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Abstract. The Kolmogorov equation for the third-order velocity structure function
is derived for atmospheric mesoscale motions on an f plane. A possible solution is
a negative third-order structure function, varying linearly with separation distance
and mean dissipation, just as in three-dimensional turbulence, but with another
scaling constant. On the basis of the analysis and the observed stratospheric
third-order structure function, it is argued that there is a forward energy cascade in
the mesoscale range of atmospheric motions. The off-diagonal part of the general
tensor equation is also studied. In this equation there is an explicit Coriolis term
that may be crucial for the understanding of the kinetic energy spectrum at scales

larger than 100 km.

1. Introduction

The kinetic energy spectrum of atmospheric
mesoscale motions has been the object of scientific
debate for over two decades. A key issue in this debate
is the direction of the kinetic energy flux, II,, from
small to large wave numbers, i.e., the rate of kinetic
energy that is transferred from large-scale motions to
small-scale motions. Two opposite hypotheses have
been put forward regarding the sign, or the direction,
of the flux of kinetic energy.

First, there is the hypothesis [Dewan, 1979, 1997]
that the kinetic energy flux is in the direction from small
to large wave numbers. According to this hypothesis,
long gravity waves break down to shorter waves in a
cascade process, which is similar to three-dimensional
(3-D) Kolmogorov turbulence, resulting in a positive
kinetic energy flux. The only parameter that can de-
termine the spectrum is the energy flux, and from di-
mensional considerations we obtain a k~%/3 spectrum,
where k is the wave number. At the shortest wave-
lengths, 100-1000 m say, a more violent instability oc-
casionally sets in; the wave energy is broken down in
intermittent spots of three-dimensional turbulence and
finally dissipated at scales of the order of 1 cm.

Second, there is the hypothesis [Gage, 1979; Lilly,
1983] that the k~5/3 spectrum is the spectrum of two-
dimensional (2-D) turbulence with a negative energy

Copyright 2001 by the American Geophysical Union.

Paper number 2000JD900815.
0148-0227/01/2000JD900815%09.00

flux, i.e., a flux from small to large scales, in accordance
with Kraichnan’s theory of 2-D turbulence [Kraichnan,
1967, 1970]. Such a range naturally emerges in 2-D di-
rect numerical simulations (DNS) with forcing at large
wave numbers [Smith and Yakhot, 1994; Maltrud and
Vallis, 1991].

Lindborg [1999], hereafter L99, suggested that the
classical third-order structure function relation of Kol-
mogorov [1941],

(burburéur) = ~%er, (1)

could be used to determine the direction of the spec-
tral flux of kinetic energy, from large to small scales.
Here € is the mean dissipation, which is equal to Il
du = u’ — u is the difference of the velocities at two
points &' and € with separation vector r = & — ¢ and
the subscript L indicates the component in the same di-
rection as r. The brackets denote statistical averaging,
often interpreted as ensemble averaging. Here we let it
denote time averaging.

Generally it can be argued that a negative linear
range of the third-order structure function,

(burbu - bu), (2)

should be interpreted as a sign of a forward cascade, and
a positive linear range should be interpreted as a sign of
an inverse cascade. In three dimensions the third-order
structure function is related to the spectral energy flux
through wave number k through the relation (see L99
or Frisch [1995], section 6.2)
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Iy (k) —Z[kl<k&?)§/v~(6u6u«6u)

x exp(ik - r) d®r &k , 3)

with a corresponding relation in two dimensions. The
third-order structure function corresponding to a con-
stant energy flux, II, (k) = F, is a solution to the equa-

tion
V- (éuébu - bu) = —4F. (4)

This can be seen by substituting (4) into (3),

! / ! / 4F exp(ik - r) d®r >k
— — —— — . 7"

4 Jij<r (27)3

/ Fé(k)dk
|ki<k

= F,

. (k)

Il

(3)

with a corresponding calculation in two dimensions.
More rigorously, one should, of course, take into ac-
count that II, (k) is constant in a finite range of wave
numbers, k; < k < ko and that (4) can be true only
in a corresponding finite range of separation lengths,
ry < r < rg. Provided that these ranges are sufficiently
broad and that (uydu-éu) monotonically goes to zero
as r — 0, it can be argued (see L99) that the contribu-
tion to the flux integral from regions outside the range
where (4) holds are negligible and that (5) is a good
approximation.

By using the divergence theorem we can integrate (4)

to 167 F
Ter
)

where d€2 is the element of solid angle and the integral
is over all angles. In two dimensions we instead find

/(6uL6u -6u) dQ = —

27
/ (bupbu - bu)df = —4nFr, (N

0
where df is the element of azimuthal angle. The re-
lations (6) and (7) quite generally show that in both
two and three dimensions, a negative linear range of
(6ur,éu - du) implies a positive F, i.e., a positive and
constant energy flux, and a positive linear range of the
same function implies a negative and constant energy
flux. Note that this argument is not dependent on any
strong assumption of isotropy. Isotropy means that
(6uréu - du) is independent of angle, and the integrals
of (6) and (7) can be computed to give

(bupdu - bu) = —%Fr (8)
in three dimensions and
(ugbu - bu) = —2Fr 9)

in two dimensions. By assuming that the third-order
structure function tensor is isotropic and that the flow
is incompressible one can further derive the relation (1)
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and the corresponding two-dimensional relation (L99)

(10)

However, even for an anisotropic field, the relations (6)
and (7) clearly suggest that a negative linear range of
the third-order structure function is a sign of a positive
energy flux. In this study we shall approximate du - du
with the expression including only the horizontal veloc-
ity increment. Moreover, the separation vector is con-
fined to the horizontal plane. As we shall see from a
detailed analysis of the governing equations, these lim-
itations will not prevent us from estimating II,,, using
the two-dimensional relation (9), rather than the three-
dimensional relation (8).

In the companion paper [Cho and Lindborg, this is-
sue], hereafter Part 1, a plot (Figure 6) of the strato-
spheric third-order structure function (9) displays a
negative linear range for 10 km < 7 < 200 km. Thus
this plot gives us an answer in favor of the forward cas-
cade hypothesis. However, to put this interpretation
on somewhat firmer ground and to quantitatively de-
termine the kinetic energy flux, or the mean dissipa-
tion, a renewed analysis of the governing equations is
required. In the case of atmospheric motions, possible
effects from rotation and stratification should be care-
fully investigated.

The main objective of this paper is to derive the
flux relation in the case of atmospheric mesoscale mo-
tions, using the weakest possible assumptions. This
will be done by first deriving the governing equation
for the second-order structure function tensor (du;éu;)
and then taking the trace of this equation. In addition
to the flux relation, we will also study the off-diagonal
part of the tensor equation, in which an explicit Coriolis
term appears.

Many terms will be neglected in our analysis, which,
inevitably, means that some uncertainty may adhere to
the quantitative estimate of the kinetic energy flux or
the mean dissipation. If all these approximations are
justified, then we believe that our estimate of the mean
dissipation in the lower stratosphere is one the most
accurate that has been made so far. Future measure-
ments and numerical simulations will tell us whether we
are right.

(burburdur) = —-gFr.

2. Derivation of the Kolmogorov
Equation on an f Plane

The general Kolmogorov equation is the dynamical
equation for the second-order structure function tensor
(6uiéuj). We use Cartesian tensor notation since it is
very convenient. To derive the dynamical equation for
(6uiéu;) on an f plane, we let z, y, and z be the lon-
gitudinal, latitudinal, and vertical length coordinates,
and u, v, and w be the corresponding velocity compo-
nents. To start, we make the following assumptions:
(1) Statistical homogeneity in the longitudinal direc-
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tion. (2) Quasi two dimensionality, by which we mean

that
vl (11)

without assuming that the z derivatives of w, u, or v
are small. We allow the possibility that

[w] < Ju] ~

Ou

duw| |ou
Oz

3, (12)

and the corresponding relation for v. (3) Structure
functions are invariant under rotation around a vertical
axis, or in other words, they are axisymmetric. (4) Let
p = po + p, where p is the mass density, p, = (p), and
tilde denotes the fluctuation around the mean. Then
we assume that |p| < p,. (5) Let u; = U; + 4;, where
U; = (u;). Other capitalized quantities will also corre-
spond to mean values. We assume that the fluctuating
field is imcompressible,

04; 0p

ke R 0 and 2

0¢; (9t
which is justified if the Mach number is small. The
convention of contraction over repeated indices is used.

(6) The vertical mean velocity W is zero. (7) From mass
conservation and the previous assumptions it follows

=0, (13)

that 5 L8
U p

— = 14

9&i po Oy a4
(8) From the thermal wind equation we estimate

1 8p ou f

15
pody| |9z g (15)

where g is the gravitational acceleration, f = 2|Q|sin ¢,
Q is the Earth’s angular velocity vector, and ¢ is the
latitude, and further assume that

ou f
g <t (16)

(9) The separation 7 is sufficiently small to make the
approximations

P =p, and é=¢&, (17)

where & is the upward pointing vertical unit vector. The
primed quantities are measured at &', and the unprimed
quantities are measured at &.

Now we write down the Navier-Stokes equations in a
rotating frame of reference,

Ouy Ouy 1 ap
= T ukgg Y 2651w
2y
_ezg+1/6£ka£k, (18)

where p is the pressure and v is the kinematic viscosity.
For simplicity, we have used the incompressible form of
the viscous term. Note that the subscripted ¢ here is
the alternating symbol used in standard tensor notation
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not the dissipation rate. The second-order structure
function tensor divides itself into four terms,

(buibuj) = (19)
To derive the equation for (6u;éu;), we derive the equa-
tions for the four separate terms within the averaging
operator () on the right-hand side of (19) and then add
these together. Then we make the variable transforma-
tion

1,01 R S}
(wjuj + uiuj — wpu; — uiug) .

§=x, ¢ =x+r,

(s ) = (st + i )
average, and use the fact that differentiation commutes
with the averaging. Essentially, this is the method de-
veloped by von Kdrmdn and Howarth [1938], with the
difference that they did not derive the equation for the
structure function but for the equation for the correla-
tion function (uu;), whose isotropic form is known as
the Karman-Howarth equation.

The equation for u;u; is derived by multiplying the u;
equation by u;, multiplying the u; equation by u;, and
adding the two resulting equations. The equations for
the other three terms in (19) are derived in a similar
way. Thus the equation for (éu;éuj) can be written
as a sum of eight equations. We analyze the resulting
equation term by term. (1) The time derivative

(20)

9
57 (uibu;)

is equal to zero by the definition of the average as a
time average. (2) By treating &' and £ as independent
variables the advection terms can be written as

<5—(Z:(uk5ui5u]')> + <£L-(u§c§ui5uj)>
U Bu'
— <gT:6u,;6uj> — <3—€k7’°-6ui6uj> .
From assumptions 5-7 it is easily argued that the last

two terms are negligible. By introducing the transfor-
madtion (20) the first two terms can be written as

(21)

(22)

0 = (Ourdu;bu;) +
Tk

0
(ukéuiéuj) . (23)

Tk

By the assumption of statistical homogenelty in the lon-

gitudinal direction, we can write

0
PR — (urbuiduj) = 99 —(véuibu;) + g;(
An order of magnitude estimate of these two terms can
be obtained by replacing v and w with the correspond-
ing mean velocities. Since we have assumed that the
vertical mean velocity is zero we thus obtain the order
of magnitude estimate

wéu;buj) . (24)

) a
By ukbuibus) ~ V5§<5Ui5uj> , (25)
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where V is the meridional mean velocity. From the air-
plane data we calculated V in different latitude bands,
and we found that V ~ 1 m s™!, at most. From the
latitudinal variation of the second-order structure func-
tions (Part 1, Figures 2 and 3), the term (25) can then
be estimated. A safe conclusion is that it is negligible
compared to the other terms in the final equation, at
least for r < 100 km. Actually, we have also calculated
the term (véu;éu;) directly, in different latitude bands.
From this calculation we have come to the same conclu-
sion, that the inhomogeneous part of the advection term
is negligible for r < 100 km. (3) Using assumptions 3
and 9 the pressure terms can be written as

(26)

By introducing the transformation (20) the pressure
terms can be rewritten as

0

1 8 1
—Fa—m(@po&tj) - p—zg(éppoéuzr) +Di;, (27)
o o J

where we define the tensor D;; by

1 d(pouz)  8(pou;)
2 (T - 5))

1 9(poty) _ Opoui)
(o (20 o))

The first two terms in (27) can be neglected by the
following arguments. We first assume that the inho-
mogeneities emanate from the mean pressure and mean
velocity fields, which is very reasonable. For simplicity
we study the trace of the relevant term. This can now
be estimated as

Dij

2 0 6P oV
7, 3y P8~ (ax Ty
0P dV
+ — 3y By ryry) . (29)

By assuming that the mean field is in geostrophic bal-
ance we can estimate this term as

~f (L)Z v2
L, ’

where Ly is the typical latitudinal length scale over
which the mean field varies, which is at least 1000 km.
As long as r < Ly, it is safe to neglect this term. We
also observe that the tensor Dj; is traceless, which fol-
lows from mass conservation. (4) The Coriolis term can
be written as

(30)

=265 (Swrdu;) — 26551 (Subu;) (31)
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which is straightforward to show. (5) The term as-
sociated with the gravitational force includes a factor
(ei — e;)g, and will thus be zero according to assump-
tion 9. (6) By introducing the transformation (20) the
viscous term can be written as

! du’ duj\ 2 ‘
—2u<a—"}a—'gf> 2I/<g?k 6? >+2V—3raar (6uibuj)
52 — 2% ) o2 (buibu;), (32)

of which we neglect the last term on the basis of homo-
geneity. Here we have not assumed that homogeneity
can be generally applied. However, this term must be
very small since the length scale over which (6u;6u;)
varies is much larger than any viscous length scale. In
fact, the penultimate term is also negligible for the case
to which we will apply the equation. We will, however,
keep this term for a while.
The resulting equation can now be written as

i(éukéuiéuj) =

ark Dij - 2€ik19k(5uzé’ll,j)

<0u 3u >
661&: 8§k
8u, 8uj a
- 2V<6§k Ok > + 2”57166_”(6%6%) . (33)

One by one we have eliminated all terms describing the
effects of inhomogeneities in the latitudinal direction as
well as in the vertical direction. Quite generally, it can
be argued that the conditions for neglecting inhomoge-
neous terms are

rp, L Ly and r, < L,,

- 2€jIcIQk (6u16u,~)

(34)

where 7, and 7, are the projection of r onto the hor-
izontal plane and the vertical axis and Ly and L, are
the typical latitudinal and vertical length scales of over-
all variation of the statistical properties of the atmo-
spheric flow field. As for the airplane data the second
condition is always fulfilled, since r can always be ap-
proximated as lying in a horizontal plane. In fact, in
our structure function computations we only used data
point pairs that were on the same standard flight level,
e, r, <300 m (see Part 1). We find it safe to assume
that the first condition is fulfilled if r, < 100 km.

Now we define i as the unit vector pointing in the
same direction as the projection of the separation vector
r on the horizontal plane. In our empirical investiga-
tion, r always lies in the horizontal plane, so in this
case 1i is the unit vector in the direction of r. The unit
vector t we define as t = fi x &. The velocity increment
du can be resolved into orthogonal components as

6u = hbuy + tour + 86w (35)

It can be noted that (35) is just the classical resolution
of a vector into cylindrical components. The vector r
can be resolved as

r=1r, +ér,.

(36)
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The two components r, and r, are very similar to the
traditional cylindrical coordinates p and z, with the
slight difference that they are the components of a true
vector and not the coordinates of an arbitrary point.
Since we have made assumption 3 of quasi two dimen-
sionality, we will mainly be concerned with structure
functions including the horizontal components éuy and
bur.

The horizontal parts of the second- and third-order
structure functions can now be written as

(6ui6uj)H = ninj(éuLéuL)+t,;tj<6uT6uT)

+ (nitj + nit;)(Surdur) (37)

(6uk6ui6uj)H = ngn;n; (6uL6uL6uL) + (nkt,:tj
+ txnit; + tktinj)(éuLéuTéuT)
+ tptit; <6UT6UT6UT> + (nkn,;tj
+ ngt;ng + tkn,-nj)(éuLéuLéuT).(%)

The expressions (37) and (38) are complete representa-
tions of the horizontal parts of the structure functions
and do not require any assumption of axisymmetry. The
functions including an odd number of the transverse
component fur are not invariant under reflections in
vertical planes. The only physical mechanism that can
break this kind of symmetry is rotation with respect
to a vertical axis. Without system rotation we would
therefore expect these functions to be zero. With sys-
tem rotation, they are not generally zero. However, it
was found from the data that the function (Supdur)
was very small. Up to separations of 100 km the ratio
[(6urbur)|/|(6urbur)| was less than 2% and for larger
separations it was less than 5%.

Using assumption 3 of axisymmetry, we will now take
the trace of equation (33). With a slight change in
notation this can be written as

1
;p—airp(rp(éu[ﬁu -fu)) + %(6w6u -6u) =

—2(¢') — 2(€) + 2vV2(6u - u), (39)

where du - du = durdur + durdur by the assumption
of quasi two dimensionality, (¢') and (€) are the average
rates of dissipation of kinetic energy per unit mass at
the points ¢’ and &, and V2 is the r space Laplace
operator. The Coriolis terms disappear from (33) when
we take the trace, which can easily be seen by writing
it in vector notation as —4((Q x éu) - éu) = 0. The
second term on the left-hand side cannot be neglected
only on the basis of quasi two dimensionality. It is true
that it contains the vertical velocity increment §w, but
it also contains a derivative with respect to the vertical
direction. If the relevant vertical length scale is very
small, then this term could, in principle, be important.
Nevertheless, we think it is reasonable to neglect this
term. To do this, it is sufficient to assume that for a
given §u - §u, which is positive definite, there is equal
probability for a negative dw as for a positive éw of a
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given magnitude. This would, for example, be the case
if the joint probability distribution of éw and éu - §u
were Gaussian. This is a reasonable assumption for
horizontal separations r,, which are large compared to
the typical length scale of vertical displacements. Thus
we neglect the second term in (39).

Assuming that (¢') & (€}, (39) can now be written as
i——g—(rp(éuLiSu-&u)) = —4(e)+20VZ(§u-bu) . (40)
r, Or,

Neglecting the last viscous term in (40), there are two
terms left, and the equation can be integrated to yield

(41)
where we have written r instead of r, since it is evident
that we are now confined to the horizontal plane.

Comparing (41) with (9), we see that it can also be
given the interpretation that the spectral energy flux,
O,(k), from small to large wave numbers in Fourier
space, is positive, constant, and equal to (¢). An in-
verse energy cascade, from large to small wave numbers,
equivalently from small to large scales, would have given
a positive linear range of the third-order structure func-
tion (41), and not a negative linear range, as observed
in Part 1. Thus we can quite safely conclude that the
energy flux is in the direction from large to small scales,
just as in 3-D turbulence. For obvious reasons, we can,
however, be certain that the underlying physical mecha-
nism of this energy flux is not classical 3-D turbulence.
So far we have made no assumption about what sort
of mechanism this could be. The relation (41) is de-
rived from the Navier-Stokes equations, using only very
general assumptions. A reasonable guess [Dewan, 1979,
1997] is that the underlying mechanism is a cascade pro-
cess of nonlinearly interacting gravity waves, in which
energy is transferred from larger to smaller wave modes.
In all likelihood the actual dissipation takes place in
very localized and intermittently distributed “blobs” or
“blini” of high intensity 3-D clear air turbulence (CAT).
The typical dissipative length scale is of the order of
1 cm. It may seem strange that (41) relates the dissi-
pation to the third-order structure function measured
at separations of many orders of magnitude larger than
the length scale at which the dissipation actually takes
place. Indeed, this is a remarkable property of the Kol-
mogorov relation.

We shall also study the off-diagonal part of (33). Pro-
jecting this equation onto n;t; we can, after some ma-
nipulation, obtain the equation

(6UL6UL6’U,L) + (6UL6UT5UT) = —2(6)1’,

1 2 0
;(5UT6UT5UT> - (; + '(-9—7:> (6uL6uL6uT)

+ n;t; Dij = f((6UT6UT> — <6UL5UL>) . (42)

Here we have assumed that all viscous terms in (33) are
diagonal and that the term (8/9r,)(6wéurdur) can be
neglected by using the same type of argument when the
corresponding term was neglected from (40). The sub-
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script p has been dropped from r as in (41), since we
are confined to the horizontal plane. All the terms in
(42) clearly have opposite signs on opposite sides of the
equator, since f, as we have defined it, is positive in
the Northern Hemisphere and negative in the Southern
Hemisphere. If mean values are formed from a data
set including both the Northern and Southern Hemi-
spheres, then two opposing orientations of the vector t
must be used on each side of the equator to avoid can-
cellation of the two hemispherical contributions. This
applies to structure functions with terms that have an
odd number of dur. Therefore we redefined t in the
Southern Hemisphere when we calculated the structure
functions from the airplane data (see Part 1).

3. Comparison With Empirical Data

We shall now investigate to what extent the empiri-
cal data (see Part 1) can be interpreted in light of (41)
and (42). The left-hand side of (41) is plotted for the
troposphere (Part 1, Plate 1a) and for the stratosphere
(Part 1, Plate 1b). For the troposphere the statistical
scatter is very large up to r = 100 km, and we do not
dare to interpret the points as evidence of a linear re-
gion. However, the left-hand side of (41) is negative,
and it may very well be the case that a linear region
would appear if the scatter could be removed by using
even more data. As for the stratosphere, there is in-
deed evidence of a linear region in the range from 10
to 200 km (Part 1, Figure 6). By fitting the data to a
straight line in this range and using (41), we can esti-
mate the mean dissipation per unit mass to be

() =6 x 107°m? s73. (43)
This is a very reasonable value that falls somewhere in
the middle of the wide range of previous estimates from
various types of measurements, which can be found in
reviews of previous measurements [ Vinnichenko, 1969;
Crane, 1980; Dewan, 1997; Hocking and Mu, 1997].

Two different types of measurements of the mean dis-
sipation in the stratosphere are reported in the litera-
ture. First, there are estimates made from radar ob-
servations using the scattering cross section per unit
volume [Crane, 1980; Hocking and Mu, 1997] or the
Doppler spectral width [Nastrom and Eaton, 1997]. To
estimate the dissipation from the former quantity re-
quires some rather elaborate model assumptions, while
the latter is susceptible to contamination by beam,
shear, and wave-broadening effects [Hocking, 1996];
both may be biased high because very weak turbu-
lence may not be detected at all. Second, there are
airplane [ Vinnichenko, 1969; Lilly et al., 1974] and bal-
loon [Cadet, 1977] measurements of the 3-D turbulence
inertial range energy spectra, alternatively second-order
structure functions, performed in more or less localized
turbulent patches. If it is assumed that the Kolmogorov
constant is known, then the mean dissipation can be es-
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timated, either from the measured spectrum or from the
structure function.

There are important principal differences between our
method of estimating the mean dissipation and these
methods. To estimate an overall mean value of the dis-
sipation either from radar measurements or from di-
rect turbulence measurements, it is necessary to aver-
age over a wide range of subsets of data, for which the
individual values of the dissipation can vary by over
2 orders of magnitude, owing to the very large spatial
and temporal variation of this quantity. It is not easy
to estimate the relative weights of these subsets.

Our estimate is based on a time and space average
of a quantity describing properties of the flow field at
scales from 10 to 200 km. Whatever the nature is of the
underlying dynamical process of our data, the process
is definitely not as rarely occurring as 3-D turbulence.
The quantity that we actually measure is the kinetic
energy flux at larger scales. We also use a huge data
set, with samples from many locations. This should
give us a more representative overall mean value.

As compared to radar measurements, our estimate re-
lies on an analytical relation (41) with far more theoret-
ical justification than the assumptions that are required
to estimate the mean dissipation from radar data.

As compared to in situ measurements from airplanes
or balloons, there is another important difference. Our
estimate relies on a relation (41) with a linear depen-
dence of the dissipation. This means that we will mea-
sure a true mean value, even though there may be a
very large spatial and temporal variation in the set of
individual samples on which the mean value is based.
The measured mean value over two or more subsets of
data, for which the mean dissipations are very different,
will actually be the true mean value. This is not true
if we rely on nonlinear relations such as (44) or (45)
[see Landau and Lifshitz, 1987, p. 140]. A necessary
condition to use such a relation for an estimate of the
dissipation is that there is not too much variation of the
turbulence intensity in each data set that is used.

We now investigate what value we obtain for the con-
stant C, corresponding to the Kolmogorov constant of
3-D turbulence. We assume that we can write

(6u - u) = C(e)2/3r2/3 (44)
with corresponding relations (see L99)
E(k) = C,(e)2/3k=5/3
Bi(k) = o)k (45)

for the 2-D and one-dimensional (1-D) kinetic energy
spectra. The relations between the three constants are
C, = 0.17C and C; = 0.12C (L99, p. 271). Using the
values of the measured parameters a; and ag (Part 1,
Table 2) based on all stratospheric data, we obtain

C=55, C,=095, and C,=067. (46)
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Table 1. Mean Energy Dissipation Rates in the Lower
Stratosphere

Latitude (€)
(107° m* s7%)
30°-40° 9.6
40°-50° 7.4
50°-60° 5.7
60°-70° 4.5

We do not claim that these values are very accurate
nor that the constants necessarily are universal, since a
very intermittent distribution of € makes universality a
disputable issue [see Landau and Lifshitz, 1987]. How-
ever, the fact that the measured values are of the order
of unity strengthens the credibility of the measured ki-
netic energy dissipation, as well as the interpretation of
the k=5/3 range of the kinetic energy spectrum as origi-
nating from an energy cascade, similar to the cascade in
3-D turbulence. Using the value (46) of C, which was

calculated using the total average of the second-order
structure function, and using Table 2 from Part 1, we

can actually estimate the latitudinal variation of the
mean dissipation in the lower stratosphere. The result-
ing values are listed in Table 1. There is, of course, some
uncertainty in these values, although we think that the
trend is significant.

For separations of the order of 1000 km, the latitudi-
nal inhomogeneities may become important in the gov-
erning equations for the structure functions. The plots
of the second-order structure functions (Part 1, Fig-
ures 2 and 3) show a significant latitudinal variation,
both in the troposphere and the stratosphere.

There is an established hypothesis [Charney, 1971]
that the observed kinetic energy spectrum in this range
should be the spectrum predicted by Kraichnan’s 2-D
turbulence theory [Kraichnan, 1967]. According to this
theory, there is a range in Fourier space through which
there is a constant spectral flux of enstrophy II,,, and in
this range the kinetic energy spectrum should be of the
form E(k) = 112/3k=3. The very concept of a spectral
flux of enstrophy in Fourier space rests on the assump-
tion of homogeneity of (40). Moreover, a constant en-
strophy flux, II,,, being equal to the mean dissipation of
enstrophy, (€, ), requires that there is a very special bal-
ance in this equation. Applying the Laplace operator
to (40), we must have

V2V, - (6ubu - §u) = 4(e,) (47)
if there is a constant enstrophy flux range in Fourier
space. The left-hand side is directly connected to the
definition of the enstrophy flux. The right-hand side
originates from the last, viscous, term in (40). The
equation (47) can be integrated to obtain (see L99)

(burdurdur) + (durburdur) = i—(ew)rs. (48)
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The cubic positive dependence of (48) is a direct con-
sequence of a constant and positive spectral enstrophy
flux. Recently, the relation (48) has been numerically
verified [Lindborg and Alvelius, 2000] in a DNS of a
constant enstrophy flux range in 2-D homogeneous tur-
bulence. _ , '

Indeed, there is a rather narrow range, r =~ 500~
1000 km, with a positive cubic dependence of the
third-order structure function in the lower stratosphere
(Part 1, Figure 6). A realistic value of the enstro-
phy flux and enstrophy dissipation could be estimated
from this curve. However, it can be questioned whether
the effects from latitudinal inhomogeneities are so small
that this interpretation is the whole truth.

We have no alternative theory that can explain the
shape of the second-order structure functions, alterna-
tively the kinetic energy spectrum, at scales of the order
of 1000 km. We shall only point out another direction
that may lead to an explanation, if it is further inves-
tigated. Instead of studying (40) at these scales, we
shall study (42). In Figures 1 and 2 we have plotted
the functions (éurduréur) and (Supdurdur) for the
tropospheric and stratospheric data. The most striking
feature of the plots is that both these functions seem
to grow approximately as 72 in the range r = 100~
1000 km. This behavior is most evident in the strato-
spheric plots. We shall not try to explain this behavior,
although we find it quite remarkable. Instead we shall
focus on the contribution of the terms

1 2 0
;<6UT6UT5UT) - (; + 5—;) <6UL6'U,L6UT) (49)
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Figure 1. Sum of the off-diagonal third-order horizon-
tal velocity structure functions for upper tropospheric
data. The ((6ur)®) data are denoted by plusses (posi-
tive) and circles (negative). The (6uT(6uL)? data are
denoted by crosses (positive) and squares (negative).
The quantity [2 + r(d/dr)](6ur(éur)?) is plotted as
thick solid (positive) and dashed (negative) curves. The
thin straight line depicts an r? dependency as a guide
to the eye.
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Figure 2. Same as Figure 1, except for lower strato-
spheric data.

to (42). We computed the second term by fitting the
data points to an eighth-order polynomial and then per-
forming the differentiation. The result was multiplied
by r and plotted in Figures 1 and 2. It is a remarkable
fact that these two terms tend to cancel each other in
the region of » = 100 km. In the same range, the Corio-
lis term on the right-hand side grows with . Hence the
Coriolis term will be at least of the same order of mag-
nitude as the advection term, from scales of the order
of 100 km up to larger scales.

It may very well be the case that the main balance
in (42) is between the Coriolis termi and the pressure-
related term, and thus

f((6uT6uT) — (6UL5UL)) = 'nitjD,‘j .

If this is the case, then the difference, (buréur) —
(buréur), between the transverse and longitudinal
second-order structure functions, is determined by a
kind of geostrophic balance equation at scales of the
order of 100 km up to at least 1000 km, and probably
at even larger scales. Since these functions have the
same type of behavior, their sum is also determined by
this equation. Therefore the kinetic energy spectrum
would also be determined by the same equation in the
corresponding wave number range. It may very well be
the case that the origin of the k=3 spectrum [Nastrom
and Gage, 1985] should not be explained by any direct
effects of the nonlinear advection term, but rather as
a result of a balance between the Coriolis and pressure
terms. Geostrophic balance is generally believed to ap-
ply only for scales that are much larger than 100 km.
However, here we have found evidence for such a bal-
ance at smaller scales, at least in a statistical sense.
The strong latitudinal dependence of the second-order
structure function in the troposphere also makes it very
plausible that the Coriolis term is crucial for the under-
standing of the energy spectrum at scales of the order

(50)
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of 1000 km. However, since the pressure term is un-
known, both from an analytical and experimental point
of view, we have not been able to develop any theory
that could predict the shape of the structure functions,
or the kinetic energy spectrum, from the balance (50).

4. Conclusions

We have derived the general Kolmogorov equation
for atmospheric mesoscale motions on an f plane. We
have shown that there are no explicit Coriolis terms or
gravitational terms in the flux equation. We have ar-
gued that terms describing effects of statistical inhomo-
geneities can be neglected, at least for » < 100 km. By
assuming that the joint probability distribution of verti-
cal and horizontal velocity increments is Gaussian, the
flux equation could be integrated and compared with
the measured horizontal third-order structure function
in the lower stratosphere. A reasonable value of the
spectral flux of kinetic energy, and thereby the mean
dissipation, could be estimated from this curve.

To derive the flux relation and to compare it with
the experimental data, no assumption was required re-
garding the details of the physical mechanism by which
kinetic energy is transferred from large to small scales.
However, the gravity wave cascade hypothesis seems
reasonable. Our results are compatible with the de-
scription by Bretherton [1969] of nonlinear interaction
between gravity waves, which tend to transfer energy to
shorter and shorter wavelengths, propagating more and
more slowly relative to the mean wind. The cascade
is limited by the appearance of regions where the local
Richardson number is sufficiently small for nonwavelike
instabilities to grow, leading to transient patches of true
3-D turbulence.

For separations of the order of 1000 km, one must
be very cautious in making predictions based on equa-
tions in which the terms describing statistical inhomo-
geneities have been neglected. Nevertheless, we think
that (42), which is the off-diagonal part of the general
Kolmogorov tensor equation, gives us a hint that di-
rect effects from the Coriolis force should be taken into
consideration, when attempting to explain the shape of
the kinetic energy spectrum for scales of the order of
1000 km.
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