel vertices, and the relations between the descriptions and the image
space may not be too troublesome. (Of course, “jaggies” and other problems due
to the discrete geometry of pixel arrays may be something of a nuisance.) The
set of transformations could center on the operations of inserting, deleting, and
translating vertices.

A different direction for extending the binary rectangular image class is to
explore models’with different grey levels. In addition to piecewise constant models,
these allow piecewise linear models, in which image intensity is expected to vary
smoothly across each segment.

Finally, we note that the MI criterion appears to be a very natural approach
to the problem of extracting stereo depth. If segments of one image are similar
to translated segments of another image, the joint description in terms of regions,
translations, and residual differences provides a very concise description of the two

images together.
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Chapter 8

CONCLUSIONS

In this final chapter we review and discuss the approach to estimation advo-
cated here. The summary in Section 8.1 emphasizes the logical structure of the
framework, and the nature and function of the different parameters of estimation,
when seen from this point of view. In Section 8.2 we discuss the method and
interpret it from a range of vantage points. Finally, in Section 8.3 we suggest
possibilities for extending the framework and mention several applications which

seem amenable to the technique.

8.1 Summary

The goal of this work is to further our understanding of the basic issues and
relations involved in the estimation of structure, while remaining cognizant of the
need for practical methods to apply to real problems. We have formulated a class
of structure estimation problems which are not handled satisfactorily by classical
estimation means. Many problems in many fields can be formulated in these terms,

and often new insights and new methods of solution appear.
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To solve these problems, we propose that a formal description system be
designed for each application which makes explicit the structural nature of the
space of unknowns, and the relations between the members of this space. To
the maximum extent possible, this formal language should maintain a structural
relationship between the construction of individual sentences and the relevant
aspects of the structures in the space. A hierarchical organization is both natural
and powerful. It allows cémplexity measure for objects in this space to be formed -
in an additive manner. At any point in the hierarchical structure, the information
measure then can be used to compare substructures in terms of a combihation of
simplicity, probability, and nonrandomness which is relevant for the application.

Following this hierarchical format, it is natural to describe the input to an
estimator in terms of possible structures and residual difference between a struc-
ture and the data. An additive information measure then automatically results
in a tradeoff between simplicity and fit in the final estimate. The MI criterion
expresses what we desire in an estimate. This is clearly separated from the algo-
rithmic question of how to find its optimum value. In general, this will be a difficult
computational problem, and different methods of optimization are appropriate in
different applications.

Our general intent is to make as explicit as possible the nature and effects of
the choices required in any estimation procedure. From a mathematical point of
view, these choices will be arbitrary. But, we believe that if description systems
and information measures are chosen in accordance with “human taste and usage”
then the performance of the resulting estimator will be deemed acceptable. Note
that this philosophy contrasts strongly with many others, e.g., Rissanen [1986,

p. 1085] who seeks “a foundation for statistical reasoning which is as free from
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arbitrary choices as we can make it.” We feel these arbitrary choices can not be
eliminated, and instead we must seek to understand them.

We have applied this methodology to a range of problems and presented the
results of simple simulations. The variety of problems illustrate the adaptability
of the method: finite and infinite domains, probabilistic and nonprobabilistic do-
mains, ﬁumeric and non-numeric domains can all be treated. In the FSM and MS
examples, the inputs and outputs are unbounded in the sense that the observation
might be of any length and the output might be of any complexity; in the other
examples, the input and output are selected from finite, but large sets. Probabilis-

tic assumptions are made in the realization models for MSs, segmentation, and.

- image processing, but not FSMs or cluster analysis. The clustering, segmenta-

tion, and MS problems involve numeric terms, while the FSM and vision problems
are basically non-numeric. For completeness, the details of these implementations
have been described, but our primary intent in the examples is to demonstrate the
feasibility, ease, and directness of the overall method, not to recommend particular
algorithms.

We have not included any mathematical or logical demonstration of the va-
lidity of the method, because such a demonstration is not possible in the general
context assumed here. Given that an infinite number of structures are generally
compatible with the input data, a criterion which goes beyond the data must
be appealed to. The step from data to structure is a form of nondemonstrative
inference, and can only be given plausibility arguments;

This thesis contains five different types of arguments for the description-based
MI approach to structure estimation. None‘ of these, when examined in isolation,

carry enormous weight, as the overall method can not be validated. Together,
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however, they may be convincing enough to encourage others to pose problems in
terms of the framework, and further explore the MI approach.

1. The method is an insightful and natural approach to many prob-
lems. Although such terms have only subjective meaning, in the
final analysis this argument may be the most convincing. The dif-
ferent functions of description and information measuring are clearly
separated; the tension between complexity and fit is clarified; and
the MI criterion is presented as distinct from particular algorithms
which optimize or approximate it.

2. The MI criterion reduces to many familiar special cases, such as
MAP estimators, ML estimators, and Ockham’s razor, which have
been proposed for estimating structure. There is a sense in which
we can say the MI estimator interpolates between all of these other
methods.

3. The versatility of the method is phenomenal. A formal language
framework allows MI estimates to be quickly and easily constructed
for applications in very diverse fields. Many different kinds of ob-
servations and estimated structures can be integrated in a single
estimator. The examples from the fields of grammatical inference,
pattern recognition, signal processing, and machine vision are all
seen to contain a common thread of structure estimation, which is
addressed in a uniform manner.

4. The method appears to be the only way to accomplish certain re-
sults. For classes of structures in which no probability distribution
is relevant, such as the image processing example of Chapter 7, a
straightforward application of the MI criterion immediately yields
results which can be obtained in no other framework.

5. The case studies should convince the reader of the worth of the
method. It is important to note that they were not invented specif-
ically to exercise the method. To the contrary, all the examples,
except the image processing one, forced themselves on the author’s
attention while grappling with the application described in the Ap-
pendix. The image processing example was taken verbatim from
Marroquin [1985].

In summary, we feel the description-based minimum information approach
to structure estimation is an insightful and powerful technique for solving a wide
variety of problems in diverse fields. It clarifies the opposition between simplic-
ity and fit, and accommodates either probabilistic or nonprobabilistic models of

structure distribution.
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8.2 Discussion

examples of Chapters 4-7. It is fruitful to consider the framework from a range of

Perspectives.

8.2.1 PRAGMATIC VIEWPOINT

From a purely pragmatic point of view, we can argue that there is no notion
of a true answer to many structure estimation problems. Estimators Produce
structures which may be useful for certain purposes, such as data compression
with finite-state Markov models, but the models need not be interpreted as true

models of the world in any sense. From this point of view, we have a particular

the underlying mechanisms generating the data. In this context, an MI estimator
is not formally Jjustified, but simply fills a need. The criterion is viewed as “an

engineering solution” to a practical problem.
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8.2.2 PSYCHOLOGICAL VIEWPOINT

From a psychological point of view, we can interpret an MI estimator as a
way of understanding input data, that is analogous to human pattern recognition.
One can plausibly argue that the balance between simplicity and fit which is
explicit in an MI estimator is analogous to parallel tendencies which humans use
when finding patterns in sensory input. Given two models which are perceived as
having comparable complexity, one prefers the one which is. perceived as fitting
the data more closely; given two models which are perceived as fitting the data
equally well, one prefers the oné which is perceived as simpler. Furthermore, the
success of the MI cluster analysis and vision algorithms in chapters 5 and 7 can
be interpreted as suppoft for the view that MI estimation is a good mathematical
model of human pattern recognition in these applications.

However, as psychology is poorly understood, there is little we can comment,
except to point out the analogy and leave it to the reader’s introspection to evaluate
its worth. Lest the MI model be too quickly discarded in some reader’s minds due
to the combinatorial optimization involved, it should be observed that the mind
does incorporate a powerful ability to find reasonable solutions to many difficult
combinatorial problems. Often, difficult problems can be acceptably “solved” by
having a human visually examine a suitable two-dimensional graphic representa-
tion.

Many pattern recognition algorithms can only be evaluated relative to a hu-
man pattern recognition norm. We can not argue that the cluster analysis al-
gorithm of Chapter 5 or the vision algorithm of Chapter 7 are “correct” in any
absolute sense. We lack a formal principle for evaluating the estimator and com-

paring it to other putative estimators. Indeed, if we had such a formal principle,
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we could use it to generate an estimation criterion rather than propose that the
MI principle be used to generate a criterion. Lacking a principle, we evaluate the
algorithm by seeing if it produces “reasonable” results compared to the patterns
humans see in the data. In this respect, the cluster and vision algorithms fare
well.

In light of the above, it appears that a reasonable avenue for proceeding would
be to first endofse MI estimation as a model of human pattern recognition, and
then to use this endorsement as a principle for selecting the MI criterion in par-
ticular computer applications. If it is felt that the MI principle is a valid model
of human pattern recognition, then it is reasonable to employ the MI criterion
in designing-estimators. The principle of designing a computer algorithm in ac-
cordance with a psychological model is easily justified. In this regard we note
that a structural approach can accommodate Julez’s observation [1969, p. 580]
that “visual perception occurs in hierarchical levels of increasing complexity.” We
are diffident about the first step however, as psychological modeling is outside the
range of our expertise. Empirical investigation is suggested, to develop complexity

measures which order the structure space in the way humans do.

8.2.3 LINGUISTIC VIEWPOINT

From a linguistic point of view, there is another parallel between MI estima-
tion and human problem solving. A little studied, but essentizl aspect of human
natural-language production is the ability to form concise descriptive expressions.
A very simple model of sentence production involves two steps: first one has a
thought, and then a sentence is chosen out of an infinite number of possibiiities

which expresses the thought. For example, a formal semantic model (e.g., similar
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to Montague [1970, 1973]) can be given in which the same “thought” (an expres-

sion in first-order predicate calculus) is expressed by the following four sentences:

I see the big red thing.
I see the thing that is both big and red.
It is the thing which is red and which s big that I see.

™ N

What I here and now see is the thing which is big and not small and

that is esther round or not round and which has the property of being
red.

Although there ié obviously more to the art of rhetoric than merely choosing
the most concise statement of a thought, a human ability clearly exists for finding
relatively concise descriptions of thoughts from the infinite set of possibilities of-
fered by natural language. Arguably, this could be used to support the claim that
MI estimation is a justifiable model for human pattern recognition. It demon-
strates a human ability which could be expressed formally as the combinatorial
optimization problem of minimizing length within a set of sentences that share a
common intérpretation.

It also bears pointing out that the tendency towards concise exposition is
not only a property of language production, but also a formidable force in lan-
guage evolution. This is significant because true synchronic tendencies usually
correspond to some diachronic tendency. As novel objects and structural relations
become more common, language accommodates methods for providing more con-
cise descriptions of them. Automobiles became cars, televisions became TVs, and
personal computers became PCs as they appeared more frequently in descriptions.
Conversely, if an MI estimator is judged to fare poorly, a natural method of repair
is to correct the language or informaiion measure to more accurately reflect the

frequencies at which different substructures and relations are io appear.
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A final comment from the linguistic point of view is that many linguists feel
that the PSG formalism is an excellent model of natural language, Chomskian
arguments to the contrary notwithstanding. If this is so, then the fields of ap-
plication of the method are effectively unlimited, as descriptive systems may be
constructed for any subject we can discuss. (Note incidentally, that any superficial
similarity between the transformations on sentences described in Chapter 4 and

Chomsky’s transformational syntax for modelling natural language is spurious.)

>8.2.4 PHILOSOPHICAL VIEWPOINT

There is an enormous body of literature, spanning over two thousand years,
dealing with problems of induction, language, symbols, and representation, from
a philosophical point of view. As we could not begin to do justice to this corpus,
we restrict our comments to what we consider to be the two most relevant points.
An MI estimator can be considered to produce a theory (e.g., a general structure
such as a FSM) from particulars (i.e. its input data), and so must contend with
the problems of induction which plague all theories of theories.

The classic problem of induction originates with Hume (1748] who points out
that there is never a logical argument from particular observed evidence to general
conclusions. His classic example, that the sun will rise tomorrow, is never certain,
no matter how much evidence we have that the sun aiways rises. Future data
might contradict a generality, whatever the past data may be. Analogously, we
can not expect to find a logical argument that an MI estimator, or any other
estinia.tor based on any other criterion, generates the true structure for which it
was designed. Accordingly, we are not daunted by critics who complain that the
MI estimate may not be “correct.” We can not hope to show validity in any

absolute sense.
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A second problem which inductive theories must contend with is Goodman’s
[1954] new riddle of induction, sometime referred to as “the Goodman paradox”.
Goodman argues that inductive arguments are implicit in many contexts, including
the use of everyday language, and that no inductive technique can select a unique
answer on logical grounds alone. He provides a simple example to demonstrate
that an infinite number of contradictory conclusions can all be reached from the
same data, using the same principles of induction. The term grue is coined, and
defined to mean green if observed before some future time t, and blue after t. With
this definition, any evidence we may have that an object is green ié equally good
evidence that it is grue. Why then do we not expect objects which appear green
now to change color at time t? After all, we have excellent evidence supporting
the proposition that the objects are grue.

Somehow, a principle is needed which is prejudiced against the property grue
vis & vis green. The description-based MI approach can provide this prejudice if
properties such as green, blue and grue are not ontologically equivalent. Instead,
we follow the intuitive notion that grue is described in terms of green and blue, and
measured in a way that reflects its greater complexity and information. Given that
the properties green and grue fit the existing data equally well, the MI principle
requires that the simpler, i.e. green, be selected.

Following the two horns of the Nature/Nurture controversy, the locus of this
prejudice can be placed in either of two camps. Fodor [1975] argues that a par-
ticular formal language of thought exists innately as a property of the human
mind, and the complexity we feel in the terms bleen and grue are due to their
relatively complex descriptions in this language. For someone in Fodor’s camp the

essential problem is to discover the vocabulary and constructs of this language of
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thought, and the description-based MI framework could be incorporated as a tool
to formalize this program.

Goodman himself argues to the contrary, in a manner similar to the later
Wittgenstein, that our practices, rather than human nature, determine what is an
acceptable induction. Goodman feels that general principles of inference are jus-
tified by their conformance with particular inferences that are deemed acceptable,
and particular inferences are justified by conformance with the general principles.
In the'closure of the circle, both theory and practice are justified in Goodman’s
view. Here the MI framework could be incorporated by providing an explicit
theory of inference, something lacking in Goodman’s exposition.

Goodman, incidentally, is also credited with suggesting that one should try
to find “a criterion combining an optimum of simplicity and compatibility” for

induction [Kemeny, 1953, p. 408].

8.2.5 BAYESIAN VIEWPOINT

From a Bayesian point of view, all estimation and rational decision making
involves an a priort probability distribution, which is often subconscious, or im-
plicit, in other forms of assumptions. The view promulgated here, that probability
distributions are generally not availé,ble, and not even meaningful, in structure es-
timation, would be dismissed as ingenuous. The Bayesian argues that in designing
a description language and information measure one is merely “coding” the prior
into an obscure, but mathematically equivalent, form. The fact that the MI esti-
mator is of the same mathematical form as a MAP estimator is used to justify the
claim that all estimation is best viewed from a Bayesian perspective. From the

form of the MI criterion in an application, the Bayesian will eagerly extract the
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implicit a priory distribution “in order to help us better understand our assump-

tions.”

In response, we argue that three approaches have been taken in the definition
of “probability”, and that for many problems, none of the three are compatible

with reasonable Bayesian notions of a priori distribution:

(1) Sample frequency, or the limit of sample frequencies, within the con-
text of repeated sampling from an ensemble, provides a naive empir-
ical notion of probability. It is generally agreed that this class of def-
initions does not to lead to satisfactory results. Fine [1973], among
others, discusses the flaws of this approach, such as the fact that
unlikely events are perfectly compatible with probability theory, so
probability distributions and their sample distributions need never

agree. This is so even in the limit, as this could be a probability-zero
universe.

(2) A subjective notion of expectations, given incomplete information,
is advocated by De Finetti [1970] and others as the true meaning of
“probability”. The subjective approach offers nothing to scientists
or mathematicians, as it can, at best, produce a theory isomorphic to
that of Kolmogorov [1933], but with much more complex definitions,
requiring decision-making entities, objects of value, and explicit bets.
However, a general theory of probability must apply in models of the
universe which lack these entities, objects and bets.

(3) The accepted mathematical approach to probability theory requires
only the formal properties of additive measures on sets as axioma-
tized by Kolmogorov [1933]. In this framework, probability measures
are simply functions from sample spaces to real numbers that satisfy
his six axioms. The use of such probabilistic models in applications is
justified either pragmatically, by previous successes, or intellectually,
by the insight which they provide when carrying out an analysis.

As the first two notions above are seriously flawed, a fortiors they are in-
adequate notions of a priori probability distribution, and iny the Kolmogorov
formulation remains. Axiomatically defined a priori distributions are commonly
employed in Bayesian estimation with enormous justification by bothvof the cri-

teria above: pragmatic and intellectual. We only argue that other cases exist in
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which no e priori distribution can be given which is justified by either of these
criteria. The case of FSMs in Chapter 4 and rectangular clusters in Chapter 5 are
arguably such. In approaching these problems, there was no available probabil-
ity distribution over the set of FSMs or clusterings. Furthermore, we reaped no
insight in examining the induced distribution implied by the natural description
languages and information measures. In addition, we see no reason why general

information measures should correspond to normalizable probability distributions.

Accordingly, the Bayesian framework is of little benefit in approaching these
problems. The advantage of a formal description approach with hierarchically
structured descriptions and additive information measures is that it requires one
to make preference decisions only at certain points in the structure. These are
automatically “scaled up” to the complete structures for which one does not nec-
essarily have probabilistic notions. This point seems especially clear in the case
of the image processing example of Chapter 7. One does not design an image
processor according to prior notions of the probability that the camera will be
aimed at a cat versus a dog. Image complexity is a useful notion, however.

On the other hand, because the information measure we induce on the set
of all structures often corresponds to some probability distribution, we can take
advantage of it if we wish. The methodology of designing a description language
and information measure can be used to produce a function which satisfies the
axioms of a probability distribution if it is required for other purposes and none
is available otherwise.
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8.2.6 CLASSICAL ESTIMATION THEORY VIEWPOINT

Compared to classical estimation theory, the proposed framework is more
powerful in that it does not require that the estimated structure be identified with
a point in a vector space, but is less powerful in that it deals only with countable
sets of structures and so can not incorporate real numbers. For problems which
are well modelled in the vector space framework, classical techniques should be
used. They take advantage of the additional algebraic structure available, and do
not require that the issue of complexity be addressed. Furthermore, for certain
problems with differentiable families of probability distributions, classical criteria
result in computationally tractable optimization problems.

An extended class of problems exists in which real numbers are involved and
structural variability is an issue. For this class of problems, neither the classical
nor proposed framework is sufficient, and a combined framework is desired. It
is not clear how this might be performed satisfactorily however. The essential
problem is that in the entropic sense, a real number contains an infinite amount
of information relative to an integer, or other object, selected from a countable
set. How to combine objects of these two types within an additive framework of
information is a difficult problem for future exploration.

In relation to classical estimation theory, this framework suffers from a no-
ticeable lack of provable properties, such as asymptotic consistency results. While
such results are often interesting when available, we feel it is more important at
this stage to understand the more fundamental issues concerning structure esti-
mation. We have tried to present a practical framework which can be fruitfully

applied to real problems with small amounts of data.
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8.2.7 ALGORITHMIC INFORMATION THEORY VIEWPOINT

Solomonoff [1964] gives a theory of induction which can be interpreted as in-
corporating MI estimates of Turing Machine programs which generate the input
data. Although there is a great appeal to AIT owing to the universality and inter-
translatability of Universal Turing Machines, there are also several problems with
the method relative to our structural estimation framework. We see our framework
as a method for dealing with the three major problems of AIT: (1) algorithmic
information is not computable, (2) Turing Machine programs are rarely in the
class of structures of interest, and (3) AIT is only meaniﬁgful asymptotically.

The first problem is that the minimization required required by AIT is not _
computable—no algorithm can determine the shortest length Turing Machine pro-
gram which generates a given string. In practice, this is not quantitatively different
from any of the estimators presented in Chapters 4-7. Due to combinatorial diffi-
culties, we can not determine the minimum length estimate on current computers
in our lifetimes. The only difference is that we can prove algorithmic information
can not be computed, while we only suspect there is no practical way to determine
most MI estimates. In either case, we are likely to use approximation techniques
and settle for an approximate minimum. Note that local search techniques are not
likely to find reasonable minima in the class of Turing Machine programs, due to
the extreme discontinuity of the space. Solomonoff (1986] is persuing methods for
more effective enumerations.

- The second problem with an algorithmic measure of information is that we

are usually not interested in estimates of structure in the form of Turing Machine
algorithms. General algorithms are rarely of interest as ajds in understanding data.

If an algorithm is a useful model for data, it is always organized by the hierarchical
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principles of “structured programming.” But more generally, we usually wish to
estimate a structure in a very specific class of formal objects. If we are interested
in estimates in the class of finite-state models for example, as in Section 1.4, there
must be some purpose for which the estimate is intended. That purpose might
require the best finite-state model we can derive, even if some more general Turing
Machine model allows a more concise description of the input. For example, if we
are estimating the control mechanism of an electrical appliance so that we can
“reverse engineer” a similar appliance, and our engineering expertise limits us to
synthesizing finite-state controllers, we prefer a complex finite-state structure to
a simple Turing Machine model.

The third problem of AIT is that it is meaningless for finite inputs, and only
becomes useful if the length of the input grows asymptotically infinite. However,
we need techniques to deal with many applications in which a good estimate must
be made from a fixed, finite amount of data. The formal description approach is
designed to do just this.

Minimum Information estimators can be seen as defining a variant of algorith-
mic information in which the set of UTMs is replaced with less versatile mappings
which are more appropriate to our means and goals. Conversely, algorithmic in-
formation is the special case of our information measures that result when the
interpretation function is the mapping induced by a particular UTM, and the lan-
guage is the set of binary strings. Note, finally, that Solomonoff’s [1964] comments
on the validation of his induction scheme—that it is based primarily on intuitive

appeal and several case studies—are also apropos to our framework.
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8.3 Future Directions

There are many directions in which this research can proceed. On theoretical
and conceptual fronts, it seems important that the framework be extended to in-
clude real numbers. Extensions to metric spaces would also be of interest. In terms
of applications, there are a great many problems which can be posed as structure

estimation, which seem ripe for this framework. Some obvious applications are

listed below.

8.3.1 REAL NUMBERS AND SCALING

As mentioned above, it would be of interest to derive a general method for
incorporating real numbers in the structure estimation process, both as inputs
and as outputs. One approach used by Wallace and Boulton [1968] and Rissanen
[1978, 1983, is to consider truncating real numbers to fixed levels of precision,
thereby reducing the uncountably infinite set of reals to a countable set of approx-
imations. They are able to differentiate with respect to the precision level in order
to obtain an “optimal” level of precision for minimizing description length. This
approach has a number of problems which need to be addressed in a more general
investigation.

An obvious problem is that a single uniform level of truncation is an arbi-
trary choice of description and generally insufficient. Some terms and inputs may
warrant more detailed precision than others, and a versatile language for declaring
and using truncations might be worth designing. A more subtle problem cémes
about because the methods do not result in estimators which are invariant under

scaling and translation of the input space. As there are an infinite number of

truncated reals, they can not all be given equal-length binary codes. When the
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data is translated or scaled, it falls into a portions of the reals in which the rela-
tive lengths of the codes differ, and so varying estimates result. Rissanen [1983]
develops a criterion for ARMA models superior to his [1978] model, in that it is
invariant under scaling. It is not invariant under translation, however.

In many applications where data is naturally described with real numbers,
scale invariance is a desideratum. This is true of the clustering, segmentation, and
vision examples. Because we separate the description of an object from its infor-
mation measure, we can allow nonentropic information measures on real numbers.
Incorporating this idea into estimators which are invariant under linear transfor-

mations is a topic for future investigation.

8.3.2 METRIC SPACES

Although spaces of trees, graphs, sets or other formal structures lack the gen-
eral algebraic properties of vector spaces, natural distance measures often exist
which satisfy the minimal requirements of a metric space. In a metric space, a
distance measure, d(z,y), is defined on pairs of objects, and satisfies three prop-

erties:
d(z,y) >0, andd(z,y) =0ifz=y

d(z,y) = d(y, z)
d(z,y) < d(z,2) + d(z,y)

As an example, the distance between two directed labeled graphs can be measured
as the minimum number of arcs and nodes which must be inserted, deleted, or
re-labeled, in order to change one graph into the other. It is easy to see that this
measure satisfies the three properties. To show the triangle inequality, (3), note
that d(z,y) must be less than d(z,z)+d(z,y), because the insertions, deletions and

relabelings required to convert z to y can always be made by first transforming z
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to z, and then transforming z to y; this can not result in fewer steps than d(z,y)
which is defined to be the minimum.

Such metrics are sometimes natural measures of distance which can be used
to measure the size of the difference between a true structure and an estimated
structure. Estimators can be designed to minimize the expected value of this
distance, and estimator performance can be gauged in those terms. A further
avenue to explore is the derivation of general bounds on estimation error, analogous
to the Cramer-Rao or Barankin bounds, but not requiring their assumption that
the estimator be unbiased. (Because metrics are non-negative, the only estimator
with zero bias in these terms is the ideal estimator which always estimates the
correct structure. Such an estimator would not exist in any interesting structure

estimation problem.)

8.3.3 POLYNOMIAL ORDER

A classic problem of estimation theory and practical statistics is how to select
the appropriate order of a polynomial to fit to data. This is a special case of
the polynomial segmentation case of Chapter 6 in which we restrict the model to
one segment. As discussed there, it is natural to associate k' order polynomials
over an interval with k + 1 ordered pairs in the space. When combined with a
Gaussian probabilistic error model, this gives a model order criterion analogous
to the Akaike Information Criterion or Rissanen’s MDL criterion. Because of the
widespread use of least-square polynomial fits, it would be interesting to pursue

this example and apply it to real data.
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8.3.4 SPEECH PROCESSING

A natural generalization of the segmentation problem of Chapter 6 is the
problem of segmenting speech into phonetic or phonemic units. The piecewise
constant model must be expanded to include the types of formant structures typ-
ical of natural language. We do not expect to recognize speech based on the shape
of waveforms. Instéad, the amplitude spectrum of the signal appears to contain
the relevant information, and we are not suggesting that the design of a gram-
mar for these structures is a trivial eiercise. Rather than a single z-value for
each sample time, the input might be the frequency and amplitude of the major
spectral peaks at each time, or the complete discrete Fourier transform at that
time. Although this approach is likely to be more complex than current ad hoc
approaches to speech segmentation, it is also likely to be much more tolerant to
background noise, if analogy from the one and two-dimensional segmentations of
chapters 6 and 7 is a valid guide. With an appropriately flexible grammar, it may
also result in greater speaker independence than other techniques. As noise and
speaker independence are currently major impediments to speech processing, the

MI approach seems worthy of further investigation.

8.3.5 MUSIC

Another field in which segmented models are natural is that of computerized
music analysis. The problem of automatically generating a score given a recording
of a musical piece is fundamentally one of generating a segmented description.
When only a single instrument is involved, and the signal to noise ratio is high,
the problem is relatively straightforward, and various ad hoc methods have been

implemented. We expect that an MI approach might be fruitful for the analysis
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of ensemble music pieces (e.g., duets, trios, etc.) and in situations with significant
background noise. An estimate of the meter and time signature could provide
an information measure which “encouraged” notes to appear on the appropriate
division points within each measure. Definitions of themes would allow repetitions
with variations to be concisely described. The interesting complication in the case
of ensemble pieces is that a single partition_of the time axis is insufficient; a
separate segmentation is required for each instrument, but the segment borders
would not be completely independent of each other, as different instruments often

begin notes simultaneously.

8.3.6 DETECTING CHANGES IN DYNAMIC SYSTEMS

As a final example of a one-dimensional segmentation problem, consider the
problem of detecting changes in the characteristics.of a dynamic system being
monitored. In order to detect possible failures in the plant or in the sensors,
it should be possible to model the overall system as distinct systems over sepa-
rate time segments. With the appropriate description languages and information
measures, the MI description of the observations should be segmented into time

periods in which the system characteristics remained constant.

8.3.7 MACHINE VISION

The sample imﬁge processing problem of Chapter 7 relies on a very simple
class of models. Few applications are sufficiently well described with a rectangular
vocabuléry of images. Section 7.5 discussed several extensions of the method, such
as incorporating general polygons (with edges not necessarily orthogonal to the

grid) and simple arc types. The MI approach is natural for reducing the bandwidth
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of video images for low baud-rate channels, in applications where simple image
approximations are adequate.

At the other extreme, very detailed classes of models, tailored to specific types
of image components, might be designed for specific applications. The analysis of
cloud-chamber photographs could be performed by means of a grammar designed
for various types of particle traces. Optical character recognition can be performed
with a grammar for describing text characters. Although these problems have been
approached with syntactic pattern recognition methods, the MI approach, because
it measures the fit between the models and the data, should result in improved

performance.

8.3.8 ARCHITECTURAL PROBLEMS

An interesting class of problems involving complex hierarchical structures
concern architectural structures. Buildings are composed of levels and wings,
which are composed of suites and rooms, which are bounded by walls, doors,
windows, which are described in terms of surfaces, edges and ﬁoints. Estimation
problems over this space of structures involve “parsing” of data into architecturally
meaningful units. For example, it would be useful if a computer aided design
system could pndersta.nd the architectural relations between surfaces and lines
given by a user, so that commands such as make the walls in this room green could
be executed without requiring the designer to explicitly define which surfaces are
walls.

Another application would involve estimation of architectural style. It would
be an interesting exercise to design an estimator which, given # data-base of solids,

surfaces, and/or lines defining an architeciural structure, outputs the style of
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the structure, e.g., Gothic. Presumably, the MI approach to this problem would
involve a formal language defining structures in a range of styles. A description
in the appropriate style should be more concise than a description in terms of the

other styles.

8.3.9 MACHINE LEARNING

The learning of structurally defined terms from examples, as in Winston
[1975], is naturally formulated as a structure estimation problem. Winston gives
methods by which simple structures of blocks, appropriately labeled arch or not
arch, are used to form a description of the structural relations which characterize
arches. In the MI framework, we generate an explicit criterion for selecting such a
characterization of arches. We simply seek a Joint description of all the examples
which incorporates a definition of arch. With an appropriate description language,
the single definition of arch will contain the maximum amount of common infor-
mation in the descriptions of the particular arches. This allows redundancy in the
descriptions of the examples to be reduced. The MI estimate of the definition of
arch will only contain the minimum amount of “forbidden featurés” necessary to
indicate that the non-arches are not arches.

Another approach to machine learning which seems well suited to the MI
formulation is the conceptual elustering of Michalski [1983]. This is a general clus-
tering technique based on propositional logic descriptions of data (rather than
coordinate values). An MI épproach analogous to that of Chapter 5, but using
descriptions in the language of predicate logic rather than coordinate descriptions,
appears to be a directly applicable criterion for this example. Certain transforma-

tions which Michalski proposes for modifying one logical description into another
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(e.g. replacing a constant with a universally quantified variable) would also be
natural in the local search techniques to optimize the MI criterion.

A third machine learning problem is to produce adaptive structure estima-
tors. As we have presented the framework, the language and information measure
incorporates only a priori information given by the system designer. In certain
contexts, labelled training sequences are available after the system is designed,
and an adaptive system is required. The language and/or information measure
may be modified as a function of the training sequence. This is na;turally acco-
modated in our framework with a higher-level structure estimator, which takes
the training sequence as input and estimates a structure estimator to be used on

future, unlabelled, data.

8.3.10 MAN/MACHINE INTERFACES

A final future application is that of effective man/machine interfaces. One
example from this class was suggested for the architectural design system above,
in which the system‘ “understands” which surfaces are walls based upon structure
estimation rather than explicit definitions. In general, many manually controlled
computer operations can be seen to be part of a larger structure which in some
sense characterizes the relations between the manual operations.

As a not so hypothetical example, a user might control a word processor,
through a sequence of simple commands, to capitalize the word chapter in each
of a dozen separate text files. If the interface to the word processor could detect
the fact that the operator repeatedly opens a file, searches for the word, changes
it, and closes the file, it could automate many of the steps for the user. Detecting

the larger sequence of operator actions amounts, in this case, to estimating the
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structure of a FSM, as in Chapter 4, in which the arc labels are word-processor
commands given by the operator. If this structure were detected in the process of
modifying the first several files, the system could continue the procedure in each
of the other files with minimum explicit control. More generally, the structure
of sequences of computer commands can be estimated, resulting in a form of

automatic programming.
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Appendix

- The Nonintrusive Appliance Load Monitor

The notion of structural estimation, and several of the case studies in this
thesis were suggested by a problem concerning residential electric appliance energy
monitoring. The problem is develop a nonintrusive appliance load monitor which
can be installed in the kilowatt-hour meter socket of a home to estimate the nature
’and energy consumption of the major appliances which constitute the load. This
load monitor is to be a microprocessor controlled unit, with current and voltage
sensors, programmed with an algorithm to analyze the total load and estimate
its makeup. It is given no access to information internal to the residence. No
internal circuits are separately monitored, and no appliance survey is carried out
beforehand. The problem is clearly one of structure estimation, as the number of
appliances must be determined. Furthermore, each appliance can be modelled as
a finite-state machine of unknown structure which describes its operating states
and electrical characteristics. The overall problem can in fact be broken down into

several structure estimation subproblems.
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A summary of the problem and an ad hoc solution is given in Hart [1985D)].
A more detailed description can be found in Hart [1985a]. The most salient char-
acteristic of this problem is that it is severely underdetermined. The appliance
mix and their operating histories combine to determine the total load in a well
defined way, but given only the total load, an infinite number of different appli-
ance mixes and histories could explain it equally well. The complexity/fit tradeoff
comes about because most estimates of the appliances and their operating periods
will result in some residual error relative to the input data. This discrepancy can
always be reduced by postulating a small appliance and fitting its operation to the
residual.

As input to the estimator, we have current and voltage measurements for the
two 120 V legs at the service entrance to the home. Typical residential power
systems are three terminal networks as indicated in Figure A.l1. Two out-of-
phase service legs supply the 120 V circuits in the residence, and are assigned to
branch circuits effectively at random. The 240 V appliances are wired from one
120 V leg to the other. The raw input is then a four dimensional function of
time: current and voltage waveforms for each of the two legs. This is assumed
to be converted into real and reactive power measurements, sampled at regular
intervals, and quantized by an A/D converter for computer processing.

The output‘of the estimator consists of a set of appliance descriptions, and a
description of their operating history. Appliances are described by a finite-state
machine which indicates their operating states and allowed sequences of states.
Figure A.2 indicates several common appliance FSM configurations. Most appli-

ances are well described as a two-state (ON/OFF) FSM. More complex appliances,
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Two-State Appliance

Frostless Refrigerator

Dishwasher

Figure A.2 Finite State Models for Appliances
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such as dishwashers and washing machines, are cﬁaracterized by finite-state con-
trollers which cycle them through various states, e.g., wash, rinse, and dry. The
refrigerator diagram of Figure A.2 indicates a defrost cycle in which the appliance
occasionally departs from its typical two-state behavior.

To a first approximation, the observables labeling the arcs in these FSMs
are the changes in complex power which are observed in the total load when the
appliance makes the corresponding state transition. For example, when a 300 W
refrigerator turns on, the total load increases, from a level which depends on the
states of the other appliances, by 300 W, along with some characteristic quantity
of reactive power. Power measurementsb are not the most consistent input variable
however, as the electric utility does not provide a constant line volfage. The
actual power change will vary £20% as the line voltage varies +10% around the
nominal 120 V. To eliminate this variation, we calculate admittance measurements
for the two legs of the house, which are fairly constant for each state transition.
This gives a four-dimensional observation space consisting of the conductance and
susceptance on each of the two legs. Admittance changes are additive because
appliances are wired in parallel. They are voltage independent to the extent that
the current/voltage relations for the electronic components of each appliance are
linear.

For two-state appliances, the ON transition is the negative of the OFF tran-
sition, and this provides a strong constraint which can be exploited by an ad hoc
estimator. An algorithm for appliance estimation using two-state models has been
impleménted and field tested with good results, as described in the references cited
above. When the monitored load contains more complex appliances, this “two-

state algorithm” either ignores them or decomposes them into several two-state
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components, such as the heater and motor elements of a dishwasher. Our goal here
is to consider the case in which the load is modelled with a set of FSMs which are
not restricted to two states each.

We find it insightful to look at the problem from the perspective of com-
munication theory. The load monitor can be viewed as a receiver for decoding
additive signals on a Multiple-Access Channel (MAC). A multiple access channel
is 2 medium which can be analyzed as several independent logical communication
channels involving several transmitters. Each appliance state change can be in-
terpreted as generating a message, Y; ;, that appliance ¢ changed state to 7. The
messages are ideally step functions in admittance of height Y; ;, occurring at the
time of the state change. They are summed, with noise, to form the input. In
practice, the step functions also contain a somewhat inconsistent initial transient
component, especially in large motors, which might be described in more detailed
models. |

A useful constraint, which reduces the set of possible structures, is that the
loop-sum of these messages must be zero around any cycle of states in an appliance

model.

Y,',J'-i-Y',k-l-...-}-Yz,,‘=0

where 17, j, k', ..+,,1 is a cycle of states. Fortunately, arbitrary constraints such as
this are relatively easy to insert into local optimization techniques.

The channel is simply the house wiring, which has a number of desirable
properties. It is relatively short, and features good signal to noise ratio in the low
frequency range of interest. Furthermore, the transmission powers are relatively
high, e.g., a 4 KW signal is present for several minutes to encode the one bit of

information that the hot water heater turned on. Another pleasant feature from
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the communication point of view is the low message rate compared to the channel
capacity. Typical average rates found in field tests range from twenty to thirty
messages (appliance state changes) per hour, peaking around twenty per minute
during times of heavy appliance usage.

Balanced against these favorable conditions are several factors which make
for a poor communication system. The most serious of these is that we must
design a receiver with no detailed knowledge of the c§de table. We do not know in
advance what the messages will be, or how to interpret those messages we do find.
For example, there is 'a certain similarity between the electrical characteristics
of most refrigerators, which results from the economics of appliance engineering
and marketing, but there is still a wide range of variation within this class. This
requires an adaptive receiver which partitions- its decision space as a function of
initial observations of the channel. To do this, the receiver must bring a great deal
of a priori information into the decoding process.

Another problem in designing such a receiver is the presence of ambiguous
codes. Different two-state appliances may coincidentally operate at the same power
levels, and different multi-state appliances might include step changes of the same
size. In the case of two-state appliances, ambiguous messages can not be dis-
tinguished, but in the case of multi-state FSMs, they may. As different FSMs
which incorporate the same message may differ in the allowed messages preceding
or following the ambiguous messages, state-space-based decoders can use the sur-
rounding context for disambiguation. The Viterbi algorithm seems quite relevant
here (Viterbi [1967], Fornay [1973]).

A final problem to be faced is the presence of simultaneous messages. When

two appliances transitions occur simultaneously, or are separated by less than the
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sampling time interval, the combined message which is received is the sum of their
separate messages. In more controlled MAC situations, a variety of contention
resolution mechanisms may be designed into the transmitters. Here we must
deal with appliances of standard manufacture. Our only options are decoding
techniques that rely on the additivity of the channel. If a received message can
be recognized as a simultaneous multiple transmission, the decoding can take the
form of a combinatorial search through pairs (or sets) of known messages which
sum to the given message.

Following a divide and conquer approach, an algorithm for this receiver can
be constructed out of three separate structure estimators. This will not be a
globally optimal breakdown of the problem, but it separates the overall problem
into manageable portions.

The first problem is to segment the input waveform into periods in which
appliances are not changing state, separated by times at which appliances do
change state. This is a waveform segmentation problem which could be attacked by
the method of Chapter 6. The model considered there, in which the segments are
each constant functions of time, is an excellent first approximation to actual data.
It needs to be augmented slightly to allow short periods described as “transients”
at the beginning of each constant period. This could take the form of allowing a
more concise description of large deviations from the constant level for the initial
seconds of each segment. To be practical, a segmentation algorithm of this kind
would have to operate recursively, based only on a finite moving window of data,
and a finite amount of memory. This might be designed by introducing slight

approximations to the MI criterion.
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The second structure estimation problem is one of clustering the magnitudes
of the step changes into groups corresponding to appliance transitions. There is a
certain amount of variation amongst the observations associated with each partic-
ular state-change. This may result from a variety of sources, including nonlinear
current /voltage relations, varying start-up conditions, effects of very small or con-
tinuously variable appliances, and sampling noise. Measurements show however,
that observations attributable to a single appliance state change tend to cluster
relatively tightly in the four-dimensional observation space. The main problem in
clustering is the structural issue of selecting the numberA of clusters. The approach
developed in Chapter 5 might be adapted to the types of variation typical of load
data.

The final structural estimation problem is the most difficult one, of estimating
a set of FSMs which model the appliances generating the load. As indicated in
Chapter 4, this is a very complex problem which we have not explored in depth.
In the context of this application, it is not clear what range of appliance structures
might be found, or how detailed an analysis is required for utility load gathering
purposes.

Based on the methods of Chapter 4, we present two examples of FSM estima-
tion demonstrating two difficult aspects of the problem. In the first example, we
estimate three simple appliances with é. great deal of overlap in their alphabets.
Figure A.3 shows three appliance models, the transition sequences they generate
independently, and a result of inteﬂeaving their operation. To the algorithm of
Chapter 4, we now add the zero loop-sum constraint. The constraints indicated
would result from exa,niining the positions of the clusters in the complex-power

space. As shown in Figure A.4, the algorithm reconstructs this set of FSMs given
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the combined data. With only the thirteen observations indicated, these three
FSMs are one of the best possible estimates; after several more observations, this
becomes the best estimate.

In the second example, we estimate the structure of a more complex appliance,
the simpliﬁed dishwasher model of Figure A.2 (in which the dry state is not used).
Again, the loop-sum constraint is used. Figure A.5 shows the observa.tioﬁ, which
~corresponds to two “cycles” of the machine, and the estimated structure, which is
correct. The second choice structure, according to the information criterion used,
is shown in Figure A.6. Here the heating element has been separated out into
a second appliance. This second choice will be evaluated as increasingly poor as
more observations arrive, because it does not capture the fact that EF always is
observed as a pair, preceded and followed by only certain other observations.

One important aspect of this problem is that noise models must be incorpo-
rated. The methods above assume perfect observations, but we car. not expect
perfect segmentation or clustering from the cher subportions of the overall prob-
lem. This will require an estimator which does not fail in the presence of occasional
misidentified transitions. A number of methods for describing noise transitions in
the context of normal FSM routing come to mind. Routes may be allowed to
restart at specifi.ble states, unexpected observations may be inserted in the ob-
‘servation stream, or a list of exceptions may be included. These methods need to
be investigated, and a language selected which allows exceptions at an appropriate
information cost. We have not cdnsidered these problems in detail, but hope to in
the future.

We should, in ciosing, point out a general concern regarding estimation in

general and structure estimation in particular. There is a very real ethical issue
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concerning the misuse of estimation techniques. By developing new estimation
techniques, we are opening up new domains for misuse. A nonintrusive load moni-
tor will certainly be seen as an invasion of privacy by many who are concerned with
the general trend of increasing surveillance in our society. Marx [1984] points out
some of the many aspects of this trend. The nonintrusive monitoring technique
“sees” directly into the domain of the private residence which has traditionally
been protected from public scrutiny. Data collected by utility personnel could be
used, for examplé, by law enforcement agencies to check alibis of suspects, or by
burglars to determine occupancy patterns. Another form of invasion would be for
government agencies to monitor for illegal appliance activity, such as photocopiers
in totalitarian countries.

We hasten to point out that electric power planners and analysts have a
great and legitimate need for the data which can be collected with a nonintrusive
load monitor. Energy planning is an important consideration in our society, and
laboratory measurements are not sufficiently representative of typical appliance
usage. Field data is essential for understanding the contributions of individual
appliances to the aggregate load as a function of time and temperature. This,

in turn, is necessary information for planning future generation and transmission

... capacity, for predicting the economic consequences of alternative rate schedules,

and for understanding the effects of novel appliance constructions.

Typically, appliance load data is very expensive to collect in the field, as it
necessitates entrance into a home for sensor and wiring installation, maintenance,
data retrieval, and eventual sensor removal. Utility presence may affect the res-
ident’s energy consumption patterns, and it makes utilities liable for incidental

damages. A nonintrusive technique alleviates these problems, and allows more
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comprehensive data samples to be collected with the utility’s resources. It could
also be of great benefit to energy conscious residents trying to understand their
own consumption patterns.

It is difficult to balance these benefits against the small, but very real possi-
bility for abuse of the method. (Cynically, we would be surprised if it is not well
known to government agencies for monitoring foreign embassies, but we have no
evidence on this point.) It is possible to purposely defeat nonintrusive monitor-
ing by charging and discharging an enérgy storage device to generate random step
functions at short random intervals. However, this type’of “jamming” is detectable
in itself, and indicates something to those doing the monitoring.

This leads us to consider the role of science in society, and the responsibility of
the scientist. Sinsheimer [1978] and Graham [1978] are helpful discussions in this
regard. We feel that each case must be judged on its own merits, and the balance
of the evidence in this case is in favor of developing the nonintrusive appliance
load monitor. Its use should be carefully regulated however, and collected data
should be stox}'ed in a format in which it is not tagged with its source. Hart [1986]

considers these matters in greater detail.
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