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Abstract— Frequency compensation of two-stage integrated- V|
circuit operational amplifiers is normally accomplished with a Vv
capacitor around the second stage. This compensation capaci- o 'O
tance creates the desired dominant-pole behavior in the open- R
loop transfer function of the op amp. Circuit analysis of this 2
compensation leads to a mathematical observation of “pole
splitting:” that as the compensation capacitance is increased, the
parasitic poles of the amplifier separate in frequency. Rl

Treatment of op-amp compensation as minor-loop feedback,
instead of pole splitting, greatly simplifies and generalizes
the analysis and design of op-amp frequency response. Using
classical-control techniques instead of direct circuit analysis,
insight and intuition into the behavior and flexibility of the system
are gained. Fig. 1. Schematic for a simple non-inverting amplifier circiior general-

purpose use (and commercial success) this circuit must beestablany
resistor values?; and Ra.

I. INTRODUCTION

Operational amplifiers have been used by control engine@fsop-amp compensation as minor-loop feedback, instead of
for many decades as key components in compensators [Idle splitting, greatly simplifies and generalizes the ysial
sensor circuitry [2], and analog computers [3], [4]. Theg arand design of op-amp frequency-compensation networks.
still one of the most ubiquitous electronic elements in the This paper demonstrates the use of classical-control tech-
world. However, despite the required use of feedback in@ll oniques instead of direct circuit analysis in the design ahco
amp applications, and the presence of feedback in the alterpensation for general-purpose and special-purpose omeaht
circuitry, the design of operational amplifiers is oftengaeted amplifiers. Intuition and insight into the solution are gain
and completed without a useful control framework. by using these feedback techniques.

Op amps require a deliberately designed frequency response
to ensure stability and satisfactory transient perforreaimc
end-user applications. Standard frequency compensasion i
designed for general-purpose op-amp applications sucias a The frequency response of general-purpose op amps is
plifiers, buffers, and integrators. Sophisticated comatos designed to be stable in the largest number of applications.
techniques can be employed in specific applications in whidiie schematic for a simple non-inverting amplifier circuit i
standard compensation methods perform poorly. shown in Figure 1. This amplifier circuit is implemented with

Internally compensated op amps have a fixed transfer furfchegative-feedback loop around the op amp, and the closed-
tion set by the manufacturer. In the design of the circui¢, tHOOP gain is
op-amp designer must choose a compensation network that Yo = M
is appropriate for the intended applications of the op amp. Vi Ry
Externally compensated op amps [5] allow the end user F@r general-purpose use the op amp must be designed such
select the compensation network that determines the &anshat this circuit is stable for any resistor valu® and R,.
function of the op amp. The determination and implememntatiqThe block diagram of this circuit is shown in Figure 2. The
of appropriate op-amp transfer functions in various appliccircuit loop transfer function is
tions is easily understood with the tools of classical aaintr R

Popular textbooks in analog circuit design [6], [7], [8]dte L(s) = A(s)i1 =
op-amp compensation in a network-theory context, writinfy o R+ Ry
many node equations and discussing the concept of “pole spor stability in this application, this loop transfer fuioct must
ting” [9]. This approach is unnecessarily abstruse. Treatm create a stable feedback system for any valué'déss than

Il. THE GENERAL-PURPOSETRANSFERFUNCTION

A(s)F.
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Fig. 2. Block diagram for the non-inverting amplifier circintFigure 1. The
feedback path is" = R1/(R1 + R2). The op-amp transfer functiod (s)
must be designed to guarantee stability for any such attieeuaedback.
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Fig. 4. Frequency response of the op-amp-circuit loop tearfshctionL(s)
with a variety of feedback terms. Since the loop transfer tioncalways
crosses over witl60° or more of phase margin for any attenuative feedback,
stability is guaranteed.

magnitude

frequency

we

1
p=

Fig. 3. Frequency response of the desired op-amp transfetidund(s). The
single-pole roll-off (slope of-1) behavior over a wide frequency range gives
the desired transfer function for a general-purpose op ame flfequencyw,,

is the unity-gain frequency of the op amp.

one. The ideal transfer function that meets this requirdrngen

Ap
Ts+1°

A(s) =

With this op-amp transfer function, the closed-loop citouiil
be stable for any choice of resistive feedback. The frecwen':%g- 5. Simplified schematic of the uncompensated Fairgi@41 op amp,
. . . showing the signal-path transistors. The full schematib@w and explained
response of this desired op-amp transfer functits) rolls 5 appendix i.
off with a slope of—1 over a wide frequency range, as shown
in Figure 3. In the ideal case, this transfer function gi9es
of phase margin, regardless of the feedback degrade the phase margin at crossover. Additional high-
A real op amp will have additional high-frequency polefrequency poles in the circuit make matters worse.
beyond its unity-gain frequency,,. Including the effect of  For stability in amplifier applications, the op amp must be
an additional pole atw,, the frequency response of thecompensated to achieve a frequency response similar to the
loop transfer function of the op-amp circuit with a varietly oideal transfer function in equation (1) and shown in Figure 3
feedback terms is shown in Figure 4. Even with this addilion@his general-purpose compensation is usually accomplishe
high-frequency pole, the loop transfer function alwayssses with a capacitor [5]. (This technique is often called “Mille
over with 60° (or more) of phase margin for any attenuativgompensation.” See Appendix |.) The simplified schematic of
feedback. Thus, stability is guaranteed for any set of faekib the ;A741 op amp with a compensation capacitor is shown in
resistors. Figure 8. The compensation capacitor goes around the high-
The implementation of this desired op-amp transfer fumctiqgain stage as shown in the equivalent-circuit block diagiam
is easier said than done. Even a simple op-amp circuit modégure 9.
gives an unacceptable op-amp transfer function. Using two-port circuit models for each stage, the equivalen
For example, a simplified schematic of the Fairchili741 circuit schematic in Figure 10 can be drawn. Each gain stage
[10] op amp is shown in Figure 5. This circuit can be modeled represented by a Norton-equivalent two-port model with
by the equivalent-circuit block diagram shown in Figure @nput resistance, output resistance, output capacitaacd,
The frequency response of this circuit, when uncompensatadtransconductance generator. The output buffer is ignored
is shown in Figure 7. The two low-frequency poles severely this equivalent circuit since the output voltage of the

@




PRESENTED AT THE 2004 AMERICAN CONTROL CONFERENCE 3

C

. I LV,
1 o 1
Vo Ve 2 GuV (DR clIvl Guvs (| R, CZI

Fig. 6. Equivalent-circuit block diagram of a two-stage oppa The input Fig. 10. Equivalent-circuit schematic for the two-stage agpawith com-
stage A; converts the input signal from differential to single-edddhe pensation capacitor of Figure 9, whedg = G/ R1 and Az = G2 Ro.
second stagels is the high-gain stage. The output buffer provides current

gain and protection at the output.

second stage is equal to the buffer output voltdge The
o0 ‘  Potepram ‘ transfer function of this equivalent circuit will be deriveén
the following sections, using the pole-splitting approadch
Section 1l and using a feedback approach in Section IV.

120

100

sof 1 Ill. POLE-SPLITTING APPROACH

ool ] To investigate the effects of the compensation capachier, t
transfer function of the op-amp equivalent-circuit schéoia
Figure 10 is calculated to find

Magnitude (dB)

A(s) = —(s).
. (s) V. (s)
-20¢ 1 The pole-splitting approach [9] uses brute-force circuilg-
e ‘ ‘ ‘ ‘ 4 sis to determine this transfer function. The approachssteith
o o Frequency (radiseo) 1 v the constitutive current equations at the two circuit noties
andV,
Fig. 7. Frequency response of an uncompensated op amp. Theoiwo | %
frequency poles in the uncompensated transfer functiorrelgvdegrade the S _ _ —
phase margin at crossover. GriVin 1 sC1Vi SC(Vl VO) 0 (2)
v Vo
ce <]> SC(Vl — V:)) — GM2V1 — R_ — SCQVO =0. (3)
2
1
Qs After a page of algebra (as shown in detail in Appendix Il1)

the transfer function is found

Gu1R1Gr2R2(Cs/Gppa — 1)
—o0 A = =
(5) V; (5) ass? +ajs+1
where the coefficients of the denominator are

Qle 1
Qu Qa0 ay = R1R2(0102 + C1C + CQC)
% ar = RiCi+ RiCH+ RyCy + RoC + GpaRo R, C.
Vee

Assuming that the gain of the second stage is large
(Gpr2Ro2 > 1), the final term in the first-order coefficient
dominates the sum, and the transfer function can be sintplifie
as

A(s) =

Fig. 8. Simplified schematic of the FairchildA741 op amp with compensa-
tion capacitor. The compensation capacitor goes aroundigiiedain second
stage created b{)16 and Q17.

Gu1R1GraRa(Cs /G — 1)
Rle(Clc’g + 001 + 002)82 + GMQRQRlCS + 1.
The locations of the transfer-function poles can be found by

v 0 v assuming that the pole locations are widely separated
in o]
’ :> ° A A
0 A(s) ~ 0 — 0

(18 +1)(m28+1) Tmms2+ (i +m)s+1°

If th I re widel r hen
Fig. 9.  Equivalent-circuit block diagram of a two-stage ompawith the two poles are dEy sepa ater) (>> T2)’ the

compensation capacitor. The compensation capacitor goemditbe high- Ap
gain second stage. A(s) ~

@)

7'1’7'2824*7'184’1.
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Fig. 12. Equivalent-circuit schematic for the op amp with tbhenpensation
capacitor modeled as a block. The admittance of the capanjemts a current
1. = sC'V, into the output node of the first stage.

v, G

. I V, \A Vo

| ( l ” l ( ( l l ( l (
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Fig. 11. he mathematical observation of “pole splitting.” e size of

the compensation capacitar is increased, the frequency of the first pole

w1 decreases and the frequency of the second pgléncreases. The poles Fig 13,  High-frequency model of the effective capacitivading by the

apparently “split” in frequency. compensation capacitor. When the compensation capagitsremoved from
the circuit at left, the circuit is transformed into the ciitcat right so that the
capacitive loading on each stage is maintained.

Therefore, the approximate pole locations of the op-amp
transfer function are

o

Y

When the compensation capacitris removed from the

1 1 1 L . . o .
W= == (4) circuit and replaced with this block, the capacitive logdon

L M2512 é o each stage must be maintained. A high-frequency model of
wp = — =X M2 (5) the effective capacitive loading of the compensation ciapac

iy ay GG+ CC + 00, is shown in Figure 13. Therefore the capacit6fsandC, in
Figure 11 shows the resulting “pole-splitting” behavior irfFigure 12 are replaced with the capacitafs and C,, where

the frequency response of this transfer function. It is oles oo

that as the size of the compensation capacitor is increased, Cy =0 + —2

the low-frequency pole location; decreases in frequency, C2+C

and the high-frequency pole, increases in frequency. Theand

poles appear to “split” in frequency. For a large enough Cy=Cy+C.

compensation capacitor, a single-pole roll off over a wide

range of frequency results, as shown in Figure 11, whidh the equivalent circuit in Figure 12, the voltadgg is the

matches the desired transfer function in Figure 3. total current flowing into the first node times the impedance
of R; andCs
IV. MINOR-LOOPFEEDBACK R,
. Vi=GuiVin+I1L)|=—— ). 6
While the above results are correct and useful, they are 1= (GanVin + L) <R1035+ 1) ©)

an impediment to intuition [11]. Treating the compensatio?
capacitorC' as a minor-loop feedback path, instead of a% ;
) L e ) imes the impedance dk; andCy
just another circuit element, simplifies the analysis of the
compensated op amp. The concept of op-amp compensation Ro

by minor-loop feedback provides useful design insight into Vo=—Gar21 RoCus+1)° @)

the flexibility of this topology and opens up a wide range of ) ] )

In the minor-loop approach, the capacitoris treated as a circuit with minor-loop feedback can be drawn, as shown in
feedback path as shown in Figure 12. If the gain of the secofitgure 14. The block diagram can be rearranged into Figure 15
stage is large, then the first-stage voltage will be much By pushing theGas, block inside the loop. _
smaller than the second-stage voltdge Comparatively, the ~ AS shown in Figure 15, the forward path of the op amp is

he voltageV, is the current flowing into the second stage

nodeV; appears to be a virtual ground. Therefore the effect Gan Ry GaroRo
of the capacitor can be modeled as an admittaride) that G(s) = (R Cos 1 1) (R Cis 1 1) (8)
injects a currentl, into the first stage that depends only on s 2
the voltage of the second sta§jg and the feedback path is
= = Y
Ic YC(S)VO SC‘/O' H(S) C(S) SC (9)

T G G
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Fig. 14. Block diagram of the equivalent circuit with the camnpation
capacitor shown as a minor-loop feedback block. This bloagm@im is drawn
from the node equations (6) and (7).

+ GumiR —Gu2 R
Vin M14ty M2it2 v,

R1C3s+ 1 RoCys+1

sC : . -
Gma w1 \

Fig. 15. Equivalent block diagram of the op amp, with the aleisblock Fig. 16. Asymptotic Bode plot showing(s) and1/H (s) for the op amp
from Figure 14 moved inside the minor loop. This block diagramdpces from the block diagram in Figure 15. The asymptotic op-ampsti@rfunction

the forward-path and feedback-path transfer functionsa(®) (9). A(s) is simply the lower of these two curves.
The transfer function of the op amp can now be calculated ., . _ PodeDagram N
from this block diagram with Black’s formula ol \
As) = Lo (5= — GO —
Vi 1+ G(s)H(s) \\

or it can be determined fronG(s) and 1/H(s) on the T AN
asymptotic Bode plot shown in Figure 16 (as explained in % 6ot \\
Appendix V). £ N

An accurate rendering of the Bode magnitude plot of the = \\
forward-path and the inverse-feedback-path transfertiome or AN
is shown in Figure 17. The Bode magnitude plot of the o AN
resulting op-amp transfer functiofi(s) is shown in Figure 18. \\

Finally, the locations of the resulting poles of the op-amp =l b
transfer functionA(s) can be found from the intersections of 0 e pw w e "
the two curves in Figure 16. The low-frequency intersection Frequency (radisec)

occurs when the low-frequency behavior of the forward path _ ,
bel the frequencies its poles) intersects with the swef Fig. 17. Bode magnitude plot of the forward-paiifs) and inverse-feedback-
(below qu Ies s p )i Wi path1/H(s) transfer functions from the block diagram in Figure 15. This

the feedback path. At low frequency plot is a more accurate rendering of the asymptotic plot in feidi6.
lim |G(jw)| = Gann R1G a2 Ro

Bode Diagram
140

therefore, the intersection occurs when
G]\/Il 120
GriR1GuaRe =
wC 100+
at a frequency of sl
1 o
w = - T 60
' RiGuaRoC E
This result agrees exactly with the result (4) found in Sec- £ "/
tion Il using brute-force circuit analysis. 20¢
The high-frequency intersection occurs when the high- .
frequency behavior of the forward path intersects with the
inverse of the feedback path. At high frequency or
. . GMl GM2 T 12)" 1;): 1;)‘ 12)’ 10°
wlL»Iréo |G(]CL))‘ = m Frequency (rad/sec)
therefore, the intersection occurs when Fig. 18. Bode magnitude plot of the closed-minor-loop tranfifaction of
GG G the op ampA(s). This plot is the lower of the two curves from Figure 17

and matches the desired transfer function in Figures 3 and 4.

2C5Cy  wC



PRESENTED AT THE 2004 AMERICAN CONTROL CONFERENCE 6

R I C C
] " v,
Vi o VWA = R

A(s) L oVo
+

Fig. 20.  Two-port compensation network to replace the comgiens
capacitor in Figure 10. The capacitor terminals connect ratothe high-
gain stage, and the resistor connects to ground. The traasfi@ittance
Ye(s) = I./V, of this network has two zeros at the origin.

Fig. 19. Schematic for an inverting gain-of-one op-amp amplifie

at a frequency of . Bode Diagran o e s 6 I
GM2 C N AN ! \! "| —_ standard minor loop G, /sC
w2 — C C \ \\ ___ improved minor loop G /Y (s)
3V4 \ \\
where \
100 N \\
C3Cy = C1Cy + C1C + CoC. o AN
" \

Again, this result agrees exactly with the result (5) fouhdwee
using brute-force circuit analysis.

Using this minor-loop feedback approach to calculating the
compensated transfer function of the op amp produced the
same results with less work. In addition, a better undedstan 0
of the internals of the op amp is achieved. The minor-loop
feedback path created by the compensation capacitor (or the
compensation network) allows the frequency response of the

| | | |
10° 10° 10* 10° 10° 10

op-amp transfer function to be easily shaped. Frequency (radisec)

Magnitude (dB)
@
3
/

Fig. 21. Bode magnitude plot of the forward-path and invéeselback-path
V. COMPENSATION FORSTEADY-STATE ERROR transfer functions for single-pole and two-pole compewsati

This feedback approach to op-amp compensation can be
exploited in the design of special-purpose op-amp transfer
functions. Such transfer functions can be used to improge thhis double-integrator transfer function will exhibit per
performance characteristics of many op-amp circuits. gsigteady-state error to an input ramp.
these minor-loop techniques, these special-purpose gp-amThe transfer admittance of the two-port compensation net-

transfer functions are easier to design. work shown in Figure 20 has two zeros at the origin
For example, the dynamic-tracking behavior of an op-amp 2.2
. L o - ) I. RC*s
amplifier circuit can be modified with appropriate changes Y.(s) = V. T ROs 11

to the op-amp transfer functior(s). An inverting op-amp
amplifier is shown in Figure 19. With standard capacitive eonTherefore, with this compensation, the open-loop transfer
pensation, the steady-state error to a step input is nearty, z function of the op amp is approximately
since the op-amp transfer function looks like an integrator (2RCs + 1)

G
Afs) = S G Als) ™ = R o

Ye(s) sC with two poles at the origin. This “two-pole” compensation
with a single pole near the origin. If zero steady-state rerroetwork [12] creates a slope ef2 in the frequency response
to a ramp input is desired, the transfer function of the opf the op-amp transfer function.
amp can be changed to achieve this specification. As seen i Bode magnitude plot of the forward-path and inverse-
Section 1V, the op-amp transfer function can be designed fgedback-path transfer functions for standard single-poim-
appropriate choice of the compensation network. An op-anpgnsation and two-pole compensation is shown in Figure 21.

transfer function such as A comparison of the resultant op-amp transfer functions is
Gari(7s + 1) shown in Figure 22. The open-loop gain of the two-pole op-
As)» —F5-a— amp transfer function exceeds the gain for the single-pole

) . . ) transfer function for all frequencies betweaf? and 107
can be achieved with a compensation admittance of the fofais s per second (rps). The response of the error signal fo
Crs? fast input ramp of 1 Vs is shown in Figure 23. The increased
Ye(s) = Ts+1 gain of the two-pole op-amp transfer function significantly
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Bode Diagram
150 T ode g T V| (o — + RO
100 L . OVO
% soF 3 i / T
o — “
=
eor l A
-109 T T —— single—pole compensation |7 . ) . . ) . . .
N \—‘* two-pole compensation Fig. 24. Schematic for a unity-gain buffer circuit with a caiige load.
-a5 1 The output resistance and the capacitive load create a é@s-filter in the
g feedback loop. There is no way to feedback from output to tinpithout
o0 4 including this pole.
135 ZTON .
+ +
N / Vi G Ga(s) Culs) F T Vo
718%" 10° 10* 10° 10° 10" - -
Frequency (rad/sec)
. . . Ye(s)
Fig. 22. Comparison of the single-pole and two-pole op-ampsfex
functions A(s). The open-loop gain of the two-pole op-amp transfer function

exceeds the gain for the single-pole transfer function fibrfraquencies
between10? and 107 rps. Fig. 25. Block diagram for the buffer in Figure 24 showing thaor-loop
topology of the two-stage op amp. The low-frequency pole fthencapacitive
load appears between the second stage of the op amp and tlu¢ odie of

the circuit.

Error Response to Ramp
0.014 —— single-pole compensation
i i i i i i —— two-pole compensation

0.012

amp and the capacitance of the load create a low-pass filter in
the feedback loop

__Als)
o RoCrs+1

Because the output resistance is inside the op amp, feedback
from the output terminal always includes the effects of this
additional pole. The block diagram of the buffer circuit sho
. | ing the minor loop of the op amp is shown in Figure 25. The

T~ low-frequency pole from the capacitive load appears batwee
e T ] the second stage of the op amp and the output node of the

' Time (se0 10 circuit.
As an example, consider the op-amp model in Figure 12

with an input-stage transconductance of

G =G =107 U,

0.008 -

L(s)

Amplitude

0.006 -

0.004

0.002

Fig. 23. Response of the error signal for a fast input ramp.ifitreased gain

of the two-pole op-amp transfer function significantly reelsithe magnitude

of the steady-state error. The error signal for the two-polapensated system
is always smaller than for the single-pole op amp.

a second-stage transresistance of
G (S) o RlG]uQRQ _ 1010 Q
T (R1C1s +1)(RoCas + 1) (10755 + 1)27

and standard capacitive compensation of

reduces the magnitude of the steady-state error, and this op
amp transfer function is easier to design using minor-loop
feedback techniques.

—11
VI. COMPENSATION FORCAPACITIVE LOADS Ye(s) =sC =10""s U.

This feedback approach to op-amp design can also illlihe Bode plot of the forward-path and inverse-feedback-pat
minate and diagnose subtle problems in compensation ngansfer functions for this op amp is shown in Figure 26. With
work design. Some special-purpose op-amp transfer-fumctithis choice ofY.(s), the high-frequency pole of the op amp
designs exhibit insidious stability problems that can fcdiit  occurs two orders of magnitude above crossover.
to diagnose using only circuit analysis techniques. The op-amp transfer function is

_ GmGals) Gm 107
T 14 Ga(s)Ye(s) | Yo(s) s

Consider an op-amp unity-gain buffer circuit with capagiti The Bode plot of the op-amp transfer function is shown
load, as shown in Figure 24. The output resistance of the mpFigure 27. This transfer functiorl(s) has nearly ninety

A(s)

A. Compensation that Introduces a Zero
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Bode Diagram Step Response
150 T T T T T T T T T T T

o

S
T
i

Magnitude (dB)

Amplitude

-109 } ; __forward path G, .G,(5) [1
____ minor loop Gm/Yc(s)

a5l 4

Phase (deg)
|
©
S

AN

@

&
T
i

—180L i I L
10° 10 10 10° 10° 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (rad/sec) Time (sec) x10°

Fig. 26. Bode plot of the forward-path and inverse-feedigat transfer Fig. 28.  Step response of the op-amp buffer without the ctipadbad.
functions for the example op amp with standard compensatiois. namp  With ninety degrees of phase margin, the response is first.orde
appears to be over-compensated since the second pole of dxappccurs

two orders of magnitude above crossover. Bode Diagram
Gm =40 dB (at 3.16e+07 rad/sec) , Pm = 17.8 deg (at 3.08e+06 rad/sec)
150 T T T T

Bode Diagram
Gm = Inf dB (at Inf rad/sec) , Pm = 89.4 deg (at 1e+07 rad/sec)
150 T T T T

Magnitude (dB)

Magnitude (dB)

Phase (deg)
i
&

-180

-225

Phase (deg)

=270 ” ; N
10 10 10 10 10 10
Frequency (rad/sec)

10 10 12:8 e (rad/selc‘f 10" 10 Fig. 29. Bode plot of the loop transfer functioh(s) for the op-amp
aweney buffer with capacitive load. The pole due to the capacitivadl occurs
below crossover, and stability is significantly compromisktk load capacitor

Fig. 27. Bode plot of the closed-minor-loop transfer funetaf the op amp  redyces the phase margin from ninety degree (as shown ineF&fyrto less
A(s). This transfer function has nearly ninety degrees of phasgimat hgn eighteen degrees shown here.

unity-gain crossover. This op amp is over-compensated and &hrmore
stable than it would need to be for most applications.

whole circuit is approximately

degrees of phase margin at crossover. This op amp is much L(s) = A(s)Gi(s) ~ GmGi(s) 107

~

more stable than it needs to be for most applications. The Yo(s)  s(1076s+1)

step response of the op-amp buffer (without capacitive)loaghe goge plot of the loop transfer function for the op-amp
is shown in Figure 28. With ninety degrees of phase margigyycit with capacitive load is shown in Figure 29. The pole

the response is first order. due to the capacitive load occurs below crossover, so the
However, with a finite output resistance and a capacitiygop transfer function crosses over with a slope-af and
load on the outputRo = 10 Q and Cp = 0.1 uF), the 3 small phase margin. Stability of the circuit is signifidgnt
stability of the op amp is severely compromised. The transfgompromised and the phase margin has decreased from ninety
function due to the load is degrees to less than eighteen degrees.
This reduction in phase margin degrades the transient per-
— 1 — 1 ) formance of the circuit. The step response of the op-amp
RoCrs+1 1076s+1 buffer with capacitive load is shown in Figure 30. Clearly,
the response is no longer first order. With less than eighteen
With this capacitive load, the loop transfer function of thelegrees of phase margin, the response exhibits considerabl

Gi(s)
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Step Response Bode Diagram
18 T T T T T T T T T 150 T T

16} E 100~ T q

14 Sor T 7

Magnitude (dB)

501 4

0.8+ il -108 T T —_ forward path G_G_(s)
____ minor loop Gm/Yc(s)

0.6 y -45r / q

Amplitude

—90 — A 4

041

Phase (deg)

02l 1 1351 .

0 I I I I . I . I I —180L 1 L :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 10° 10 10° 10° 10° 10

Time (sec) x10~° Frequency (rad/sec)

Fig. 30. Step response of the op-amp buffer with capacitiael.|With less  Fig. 32. Bode plot of the forward-path and inverse-feedkaet transfer
than eighteen degrees of phase margin, the response extuhitiderable functions for the op amp with compensation that introducesra. Z&he pole
peak overshoot and ringing. in Y;(s) becomes a zero ir(s).

Bode Diagram
150 T T

Re Ce

Fig. 31. Compensation network with an admittance pole. This pothe
feedback-patfY:(s) introduces a zero into the op-amp transfer functit(s).
This zero will be used to cancel the capacitive-load pole.

Magnitude (dB)

peak overshoot and ringing. In general, most op amps behave
badly with a capacitive load.

Using the minor-loop feedback approach to op-amp com-
pensation from Section IV to shape the transfer functiog, th
op amp can be redesigned to compensate for the capacitive
load. The op-amp transfer functiofy(s) is changed to include 160 : )
a zero near the frequency of the additional pole in the dircui v b Frequency (adise) b b
loop transfer functionL(s).

A compensation network that introduces a zero in tH}Jg. 33. Bode plot of the closed-minor-loop transfer functaf the op amp
(s). The transfer-function zero introduced by the compensatimwork is

Op-amp transfer_ function [13] is shown in Figure 31. Th@eany visible neas - 106 rps. The resonance is blithely ignored.
admittance of this network is

Phase (deg)

-1351

IC o Ccs
Yes) = V, RcCos+1° For this example, the minor-loop transfer admittance is
The pole in the admittanck.(s) becomes a zero in the op- 107450

amp transfer functiom(s). This zero will be used to cancel Ye(s)

T 310 7s+1
the effects of the capacitive load at the output. With this - L .
. o and the circuit loop transfer function is approximately
compensation network the op-amp transfer function is

A(s) & G _ Gm(RcCos +1) L(s) ~ 1073 10775 + 1) ( —61 )
YC(S) Cos s 10-%s 41
and the |00p transfer function of the circuit is (the RC prOdUCtS are chosen to be Sllghtly different to remain
G (BoCos +1) 1 distinct on the Bode plots and to be a bit more realistic).
L(s) = A(s)G(s) = — cc ( ) . The Bode plot of the forward-path and inverse-feedback-pat
Ces RoCps+1 transfer functions for the op amp with this compensation is

If the time constant of the admittance is chosen to be equsdown in Figure 32. The Bode plot of the closed-minor-loop

to the time constant of the output polB{Cc ~ RoCr) then transfer function of the op amg(s) is shown in Figure 33.
the term from the minor loop and the term from the capacitivehe transfer function zero is clearly visible @&t 10° rps.

load will cancel, and the loop transfer function returns to The Bode plot of the loop transfer function for the op-amp
single-pole roll-off behavior. circuit with capacitive load is shown in Figure 34. The zero
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Bode Diagram Bode Diagram
Gm = 1.4 dB (at 5.77e+07 rad/sec) , Pm = 63.5 deg (at 3.86e+06 rad/sec) Gm = Inf dB (at Inf rad/sec) , Pm = 3.51 deg (at 5.77e+07 rad/sec)
150 T T T T 100 T T

Magnitude (dB)
o
T T
i
Magnitude (dB)
@
o S

!
@
=}

-150 t t T t -100

IS
&

l
©
S
=)

-135 1

Phase (deg)
Phase (deg)
S

-180 - ol

1
©
S

o051 R -135

—270 - - — - - ) ~1801 L o - ‘
10° 10° 10 10° 10° 10 10" 10 10 10 10 10"
Frequency (rad/sec) Frequency (rad/sec)

Fig. 34. Bode plot of the loop transfer functidn(s) for the op-amp buffer Fig. 36. Bode plot of the minor-loop transfer functidn, (s) for the op amp
with capacitive load. The zero from the compensation netwedrly cancels with the compensation network from Figure 31. The pole in tmitance
the pole from the capacitive load. The phase margin has isededrom Y.(s) becomes a zero id(s), but the pole appears in the minor-loop transfer
eighteen degrees in Figure 29 to more than sixty degrees. function and degrades the stability of the minor loop.

Step Response
14 T T T T T T T T T CD

Fig. 37. Compensation network with a shunt capacitance. @padaitorC'p
introduces a zero into the minor-loop transfer function ttam be used to
increase the stability of the minor loop.

-

Amplitude
o
©

T

o
o
T

04t

demonstrated by examining the minor-loop transfer fumctio
As shown in the block diagram in Figure 25, the minor-loop
transfer function is

0.2H

I I I I I
0 0.5 1 15 2 25 3 35 4 4.5 5

Time (sec) x107° Lm(S) — Ga(s)}/vc(s)

Fig. 35. Step response of the compensated op-amp buffer withciteve ; ; _ : ;
load. The peak overshoot is greatly improved from Figure 3@,the high- The Bode plot of this minor-loop transfer function is shown

frequency ringing indicates that the system is on the edgastébility. in Figure 36. The admittance pole from the compensation
network appears directly in the minor-loop transfer fuoiati
and degrades the stability of the minor loop.
from the compensation network nearly cancels the pole dueto improve the stability the minor loop, the compensation
to the capacitive load. The phase margin has increased fragtwork is augmented with a shunt capacitance [12] as shown
eighteen degrees to more than sixty degrees. in Figure 37. The capacito€', introduces a zero into the
However, the step response shows a problem. The sigor-loop transfer function and is used to improve the mino

response of the compensated op-amp buffer with capacitjggp phase margin. The compensation network admittance is
load is shown in Figure 35. While the peak overshoot is greatly

improved from Figure 30, the long-lasting high-frequency Ye(s) = s(Cc + Cp)(RcCss +1)
ringing indicates that the system is on the edge of instgbili RcCes +1

The cause of this ringing is the resonant peak in Figure 3ere

and the absence of gain margin in Figure 34. The frequency Cy = CcCp .

of the ringing and of the resonant peak indicate a minor-loop Cc+Cp
instability.

Using RcCs = 1078 second, the Bode plot of the minor-

) ) ) - loop transfer function for the op amp with this improved

B. Compensation with Minor-Loop Stability compensation is shown in Figure 38. The additional zero from
The problem with the compensation network in Figure 3the capacitorCp increases the minor-loop phase margin to

is that the minor loop is nearly unstable, which can bhirty-five degrees.
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Bode Diagram Bode Diagram
Gm = Inf, Pm = 35.3 deg (at 6.27e+07 rad/sec)
100 T T T T

.
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=}

-10g = t T T T =

|
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I
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1
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!

©

S
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1
©
S

-1351- Bl

-135

-180L i i i 1
-180 = . . 10° 10 10 10° 10 10
10 10 10 10 10 10 Frequency (rad/sec)

Frequency (rad/sec)

. . ) Fig. 40. Bode plot of the closed-minor-loop transfer functaf the op amp
Fig. 38. Bode plot of the minor-loop transfer functién, (s) for the op amp 3
with the compensation network from Figure 37. The additia@ab from the jéiéi)r.eghSe resonance from the minor loop has been greatly reduced fr

capacitorC'p increases the minor-loop phase margin to thirty-five degrees.

Bode Diagram

Bode Diagram Gm =21.6 dB (at 5.7e+07 radisec) , Pm = 61.2 deg (at 3.85e+06 rad/sec)

150 T T

150 T T T T

100 - T~ : 1

Magnitude (dB)
Magnitude (dB)

1
©
S

-135

Phase (deg)
E
1
Phase (deg)

-180

-135F ol
-225

-270

_180L | | i 2 5 o

820” o o 10° 10° 10° 10° 10 10" 10 10 10
Frequency (rad/sec) Frequency (rad/sec)

Fig. 39. Bode plot of the forward-path and inverse-feediaath transfer Fi9- 41. Bode plot of the loop transfer functidi(s) for the op-amp buffer
functions for the op amp with the compensation network fromufég37. The with capacitive load. In contrast to Figure 34, the loop $fan function now
zero to cancel the capacitive-load pole is still visible mga 106 rps. The has adequate gain margin.

pole from the capacito€, appears beyond both minor-loop crossover and

major-loop crossover at0® rps. Step Response

The Bode plot of the forward-path and inverse-feedback-
path transfer functions for the op amp are now shown in 1
Figure 39. The zero to cancel the output capacitance pole is
still visible at3 - 10° rps. The pole fromC appears beyond
both the major-loop crossover and minor-loop crossover fre
guencies.

The Bode plot of the op-amp transfer function is shown
in Figure 40. The resonance from the minor loop has been

Amplitude
o
©

T
|

o
o
T
I

greatly reduced compared to Figure 33. 02} |
The Bode plot of loop transfer function for op-amp circuit

with capacitive load is shown in Figure 41. In contrast to s 5 . - L o g

Figure 34, the loop transfer function now has adequate gain Time (sec) x10°

margin as well as sixty degrees of phase margin. Fig. 42. Step response of the compensated op-amp buffer withcitive
The step response of the compensated op-amp buffer wighy. The peak overshoot from Figure 30 is greatly reducad, the high-
capacitive load is shown in Figure 42. The peak overshodegauency ringing from Figure 35 is gone.
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Step Response

@]

1.4

ly
Vi o o Vo

o
@ =

Amplitude

Fig. 44. Close-up of Figure 9 showing the compensation arghachigh-
gain second stage. The effective input impedance of thiestamodified by
the Miller effect.

o
o

04

APPENDIX |
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ MILLER COMPENSATION
0 0.2 04 0.6 0.8 1 1.2 1.4 16 1.8 2

Time (sec) x10° The Miller effect is the apparent scaling of an impedance
Fig. 43. Step response of the compensated op-amp buffer vetbaacitive gonneCt.ed fr.om input to output of a ggm stage, Wh.ICh was
load removed. The special-purpose compensation developeddwuires the 11'St noticed in vacuum tubes [14]. The input current into the

capacitive load to be present for proper loop behavior. Witlthe capacitive second stage, as shown in Figure 44, depends on the total
load, the loop transfer function of the circuit is the tramsfunction of the ,gltage across the capacitor
op amp alone from Figure 40, which does not have adequate phaggn. 9 P

[1 = (Vl — VO)SC = V1(1 + A)SC

from Figure 30 is greatly reduced, and the high-frequendyius for an amplifier with a large negative gain, the effectiv

ringing from Figure 35 is gone. input capacitance appeard + A) times larger than the
As a final note, the step response of the compensafeédpacitorC. . .

op-amp buffer with the capacitive load removed is shown From_th|s effe_ctw_e capacitance, the Iow-frgquency pole of

in Figure 43. This special-purpose compensation developd§ eduivalent-circuit in Figure 10 can be estimated as

here requires the capacitive load to be present for proper 1 1 N 1

loop behavior. Without the capacitive load, the loop transf “Wi= RCer  Ri(1+ Ay)C = R1(G2R2)C

function of the circuit is the transfer function of the op amp .1 aarees with equation (4). For this reason, op-am
alone from Figure 40, which does not have adequate phase g q ' » Op-amp

. . - c8mpensation with a capacitor around the second gain stage,
margin. However, with the capacitive load, the compensatgs shown in Figure 8, is often called “Miller compensation.”
op amp performs quite well. ' '
Using the feedback approach to op-amp compensation
design helped diagnose and solve the minor-loop stability APPENDIXII
problem. Without this approach, the solution to the high- FAIRCHILD uA741 COMPLETE SCHEMATIC
frequency ringing in Figure 35 would have been extremely The complete schematic for the Fairchild Semiconductor
difficult to determine using direct circuit analysis teaunes. 1A741 operational amplifier is shown in Figure 45. This
topology is classic and simple.
The primary signal path is comprised of three blocks.
The first stage is the differential quad of transist@ys—Q4
In all applications, op amps require a deliberately design@yith active current-mirror load);—Q;. The second stage is
fr_equency response to ensure stability and satisfa_lct(atry- t_rthe Darlington common-emitter amplifi€d;s and Q17 with
sient performance. Standard frequency compensationg @sincrrent source load);3. A push-pull emitter-follower output
capacitor around the high-gain stage, is desjgned for géneyffer is implemented by transisto; 4, Qa0, and Qss.
purpose op-amp applications such as amplifiers, buffeis, an The remaining transistors provide biasing and protection.
integrators. Sophisticated compensation techniques&€@mb The network of current mirror®s—Q1 5 produce bias currents
ployed in specific applications in which standard compeesat oy the transistors in the signal path. Compensation of the
methods perform poorly. output-buffer dead-zone region is provided Qys and Q.
These compensation techniques are necessary to undersgfighut-current limiting and short-circuit protection isiple-
in the design of internally compensated op amps or in the uUgRnted byQ15 and Q21—Qss.
of externally compensated op amps. A pole-splitting appioa  anq of course, the frequency compensation is accomplished

of these techniques can be easily understood in a simgfgction II.

classical-control framework. Using a feedback approadheo
compensation network design, insight and intuition inte th
behavior and flexibility of the system are gained.

VII. CONCLUSIONS
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Fig. 45. Complete FairchililA741 schematic [10]. The primary signal path is comprised of gam stages. The first gain stage is a differential pair with
active load (transistor§1—Qs). The second gain stage is a common-emitter amplifier (tramsi€@s and Q17). The output buffer is a push-pull emitter
follower (transistoraQ 14, Q20, andQ22).

APPENDIXIII
EXACT TRANSFERFUNCTION MATH

The exact transfer function for the equivalent circuit igiiie 10 can be found directly from the node equations (2) 8nd (
Solving the output-node equation (3) b

1
V. (SC + = + 302) =V1(sC — Gu2)
2

VO(RQ(CQ + C)S + 1) = Vl(RQCS — GMQRQ)
Vi = <R2(CQ + C)S + 1) V.

RyCs — GyaRo
Massaging the input-node equation (2)

1
Gr1Vin +sCV, =V; (R— +sCy + SC)
1

1
GantRyVin + FaCsVy = (Ry(Cy + C)s + 1) (RZ(@ o ) v,

RyCs — Gra R
(R1(C1 +C)s+1)(R(Cy + C)s+ 1)
RQCS — GM2R2

GMlRl‘/YZ‘n = VO < — R108> .

Solving for the transfer function

() =

Gr1R1(R2Cs — GpaRa)
(Ri(C1 + C)s + 1)(Ra(Co + C)s + 1) — (R2Cs — Grr2R2)RiCs
E(S) = Gan RiGaa R (Cs/Gapa — 1)
Vin R1R2(C1C5 + C1C + C2C)s2 + (R1Cy + R1C + RaCs + RoC + G2 RoR1C)s + 17

This second-order transfer function is the expected rdsuth the topology in Figure 10. All of this math can be avoided
using the feedback techniques in Section IV and Appendix V.
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R(s) | G(s) -0 e
) Vi oV

I

Fig. 46. General block diagram for a feedback system. Stdndatation
usesR(s) for the reference inputC(s) for the controlled output variable,
G(s) for the forward-path transfer function, ard(s) for the feedback-path
transfer function.

Fig. 47. The two currents that flow through the compensatigacitor. The
feedback current. is the compensation current discussed in Section IV. The
feedforward currenf,. causes a right half-plane zero in the op-amp transfer

function.
C
APPENDIX IV Vy ol oV,
CLOSED-LOOP TRANSFERFUNCTION TRICK Il
The work for finding an approximate transfer function of a GumaV4 R,
feedback system, such as shown in Figure 46, can be simplified
by taking advantage of a useful trick involving Black’s farla
Q (s) _ G(S) Fig. 48. Close-up of Figure 10 showing the effect of the feea&rd current
R 1+ G(S)H(s) I on the second stage. The output voltage is zero when the dote¢nt

, . . flowing into the output stage is zero.
Black’s formula can be simplified when

G(s)H(s)] > 1

and
or equivalently, when I. = sCV;.
1G(s)| > 1 The feedback currert, is the compensation current discussed
|H(s)| in Section IV. The feedforward curredit causes a right half-

When this inequality is true, th&H term dominates in the Plane zero in the op-amp transfer function. By superpasitio

denominator, and the magnitude of the closed-loop transi8 Sum of these two currents is the total current flowing in

function can be rewritten as the compensation capacitor.
A close-up of the effect of the feedforward currefit on

%(s) =1 (C;(S)H ~ Hl ) the second stage is shown in Figure 48. The output voltage
+G(s)H(s)| - [H(s)| is zero when the total current flowing into the output stage is
Similarly, when zero, that is
|G(s)H(s)| < 1 sCVi — GpaVi = 0.
or equivalently, when This zero occurs at a frequency
1 Gz
G| € —— w, =+ .
G < 1) c

the unity term dominates in the denominator. The magnitud&erefore equation (7) must now be written as

of the closed-loop transfer function is then approximatel R
p pp y Vo = (=GuaVi + sCV3) o2,
C _ G(s) ~ |G RoCys+1
E(S) 1+ G(s)H(s) ~1Gs)]- The complete block diagram of the op-amp equivalent

ecg_cuit, including the feedforward current through the qan-
sation capacitor, is shown in Figure 49. The parallel bldoks
ghe forward path can be collapsed into a single block

sC
APPENDIXV ~Garz 50 = =Gz (1 a GM2> ’

RIGHT HALF-PLANE ZERO Thus the feedforward current causes a right half-plane. zero
In the analysis in Section IV, the effect of the voltag&he negative phase shift from this right half-plane zero can
V7 on the current through the compensation capacitor wpkce considerable limits on op-amp performance.
ignored. Unfortunately, the output voltage of the first stag This problem can be fixed. A compensation network to
while indeed small, is not zero. Both currents that flow tigtou cancel the right half-plane zero is shown in Figure 50 with
the compensation capacitor are shown in Figure 47, whereadmittance 7 Os

IC:SCVO }/C(S):VOZRCS‘i’l.

Therefore, the asymptotic frequency response of a clos
loop feedback system, can be plotted by graphi®(s)| and
|H (s)|~! and then tracing the lower curve for all frequencie
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