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Abstract. We analyze boundary layer velocity and temperature measurements
acquired by aircraft at 22 Hz. The calculated longitudinal velocity third-order
structure function yields approximate agreement with Kolmogorov’s four-fifths law
for the scale range ~10-100 m with a downscale energy flux of ~4x 107> m? s=3. For
scales greater than ~10 km the sign is reversed, implying an inverse energy cascade
with an estimated flux of ~107° m? s~ associated with two-dimensional stratified
turbulence. The mixed structure function of longitudinal velocity and squared
temperature increment follows Yaglom’s four-thirds law in the same scale range,
yielding an estimated downscale temperature variance flux of ~5 x 1077 K? s~!.
Analysis of higher-order structure functions yields anomalous scaling for both
velocity and temperature. The scaling also reveals second-order multifractal phase
transitions for both velocity and temperature data. Above the transition moments,
asymptotes varying with the number of realizations argue against the log-Poisson

model. The log-Lévy model is better able to explain the observed characteristics.

1. Introduction

During NASA’s Pacific Exploratory Mission in the
Tropics, Phase B (PEM-Tropics B), a turbulent air mo-
tion measurement system (TAMMS) with a 22-Hz ef-
fective sampling rate was flown on board the P-3B. Al-
though characterization of atmospheric chemistry was
the primary raison d’étre for the campaign, such high-
resolution data are amenable to multiscale analysis of
dynamical and scalar advective processes. Encour-
aged by our recent success in applying structure func-
tions and scaling techniques to mesoscale and large-
scale data collected by aircraft in extracting new in-
formation about the energy [Cho and Lindborg, 2001;
Lindborg and Cho, 2001] and scalar variance [Lindborg
and Cho, 2000] cascades, and the intermittency of ad-
vected scalars [Cho et al., 2000, 2001], we shift our focus
to smaller scales made accessible by the higher sampling
rate of TAMMS. At a nominal air speed of 130 m s~}
the corresponding spatial resolution is 6 m, which is
getting down to the inertial subrange of fully developed
turbulence. Thus we have an opportunity to compare
the observations with the theories of three-dimensional
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(3-D) turbulence and to coopt the formalisms already
developed for such studies.

Our aim here is to compare observations of tropical
marine boundary layer turbulence to theories predicting
the second- and third-order structure functions of veloc-
ity and temperature as well as the multifractal param-
eters calculated from higher-order structure functions.
We will begin with some relevant background on tur-
bulence theory, move on to the results, then conclude
with a summary discussion.

2. Background

In the study of atmospheric turbulence the velocity
variance spectrum £ has usually been the paradigm of
choice for comparisons between theory and observation.
This choice has been motivated by the celebrated theo-
retical inertial subrange spectrum for 3-D isotropic tur-
bulence,

(1)

where CY is a constant, ¢ is the mean energy dissipation
rate, and k is the wave number. This spectral form
follows from universality assumptions and dimensional
analysis made by Kolmogorov [1941a]. Less often used
are the structure functions of velocity defined by

Sm = ([bu(r)]™)

E=Che5k™3,

(2)

32,469



32,470

where m is the integer order and the angle brackets
denote ensemble averaging. Here du = u' — u is the dif-
ference in velocity components between two points @’
and = that are separated by distance r. Since the spec-
tral power law lies between k~! and k=3 (i.e., a nonsta-
tionary signal with stationary increments), the Wiener-
Khinchine relation asserts a Fourier duality between
E and the second-order structure function such that
So = C9€2/3r2/3 where Cy is a constant. According
to Kolmogorov’s universality assumptions Cy and Cf
ought to be universal constants. This result, however,
was questioned by Landau [Kolmogorov, 1942], and it
has been shown that the third-order structure func-
tion relation derived by Kolmogorov [1941b] from the
Kéarman-Howarth equation [von Kdrmdn and Howarth,
1938],

<(6uL)3> = —%er, (3)

where uy, is the longitudinal (parallel to r) component
of the velocity, is the more fundamental result, derivable
from symmetry postulates without universality assump-
tions [Frisch, 1995]. The —4/5 value is exact and does
not need to be determined empirically. The relation (3)
also contains more information than (1) in that the sign
of the structure function indicates the direction of the
energy cascade [Frisch, 1995; Lindborg, 1996]: forward
(large to small scales) if negative, and reverse (small
to large scales) if positive. Relation (3) is actually a
special case of a more general energy flux equation

<(5u[,)3> 42 <6uL (6uT)2> - —ger, (4)

where ug is the transverse (perpendicular to the sep-
aration vector ' — x) velocity component [Lindbory,
1996; Antonia et al., 1997].

Higher-order structure functions yield intermittency
information. An absolute-value version of (2), S, =
(|6u(r)[F), is often used, where p can be any real num-
ber. Then for an interval over r in which scaling prevails
in the structure functions, one can determine the expo-
nent {, in

Sp o< TP (5)
Kolmogorov's [1941] theory (hereafter K41) predicted
¢, = p/3, which is a special case of monofractal or

simple scaling, where (,/p is a constant. If (,/p de-
viates from a constant value, then the terms multi-
fractal or anomalous scaling are used. Phenomenologi-
cally, the amount of departure from simple scaling mea-
sures the degree of intermittency in the velocity field.
The direction of deviation is such that {, is concave
(d*¢p/dp* < 0) [Davis et al., 1994].

There is now considerable experimental and numeri-
cal evidence that (, # p/3 [e.g., Anselmet et al., 1984;
Vincent and Meneguzzi, 1991]. Correspondingly, a large
number of intermittency theories have been proposed
that specify the form of {, (see discussions by Frisch
[1995], Boratav [1997a], Schertzer et al. [1997], and
Sreentvasan and Antonia [1997]).

CHO ET AL.: BOUNDARY LAYER TURBULENCE OBSERVATIONS

Besides the additional information that one obtains
from calculating structure functions rather than the
variance spectrum, there is also a practical reason for
preferring the former over the latter when analyzing ob-
servational data: Spectral methods have difficulty deal-
ing with data gaps and uneven sampling, and great care
must be taken to avoid spectral leakage, especially with
“red noise” type of data [e.g., Dewan and Grossbard,
2000]. Structure functions do not have such problems
and are easily computed.

For scalars passively advected by turbulence a rela-
tion analogous to (4) was established [Yaglom, 1949]:

<5uL (60)2> . —%egr, (6)
where 6 is the scalar quantity and ¢4 is the mean dis-
sipation rate of its variance. Experimental support for
(6) is fairly good [e.g., Chambers and Antonia, 1984;
Mydlarski and Warhaft, 1998]. Intermittency models
predicting the form of ¢, for scalar turbulence are not
as well validated [see, e.g., Frisch et al., 1999], but it is
clear that anomalous scaling prevails as with the veloc-
ity field.

3. Experiment Description

PEM-Tropics B was conducted during March-April
1999. There were 19 flights during the campaign.
The TAMMS was operational only during flights 5 to
19, and, unfortunately, the temperature measurements
were working properly only from flight 12 onward. All
of the relevant flights were over the Pacific (mostly in
the central tropical region), except for flight 19, which
was a cross-country flight across the United States. The
sea surface temperature (SST) in the tropical Pacific
were relatively cold due to La Nina conditions, and the
region of deep convection was located west of its typi-
cal position, with accompanying stronger than normal
easterly trade winds. The South Pacific convergence
zone was displaced to the west of its normal position,
and the intertropical convergence zone was more diffuse
and tended to form a double-wall structure [Hu et al.,
this issue]. A detailed summary of the meteorological
conditions are given by Fuelberg et al. [this issue]. The
routes and brief decriptions for each flight are given in
the overview paper [Raper et al., this issue]. A detailed
description of the TAMMS is given by Considine et al.
[1999], and calibration procedures are outlined in Bar-
rick et al. [1996]. For this experiment all parameters
had a final sampling rate of 22 Hz.

Typically, each flight was composed of several straight
and level tracks at different altitudes connected by steep
climbs and descents that were either straight or spi-
raling. As the marine boundary layer was a region of
interest, there were a substantial number of flight seg-
ments at low altitudes. The P-3B had a flight ceiling
of 8 km. Since TAMMS worked best during straight
and level flight segments, and because they make the
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Table 1. Measured Mean Parameters®
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Segment Start,

Length, z, zi, zfz U, T, SST, q,
uT min m m ms™t °C  °C gkg™*

1 March 26 2302 26 240 560 0.43 5.2 24 28 16
2 March 31 2010 26 310 630 0.49 4.2 26 29 15
3 March 31 2204 16 300 600 0.50 8.2 26 29 15
4 April 4 2310 12 250 490 0.51 7.5 25 28 14
5 April 4 2325 11 250 490 0.51 8.7 25 28 14
6 April 9 2205 31 290 490 0.59 9.5 24 27 16
7 April 9 2305 11 280 580 0.48 10.9 24 27 15

2Local time in Tahiti is UT — 10 hours. U

calculation of structure functions straightforward, we
restricted our data analysis to those segments. We
defined straight and level as a flight segment that re-
mained within £30 m in height and £7.5° in azimuthal
heading. In general, the cruising air speeds increased
with height, from ~ 130 m s™! in the boundary layer
to ~ 160 m s™! in the midtroposphere. The time series
data from each straight and level segment were exam-
ined carefully for evidence of obvious glitches. Only
18 segments were deemed to have good data for both
velocity and temperature.

To reduce statistical noise in the results, one should
average as many data values as possible. On the other
hand, averages formed from data sets that were ob-
tained under very different conditions make the inter-
pretation and comparison to theory difficult. In data
analysis one is often faced with this dilemma. In this
study, we chose to examine a limited set of flight seg-
ments, which had similar background conditions. Out
of the 18 good segments, we narrowed the list to 7 seg-
ments that had consistent background states. All of
these flights had take-offs and/or landings at Papeete,
Tahiti. The list of these segments and their measured
mean parameters are given in Table 1, and the corre-
sponding map is shown in Figure 1. The SST was mea-
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Figure 1. Map of flight segments listed in Table 1.

is the mean wind speed.

sured by an onboard pyrometer, and the height above
surface was measured by radar. Note the similarity in
the altitude z, the temperature T, and specific humid-
ity q. The boundary layer height z; was determined
from vertical profiles measured by the aircraft as it de-
scended to or ascended from the flight segments used.
We determined that all the segments were in the con-
vectively unstable mixed layer and that the dimension-
less height variable z/z; was in the midsection of the
boundary layer for all segments. All of these flight seg-
ments were fairly close to local noon, and none of them
entered any clouds (D. Morse, Aircraft videotape com-
ments and cloud descriptions in PEM-Tropics B, P-3B,
Data Memo 22A, Massachusetts Institute of Technol-
ogy, April 20, 2000). The lack of clouds, fog, and pre-
cipitation circumvents the possible problems in differ-
ential pressure probe velocity fluctuation measurements
noted by Paluch and Lenschow [1991].

4. Results

For each flight segment we used Taylor’s hypothe-
sis with the mean air speed to convert the time se-
ries into spatial samples. We selected the values r =
(130/22)2™ m for integer n = 0 to 13 at which to take

Number of Data Point Pairs

5
10 . . . .
10° 10'

r(m)

Figure 2. Number of data point pairs used in the
calculation of structure functions.
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Figure 3. Second-order structure functions divided by 72/, The units are m*/3 s=2 for the
velocity functions (top curves) and K? m~?%/3 for the temperature function (bottom curve).

the differences used in the structure function calcula-
tions. For every data point a forward search was con-
ducted for the points that matched closest the specified
r values. This scheme yielded even spacing of the re-
sults on a logarithmic axis for r. Figure 2 shows the
number of data point pairs used in the calculation of
the velocity and temperature structure functions.

The second-order structure functions normalized by
72/3 are plotted in Figure 3. Normalization by the ex-
pected power law allows easy inspection of the data,
since then the graphs ought to be straight horizontal
lines. The longitudinal and transverse velocity func-
tions are plotted at the top, while the temperature func-
tion 1s at the bottom. The transverse velocity function
is calculated as ((6ur)?) = [((Sury)?) + ((burv)?)]/2,
where uppy is the transverse velocity on the horizontal
plane and upy is the vertical velocity. The dashed line
is the second-order structure function for transverse ve-
locity computed using the observed longitudinal second-
order function and the isotropy relation [Monin and Ya-
glom, 1975],

<(6uT)2> - <(6uL)2> + g% <(6uL)2> Cm

Variability bars, defined as plus/minus twice the stan-
dard deviation divided by the square-root of the number
of averages, are also plotted, but they are so small as
to be barely visible in Figure 3.

We note that ((ur)?) shows approximate agreement
with the predicted r2/3 power law for inertial-range tur-
bulence for r between ~20 and ~200 m. The agree-
ment of ((ur)?) with isotropy is not good. The drop-off
of the transverse component with 7 is mostly due to

the suppression of vertical velocity variance relative to
horizontal velocity variance at larger scales, which is
expected from stratification for r approaching z; and
beyond. Note that the temperature second-order struc-
ture function is similar in form to the velocity functions,
with somewhat better agreement with the r2/3 power
law predicted for scalar advection by inertial-range tur-
bulence [Obukhov, 1949; Corrsin, 1951].

The normalized velocity third-order structure func-
tions are plotted in Figure 4. The longitudinal third-
order function is linear in » up to ~100 m within error
bounds, and the sign is negative. This means that the
cascade of energy is downscale and (3) may be used to
obtain an estimate of the mean energy dissipation rate.
From the plot we see that € ~ 4 x 107° m? s=3. The
results for the sum of the longitudinal and two trans-
verse third-order functions are also plotted and shows
good agreement with the longitudinal third-order func-
tion. Curiously, the sign of the third-order functions
change from negative to positive above r ~ 10 km.
This may be an indication of the presence of an upscale
cascade of energy [Lindborg, 1999], which is a charac-
teristic of energy-inertial-range two-dimensional (2-D)
turbulence [Kraichnan, 1967]. This is a possibility for
r > z;, because of the strong capping action at the top
of the boundary layer. Using the 2-D relation [Lindboryg,
1999],

((6u)’) + (bur (burn)?) = —2Myr, (8
where II,, is energy flux, we obtain II, ~ —10% m?s~3
for the upscale energy flux. Hégstrom et al. [1999] had
previously found evidence for 2-D stratified turbulence
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Figure 4. The following third-order structure func-
tions for velocity are multiplied by C and divided
by r: The solid line is (|6ur|®), the squares denote
—((8ur)?), the pluses denote ((6ur)?), the circles de-
note —((6ur)?) = ((Surn)®)—((6urv)?), and the crosses
denote ((6ur)?) + ((Surw)®) + ((6urv)?®). The normal-
ization constant C is 5/4 for the curves that involve
only longitudinal terms, and 3/4 for the curves that in-
clude the transverse terms. Error bars are plus/minus
twice the standard deviation divided by the square root
of the number of averages.

in the lowest 1 km over an ocean using mostly spectral
techniques. However, we believe this is the first instance
in which a direct estimate of an upscale energy flux has
been made using (8).

For intermittency studies using higher moments we
defined the structure functions using absolute values
le.g., Davis et al., 1994]. As one can see from Figure 4,
using the absolute value reduces the resultant variabil-
ity for odd moments, since the distribution of the data
increments extend only in the positive direction. Of
course, the mean value also increases for odd moments,
so the absolute-value moments should not be used to
estimate quantities in relations such as (3).

We can also make a comparison with (6). Figure 5
shows (8ur(6T)?), where T is temperature, normalized
by 4r/3. The calculated third-order function adheres to
a —r law within error bounds up to r ~ 100 m. Thus the
temperature variance dissipation rate can be estimated
to be ~5x 10~7 K2 s~ in the inertial subrange. At the
longest scales the sign of (6ur(6T)?) reverses as with
the velocity third-order structure functions, implyingan
upscale flow of temperature variance. The 2-D version
of (6) is [Lindborg and Cho, 2000]

(9)

where IIy is the scalar variance flux. From this expres-
sion we estimate the upscale temperature variance flux
to be ~2 x 1077 K2 s71.

<6uL (50)2> — _9ll,r,

32,473

Now we wish to explore intermittency issues using
the higher-order moments of the structure functions.
The object is to determine the function ¢, in (5). The
simplest method is to fit straight lines to the struc-
ture functions plotted on a log-log scale (the “direct
method”). However, it has been noted that variabil-
ity in the structure functions and deviations away from
power law behavior tend to propagate themselves for
different order p. Therefore a technique known as ex-
tended self-similarity (ESS) has been developed to take
advantage of this correlation in variability across the
moments [Benzi et al., 1993a]. (Actually, ESS was orig-
inally developed to study intermittency in the dissipa-
tion subrange, at scales smaller than the break in the
inertial-range power law scaling.) The basic idea is to
determine the relative scaling between the pth-order
and third-order structure functions by plotting them
against each other on a log-log plot. From theory, ¢,
is assumed to be 1 for p = 3, and the other ¢, values
are found from linear fits to the log-log plots. A modi-
fied version of this method called generalized extended
self-similarity (GESS) [Benzi et al., 1995] uses the nor-
malized functions

([6ul")

()"

and relates two different orders of G through G, =
Gg(p,q)

Gy = (10)

, where

_ 3(}0 — p(3
p(p,q) = 3¢, “ g6 -

After (; is found using ESS, all successive orders of
(p can be found by plotting G, against Gp_; and us-
ing (11), except for (4, which is obtained from G4 and

(11)
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Figure 5. Plot of (6ur(67)?) divided by 4r/3. Circles
denote negative sign and crosses denote positive sign.
Error bars are plus/minus twice the standard deviation
divided by the square root of the number of averages.
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Figure 6. Plot of (|6ur|) versus (|éur|?). The straight
line is fitted over the interval » = 6-190 m. Standard
error bars in both vertical and horizontal directions are
plotted but are too small to be visible.

G5. Comparisons of the direct method with ESS and
GESS have shown that they give quite similar results
but that ESS and GESS give progressively less scat-
ter in the computations [Boratav and Pelz, 1997]. Our
own studies confirm this result. Thus we have chosen
to implement GESS in our calculations.

Since {3 must be close to unity for us to have con-
fidence in the validity of the subsequent results, we
choose the interval » = 6-190 m (the first six » val-
ues; see Figure 4) for the scaling analysis. To show how
good the scaling is over this interval, we plot {|6ur|)
versus (|6ur|®) in Figure 6. This plot represents the

SuL
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Figqre 7. Plot of Gy versus Gy for éuy. The straight
line is fitted over the interval » = 6-190 m.

first step of using ESS to calculate {;. To show that the
scaling holds even at high orders, we plot G1g versus Gy
in Figure 7. The scalings for dur and 6T were likewise
very good, although the uncertainties in the fits were
considerably greater for dur.

The resultant {, values for éur and éur are shown
in Figures 8 and 9. Along with the scaling calculated
from the entire data set (circles), we also calculated the
mean of the scaling parameters calculated for 2755 64-
point segments (squares). The former corresponds to
parameters that are computed from the ensemble aver-
age of many realizations, while the latter corresponds to

r=6-190m

o Data (total)
o Data (segmented)
— K41
lognormal
=~ log-Poisson (SL)
o log-Poisson (fit)
= = log-l evy (fit)

T T T

a=1.6
C,=025

Plot of ¢, versus p for dur,.
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Figure 9. Plot of ¢, versus p for duyp.

the mean of parameters computed from ~1 realization
(we say “many” and “~1” because the physical length
of an N-point segment varied with the aircraft speed).
For brevity, let us label the former case “total” and the
latter case “segmented.” Note that error bars are plot-
ted for both cases, but they are too small to be visible
in the latter. Later, we will discuss the implications of
the difference between the two results.

We have also plotted four of the best known mod-
els: the K41 (mentioned earlier), the lognormal [Kol-
mogorov, 1962; Obukhov, 1962], the log-Poisson [She
and Leveque, 1994], and the log-Lévy [Schertzer and
Lovejoy, 1987] models. Any required input values were
taken from the total data results. The scalings are
clearly anomalous for both the total and segmented re-
sults, and indicate more intermittency than predicted
by the K41 theory.

The lognormal model has been criticized because it
violates Novikov’s inequality [Novikov, 1970] and the
nondecreasing criterion of Frisch [1991], although these
two conditions themselves have been questioned on their
relevance to real fluids [Schertzer et al., 1995]. The log-
Poisson model has had success in matching experimen-
tal data [e.g., Anselmet et al., 1984; Benzi et al., 1993b],
but it has also been criticized as implying a nonphys-
ical probability distribution function [Nowikov, 1994].
More recently, Boratav and Pelz [1997] have provided
evidence from numerical simulations that the transverse
velocity intermittency is greater than the longitudinal
velocity intermittency, and that the former is also more
intermittent than predicted by the original She-Lévéque
log-Poisson model (labeled in Figures 8 and 9 as “log-
Poisson (SL)”). They were able to fit their data more

closely for both cases by freeing two parameters in a
generalized form of the log-Poisson model. Our results
provide experimental support for this disparity in inter-
mittency between the longitudinal and transverse veloc-
ity fields, especially for the segmented data case, where
the statistical uncertainties are very small.

The log-Poisson model can also be expressed as a
function of the time scale exponent h and codimension
C, of the most intermittent structures [Politano and

Pougquet, 1995]:
! (1 )g
C,

She and Leveque [1994] chose h = 2/3 and C, = 2.
Other choices, however, can be justified [e.g., Chen and
Cao, 1995]. Equation (12) can also be fit to the data by
determining these two parameters from the measured
G and Co: h = (2 = (6)?/(3 — 3¢s + (o) and C, =
(2=¢6)%/(3 — 3(s + (9)?. The resulting values and the
consequent plots of (12) are displayed in Figures 8 and
9.

The log-Lévy model for velocity yields similar pre-
dictions to the log-Poisson model, but Schertzer et al.
[1995] advocates its use because of its “strong universal-
ity” properties. One of the key differences between the
two models is that the log-Poisson predicts ¢, to be in-
dependent of the number of realizations. This is clearly
not true for our results (Figures 8 and 9). The log-Lévy
model on the other hand allows for a divergence in mo-
ments at a critical value, p;, which leads to a change
in ¢, for p > p, with the number of realizations consid-
ered. More specifically, , reaches a linear asymptote

sz(l—h)g‘}'co

: (12)
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Table 2. Calculated Parameters for ¢, Asymptotes

Type Segmented Total

v C1 g Cr
Sur, —0.274+£0.001 0.19 £ 0.002 —0.174+0.04 0.574+0.23
dur —0.24 40.001 0.27 £ 0.002

T —0.22 +£0.003

0.32 £ 0.02

—-0.134+£0.02 0.73+£0.11

for p > p., expressed as (, = Cr — vp. (See Schertzer
et al. [1997] for a more detailed discussion.) For both
dur and éur we observe such an asymptotic behavior.
The transition can be either first or second order, with
the critical moment of the former being independent of
the number of realizations, while the critical moment of
the latter being sampling dependent. It appears from
Figures 8 and 9 that p, does depend on the number of
realizations. For the segmented data the linear asymp-
tote reaches down to p ~ 3, while for the total data
the asymptote only goes down to p ~ 5. For confirma-
tion we calculate the second-order transition moment,
ps = 3(Cr/C)Y* [Schmitt et al., 1994]. For éuy we
obtain p, = 2.6 and 5.0 for the segmented and total
data cases. For dup segmented, we obtain p; = 3.2 (the
total data case had error bars too large for a meaningful
result). These values are consistent with the observed
transition moments, so we seem to have second-order
transitions here. Values of C; and v derived from linear
fits to the data for p > p,. are given in Table 2. Values
for the dur total data case are not given, because the
uncertainties were larger than the values themselves.
The scaling exponents ¢, for the log-Lévy model are

given by
o=5-116)" -5

where C] is the mean fractality parameter (or codi-
mension of the mean singularity) and «, the Lévy in-
dex, can be varied to fit the data. The mean fractal-
ity parameter can be calculated from the data through
Ci1 = 1—3(d{p/dp)|p=3. The resulting values and the
subsequent plots of (13) are shown in Figures 8 and 9.
Following the logic of the multifractal phase transition
[Schertzer and Lovejoy, 1992], the fits were performed
only up to p = p. = 5 (to the total data), beyond
which the fit to the empirical results is not expected
to be good. For the longitudinal velocity results the
values of @ = 1.6 and C; = 0.25 compare favorably to
past atmospheric measurements of o« = 1.45 4 0.1 and
C1 = 0.24 £ 0.05 [Schmitt et al., 1993], although other
experiments have yielded somewhat smaller values of
Cy [e.g., Schertzer et al., 1995]. These values are also
very close to those calculated from numerical simula-
tions of the scaling gyroscope cascade model [Schertzer
et al., 1997].

Although ESS has been applied to passive scalar data
le.g., Benzi et al., 1994; Ruiz Chavarria et al., 1995],

(13)

unlike for the case of velocity structure functions, there
is no theoretical basis for assigning a reference value
like (3 = 1. It is possible to use a measured refer-
ence instead, but we elected to use the direct method
for computing the slopes of the temperature structure
functions, since it yielded more consistent results for
different numbers of realizations. We chose the interval
r = 12-190 m, since the instrument response time of
the temperature probe at the full 22 Hz (~6-m inter-
val) was somewhat suspect. The results are shown in
Figure 10.

To derive theoretical models for the scaling of tem-
perature structure functions, some assumption needs to
be made for the correlation between II, and Iy, the
energy flux and scalar variance flux. Although it seems
reasonable to posit only a partial correlation between
the two quantities, for our temperature data the best
fit to proposed models occurred when a complete cor-
relation was assumed, i.e., that {, is the same for both
velocity and temperature data. In Figure 10 the model
curves from Figure 8 are reproduced, except for the She-
Lévéeque model. In addition, the predictions for a ran-
dom advection/diffusion model with a white Gaussian
velocity field é-correlated in time with self-similar corre-
lations in a spatial dimension of three [Kraichnan, 1994]
is also plotted. We tried fitting bivariate models that
allowed for partial correlation between II,, and Iy [Van
Atta, 1971, 1973; Schmitt et al., 1996; Cao and Chen,
1997], but these could not fit our data very well. We
note, however, that our {, curve for temperature data
was significantly less multifractal than previous results
le.g., Antonia et al., 1984; Ruiz Chavarria et al., 1995].

As before, we have also calculated the (,s for the
mean of order-unity realizations (labeled segmented).
Again we see a divergence of moments for the different
numbers of realizations, with the (s going to a linear
asymptote at high values. Although difficult to see from
the plot, the linear asymptote for the segmented data
results goes down to p ~ 4, while for the total data it
extends down to p ~ 6. Thus the multifractal phase
transition appears to be of second order. To check for
consistency, we calculated p; as we did for the veloc-
ity parameters, and obtained the values 3.5 and 5.9 for
the segmented and total data cases. The parameters
derived from the linear asymptotic fits are given in Ta-
ble 2. As for the velocity results, the intercept Cy in-
creases and the slope —v decreases with the number of
realizations.
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Figure 10. Plot of ¢, versus p for §7".

5. Summary Discussion

Using aircraft data collected for an experiment not
specifically designed for turbulence studies brings up
the issues of ergodicity and homogeneity. Ideally, one
should either have so much data that one can reasonably
talk about the mean state of the atmosphere, or one
should examine data collected under strictly specified
conditions. Since our study lies somewhere in between
these two extreme cases, one must be wary in interpret-
ing the results. The higher-order calculations (where
anomalies are emphasized) are especially susceptible to
slight changes in conditions. Our scaling results seem
to show second-order multifractal phase transitions im-
plying that, indeed, sampling was an issue. Therefore
the actual numerical values derived from our computa-
tions should be taken with a grain of salt. We can say
something, however, about the qualitative behavior of
the structure functions and what the real atmosphere
is like relative to the idealized theories.

The appearance of multifractal phase transitions in
both velocity and temperature data, and the change in
asymptote with the number of realizations, was a key
result. As pointed out by Schertzer et al. [1995], these
characteristics argue against the log-Poisson model. For
our velocity data, then, the log-Lévy model becomes the
better alternative, begin able to fit the (, curves up to
the transition point, and also able to accommodate the
asymptotic change.

Another interesting result was the difference in inter-
mittency between the longitudinal and transverse veloc-
ity fields, with the latter being more multifractal than
the former, both for small and large numbers of real-
izations. (For the latter case, however, the large error

bars in the transverse velocity results precluded a pre-
cise estimate of the difference.) Such differences were
noted recently in direct numerical simulations [Boratav
and Pelz, 1997]. This qualitative result remained con-
stant when different subsets of the data were used, and
it held for the case where only the horizontal transverse
velocity was used, i.e., when the vertical velocity, always
the most problematic to measure, was excluded. The
difference therefore does seem to be a real characteris-
tic. The reason for the difference in intermittency be-
tween the longitudinal and transverse velocity compo-
nents may very well be the anisotropy observed in Fig-
ure 3. Although the numerical simulation used to study
this issue conformed fairly well to isotropy, the question
of whether the difference in intermittency is caused by
slight anisotropies or is characteristic of isotropic tur-
bulence remains an open question [Boratav, 1997b].

The temperature results did not show signs of satura-
tion as have been postulated [Chertkov, 1997; Balkovsky
and Lebedev, 1998] up to order 10. Frisch et al. [1999]
have argued that saturation has general validity, even
though the orders where it can be observed may be too
high depending on the spatial dimension and the rough-
ness of the velocity field. However, as noted above, the
results did indicate a second-order multifractal phase
transition, and, curiously, the scaling parameters were
very similar to the velocity results up to the transi-
tion moment. Again, the divergence of moments for
different numbers of realizations is evidence against the
log-Poisson model.

We were also able to estimate the strength and di-
rection of the kinetic energy and temperature variance
cascades. The cascades for both quantities were down-
scale in the presumed inertial subrange, with dissipation



32,478

rates of e ~4x 1075 m2s 3 and g ~ 5 x 1077 K2 571,
For » > 10 km the energy appeared to flow in a 2-D up-
scale cascade with a flux of ~107° m? s3. Beginning at
somewhat longer scales, the temperature variance also
had a 2-D upscale flux of ~2 x 1077 K2 s71.
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