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Abstract— Frequency compensation of two-stage integrated-
circuit operational amplifiers is normally accomplished with a
capacitor around the second stage. This compensation capaci-
tance creates the desired dominant-pole behavior in the open-
loop transfer function of the op amp. Circuit analysis of this
compensation leads to a mathematical observation of “pole
splitting:” that as the compensation capacitance is increased, the
parasitic poles of the amplifier separate in frequency.

Treatment of op-amp compensation as minor-loop feedback,
instead of pole splitting, greatly simplifies and generalizes
the analysis and design of op-amp frequency response. Using
classical-control techniques instead of direct circuit analysis,
insight and intuition into the behavior and flexibility of the system
are gained.

I. I NTRODUCTION

Operational amplifiers have been used by control engineers
for many decades as key components in compensators [1],
sensor circuitry [2], and analog computers [3], [4]. They are
still one of the most ubiquitous electronic elements in the
world. However, despite the required use of feedback in all op-
amp applications, and the presence of feedback in the internal
circuitry, the design of operational amplifiers is often presented
and completed without a useful control framework.

Op amps require a deliberately designed frequency response
to ensure stability and satisfactory transient performance in
end-user applications. Standard frequency compensation is
designed for general-purpose op-amp applications such as am-
plifiers, buffers, and integrators. Sophisticated compensation
techniques can be employed in specific applications in which
standard compensation methods perform poorly.

Internally compensated op amps have a fixed transfer func-
tion set by the manufacturer. In the design of the circuit, the
op-amp designer must choose a compensation network that
is appropriate for the intended applications of the op amp.
Externally compensated op amps [5] allow the end user to
select the compensation network that determines the transfer
function of the op amp. The determination and implementation
of appropriate op-amp transfer functions in various applica-
tions is easily understood with the tools of classical control.

Popular textbooks in analog circuit design [6], [7], [8] treat
op-amp compensation in a network-theory context, writing out
many node equations and discussing the concept of “pole split-
ting” [9]. This approach is unnecessarily abstruse. Treatment
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Fig. 1. Schematic for a simple non-inverting amplifier circuit.For general-
purpose use (and commercial success) this circuit must be stable for any
resistor valuesR1 andR2.

of op-amp compensation as minor-loop feedback, instead of
pole splitting, greatly simplifies and generalizes the analysis
and design of op-amp frequency-compensation networks.

This paper demonstrates the use of classical-control tech-
niques instead of direct circuit analysis in the design of com-
pensation for general-purpose and special-purpose operational
amplifiers. Intuition and insight into the solution are gained
by using these feedback techniques.

II. T HE GENERAL-PURPOSETRANSFERFUNCTION

The frequency response of general-purpose op amps is
designed to be stable in the largest number of applications.
The schematic for a simple non-inverting amplifier circuit is
shown in Figure 1. This amplifier circuit is implemented with
a negative-feedback loop around the op amp, and the closed-
loop gain is

Vo

Vi

=
R1 + R2

R1
.

For general-purpose use the op amp must be designed such
that this circuit is stable for any resistor valuesR1 and R2.
The block diagram of this circuit is shown in Figure 2. The
circuit loop transfer function is

L(s) = A(s)
R1

R1 + R2
= A(s)F.

For stability in this application, this loop transfer function must
create a stable feedback system for any value ofF less than
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Fig. 2. Block diagram for the non-inverting amplifier circuitin Figure 1. The
feedback path isF = R1/(R1 + R2). The op-amp transfer functionA(s)
must be designed to guarantee stability for any such attenuative feedback.
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Fig. 3. Frequency response of the desired op-amp transfer functionA(s). The
single-pole roll-off (slope of−1) behavior over a wide frequency range gives
the desired transfer function for a general-purpose op amp. The frequencyωu

is the unity-gain frequency of the op amp.

one. The ideal transfer function that meets this requirement is

A(s) =
A0

τs + 1
. (1)

With this op-amp transfer function, the closed-loop circuit will
be stable for any choice of resistive feedback. The frequency
response of this desired op-amp transfer functionA(s) rolls
off with a slope of−1 over a wide frequency range, as shown
in Figure 3. In the ideal case, this transfer function gives90◦

of phase margin, regardless of the feedbackF .
A real op amp will have additional high-frequency poles

beyond its unity-gain frequencyωu. Including the effect of
an additional pole at2ωu, the frequency response of the
loop transfer function of the op-amp circuit with a variety of
feedback terms is shown in Figure 4. Even with this additional
high-frequency pole, the loop transfer function always crosses
over with 60◦ (or more) of phase margin for any attenuative
feedback. Thus, stability is guaranteed for any set of feedback
resistors.

The implementation of this desired op-amp transfer function
is easier said than done. Even a simple op-amp circuit model
gives an unacceptable op-amp transfer function.

For example, a simplified schematic of the FairchildµA741
[10] op amp is shown in Figure 5. This circuit can be modeled
by the equivalent-circuit block diagram shown in Figure 6.
The frequency response of this circuit, when uncompensated,
is shown in Figure 7. The two low-frequency poles severely
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Fig. 4. Frequency response of the op-amp-circuit loop transfer functionL(s)
with a variety of feedback terms. Since the loop transfer function always
crosses over with60◦ or more of phase margin for any attenuative feedback,
stability is guaranteed.
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Fig. 5. Simplified schematic of the uncompensated FairchildµA741 op amp,
showing the signal-path transistors. The full schematic is shown and explained
in Appendix II.

degrade the phase margin at crossover. Additional high-
frequency poles in the circuit make matters worse.

For stability in amplifier applications, the op amp must be
compensated to achieve a frequency response similar to the
ideal transfer function in equation (1) and shown in Figure 3.
This general-purpose compensation is usually accomplished
with a capacitor [5]. (This technique is often called “Miller
compensation.” See Appendix I.) The simplified schematic of
theµA741 op amp with a compensation capacitor is shown in
Figure 8. The compensation capacitor goes around the high-
gain stage as shown in the equivalent-circuit block diagramin
Figure 9.

Using two-port circuit models for each stage, the equivalent-
circuit schematic in Figure 10 can be drawn. Each gain stage
is represented by a Norton-equivalent two-port model with
input resistance, output resistance, output capacitance,and
a transconductance generator. The output buffer is ignored
in this equivalent circuit since the output voltage of the
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Fig. 6. Equivalent-circuit block diagram of a two-stage op amp. The input
stageA1 converts the input signal from differential to single-ended. The
second stageA2 is the high-gain stage. The output buffer provides current
gain and protection at the output.
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Fig. 7. Frequency response of an uncompensated op amp. The two low-
frequency poles in the uncompensated transfer function severely degrade the
phase margin at crossover.

+ -
Q1 Q2

Q5 Q6

Q17

Q16

Q3 Q4

VCC

VEE

Q20

Q14

Q22

30 pF

Fig. 8. Simplified schematic of the FairchildµA741 op amp with compensa-
tion capacitor. The compensation capacitor goes around the high-gain second
stage created byQ16 andQ17.
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Fig. 9. Equivalent-circuit block diagram of a two-stage op amp with
compensation capacitor. The compensation capacitor goes around the high-
gain second stage.

Vin R2

Vo

GM2V1R1

+

-

V1GM1Vin

C

C1 C2

Fig. 10. Equivalent-circuit schematic for the two-stage op amp with com-
pensation capacitor of Figure 9, whereA1 = GM1R1 andA2 = GM2R2.

second stage is equal to the buffer output voltageVo. The
transfer function of this equivalent circuit will be derived in
the following sections, using the pole-splitting approachin
Section III and using a feedback approach in Section IV.

III. POLE-SPLITTING APPROACH

To investigate the effects of the compensation capacitor, the
transfer function of the op-amp equivalent-circuit schematic in
Figure 10 is calculated to find

A(s) =
Vo

Vin

(s).

The pole-splitting approach [9] uses brute-force circuit analy-
sis to determine this transfer function. The approach starts with
the constitutive current equations at the two circuit nodesV1

andVo

GM1Vin −
V1

R1
− sC1V1 − sC(V1 − Vo) = 0 (2)

sC(V1 − Vo) − GM2V1 −
Vo

R2
− sC2Vo = 0. (3)

After a page of algebra (as shown in detail in Appendix III)
the transfer function is found

A(s) =
Vo

Vin

(s) =
GM1R1GM2R2(Cs/GM2 − 1)

a2s2 + a1s + 1

where the coefficients of the denominator are

a2 = R1R2(C1C2 + C1C + C2C)

a1 = R1C1 + R1C + R2C2 + R2C + GM2R2R1C.

Assuming that the gain of the second stage is large
(GM2R2 ≫ 1), the final term in the first-order coefficienta1

dominates the sum, and the transfer function can be simplified
as

A(s) ≈

GM1R1GM2R2(Cs/GM2 − 1)

R1R2(C1C2 + CC1 + CC2)s2 + GM2R2R1Cs + 1
.

The locations of the transfer-function poles can be found by
assuming that the pole locations are widely separated

A(s) ≈
A0

(τ1s + 1)(τ2s + 1)
=

A0

τ1τ2s2 + (τ1 + τ2)s + 1
.

If the two poles are widely separated (τ1 ≫ τ2), then

A(s) ≈
A0

τ1τ2s2 + τ1s + 1
.
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Fig. 11. The mathematical observation of “pole splitting.” Asthe size of
the compensation capacitorC is increased, the frequency of the first pole
ω1 decreases and the frequency of the second poleω2 increases. The poles
apparently “split” in frequency.

Therefore, the approximate pole locations of the op-amp
transfer function are

ω1 =
1

τ1
=

1

a1
=

1

GM2R2R1C
(4)

ω2 =
τ1

τ1τ2
=

a1

a2
=

GM2C

C1C2 + CC1 + CC2
. (5)

Figure 11 shows the resulting “pole-splitting” behavior in
the frequency response of this transfer function. It is observed
that as the size of the compensation capacitor is increased,
the low-frequency pole locationω1 decreases in frequency,
and the high-frequency poleω2 increases in frequency. The
poles appear to “split” in frequency. For a large enough
compensation capacitor, a single-pole roll off over a wide
range of frequency results, as shown in Figure 11, which
matches the desired transfer function in Figure 3.

IV. M INOR-LOOPFEEDBACK

While the above results are correct and useful, they are
an impediment to intuition [11]. Treating the compensation
capacitor C as a minor-loop feedback path, instead of as
just another circuit element, simplifies the analysis of the
compensated op amp. The concept of op-amp compensation
by minor-loop feedback provides useful design insight into
the flexibility of this topology and opens up a wide range of
applications for special-purpose compensation schemes.

In the minor-loop approach, the capacitorC is treated as a
feedback path as shown in Figure 12. If the gain of the second
stage is large, then the first-stage voltageV1 will be much
smaller than the second-stage voltageVo. Comparatively, the
nodeV1 appears to be a virtual ground. Therefore the effect
of the capacitor can be modeled as an admittanceYc(s) that
injects a currentIc into the first stage that depends only on
the voltage of the second stageVo

Ic = Yc(s)Vo = sCVo.

Vin R2

Vo

GM2V1R1

+

-

V1GM1Vin C1 C2

sC
Ic Vo

Fig. 12. Equivalent-circuit schematic for the op amp with the compensation
capacitor modeled as a block. The admittance of the capacitor injects a current
Ic = sCVo into the output node of the first stage.
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C

C2

C

Fig. 13. High-frequency model of the effective capacitive loading by the
compensation capacitor. When the compensation capacitorC is removed from
the circuit at left, the circuit is transformed into the circuit at right so that the
capacitive loading on each stage is maintained.

When the compensation capacitorC is removed from the
circuit and replaced with this block, the capacitive loading on
each stage must be maintained. A high-frequency model of
the effective capacitive loading of the compensation capacitor
is shown in Figure 13. Therefore the capacitorsC1 andC2 in
Figure 12 are replaced with the capacitorsC3 andC4, where

C3 = C1 +
C2C

C2 + C

and

C4 = C2 + C.

In the equivalent circuit in Figure 12, the voltageV1 is the
total current flowing into the first node times the impedance
of R1 andC3

V1 = (GM1Vin + Ic)

(

R1

R1C3s + 1

)

. (6)

The voltageVo is the current flowing into the second stage
times the impedance ofR2 andC4

Vo = −GM2V1

(

R2

R2C4s + 1

)

. (7)

From equations (6) and (7) the block diagram of the equivalent
circuit with minor-loop feedback can be drawn, as shown in
Figure 14. The block diagram can be rearranged into Figure 15
by pushing theGM1 block inside the loop.

As shown in Figure 15, the forward path of the op amp is

G(s) =

(

GM1R1

R1C3s + 1

) (

GM2R2

R2C4s + 1

)

(8)

and the feedback path is

H(s) =
Yc(s)

GM1
=

sC

GM1
. (9)
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Fig. 14. Block diagram of the equivalent circuit with the compensation
capacitor shown as a minor-loop feedback block. This block diagram is drawn
from the node equations (6) and (7).

+

+

GM1R1

R1C3s + 1

−GM2R2

R2C4s + 1

sC

GM1

Vin Vo

Fig. 15. Equivalent block diagram of the op amp, with the outside block
from Figure 14 moved inside the minor loop. This block diagram produces
the forward-path and feedback-path transfer functions (8)and (9).

The transfer function of the op amp can now be calculated
from this block diagram with Black’s formula

A(s) =
Vo

Vin

(s) =
G(s)

1 + G(s)H(s)

or it can be determined fromG(s) and 1/H(s) on the
asymptotic Bode plot shown in Figure 16 (as explained in
Appendix IV).

An accurate rendering of the Bode magnitude plot of the
forward-path and the inverse-feedback-path transfer functions
is shown in Figure 17. The Bode magnitude plot of the
resulting op-amp transfer functionA(s) is shown in Figure 18.

Finally, the locations of the resulting poles of the op-amp
transfer functionA(s) can be found from the intersections of
the two curves in Figure 16. The low-frequency intersection
occurs when the low-frequency behavior of the forward path
(below the frequencies its poles) intersects with the inverse of
the feedback path. At low frequency

lim
ω→0

|G(jω)| = GM1R1GM2R2

therefore, the intersection occurs when

GM1R1GM2R2 =
GM1

ωC

at a frequency of

ω1 =
1

R1GM2R2C
.

This result agrees exactly with the result (4) found in Sec-
tion III using brute-force circuit analysis.

The high-frequency intersection occurs when the high-
frequency behavior of the forward path intersects with the
inverse of the feedback path. At high frequency

lim
ω→∞

|G(jω)| =
GM1GM2

ω2C3C4

therefore, the intersection occurs when

GM1GM2

ω2C3C4
=

GM1

ωC

ω1

ω2

GM1

sC

(

GM1R1

R1C3s+1

) (

GM2R2

R2C4s+1

)

Fig. 16. Asymptotic Bode plot showingG(s) and1/H(s) for the op amp
from the block diagram in Figure 15. The asymptotic op-amp transfer function
A(s) is simply the lower of these two curves.
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Fig. 17. Bode magnitude plot of the forward-pathG(s) and inverse-feedback-
path 1/H(s) transfer functions from the block diagram in Figure 15. This
plot is a more accurate rendering of the asymptotic plot in Figure 16.
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Fig. 18. Bode magnitude plot of the closed-minor-loop transfer function of
the op ampA(s). This plot is the lower of the two curves from Figure 17
and matches the desired transfer function in Figures 3 and 4.
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Fig. 19. Schematic for an inverting gain-of-one op-amp amplifier.

at a frequency of

ω2 =
GM2C

C3C4

where
C3C4 = C1C2 + C1C + C2C.

Again, this result agrees exactly with the result (5) found above
using brute-force circuit analysis.

Using this minor-loop feedback approach to calculating the
compensated transfer function of the op amp produced the
same results with less work. In addition, a better understanding
of the internals of the op amp is achieved. The minor-loop
feedback path created by the compensation capacitor (or the
compensation network) allows the frequency response of the
op-amp transfer function to be easily shaped.

V. COMPENSATION FORSTEADY-STATE ERROR

This feedback approach to op-amp compensation can be
exploited in the design of special-purpose op-amp transfer
functions. Such transfer functions can be used to improve the
performance characteristics of many op-amp circuits. Using
these minor-loop techniques, these special-purpose op-amp
transfer functions are easier to design.

For example, the dynamic-tracking behavior of an op-amp
amplifier circuit can be modified with appropriate changes
to the op-amp transfer functionA(s). An inverting op-amp
amplifier is shown in Figure 19. With standard capacitive com-
pensation, the steady-state error to a step input is nearly zero,
since the op-amp transfer function looks like an integrator

A(s) ≈
GM1

Yc(s)
=

GM1

sC

with a single pole near the origin. If zero steady-state error
to a ramp input is desired, the transfer function of the op
amp can be changed to achieve this specification. As seen in
Section IV, the op-amp transfer function can be designed by
appropriate choice of the compensation network. An op-amp
transfer function such as

A(s) ≈
GM1(τs + 1)

Cτs2

can be achieved with a compensation admittance of the form

Yc(s) =
Cτs2

τs + 1
.

Ic
C C

R

Vo

Fig. 20. Two-port compensation network to replace the compensation
capacitor in Figure 10. The capacitor terminals connect around the high-
gain stage, and the resistor connects to ground. The transfer admittance
Yc(s) = Ic/Vo of this network has two zeros at the origin.
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Fig. 21. Bode magnitude plot of the forward-path and inverse-feedback-path
transfer functions for single-pole and two-pole compensation.

This double-integrator transfer function will exhibit zero
steady-state error to an input ramp.

The transfer admittance of the two-port compensation net-
work shown in Figure 20 has two zeros at the origin

Yc(s) =
Ic

Vo

=
RC2s2

2RCs + 1
.

Therefore, with this compensation, the open-loop transfer
function of the op amp is approximately

A(s) ≈
GM1(2RCs + 1)

RC2s2

with two poles at the origin. This “two-pole” compensation
network [12] creates a slope of−2 in the frequency response
of the op-amp transfer function.

A Bode magnitude plot of the forward-path and inverse-
feedback-path transfer functions for standard single-pole com-
pensation and two-pole compensation is shown in Figure 21.
A comparison of the resultant op-amp transfer functions is
shown in Figure 22. The open-loop gain of the two-pole op-
amp transfer function exceeds the gain for the single-pole
transfer function for all frequencies between102 and 107

radians per second (rps). The response of the error signal for a
fast input ramp of 1 V/µs is shown in Figure 23. The increased
gain of the two-pole op-amp transfer function significantly
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Fig. 22. Comparison of the single-pole and two-pole op-amp transfer
functionsA(s). The open-loop gain of the two-pole op-amp transfer function
exceeds the gain for the single-pole transfer function for all frequencies
between102 and107 rps.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
−7

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
single−pole compensation
two−pole compensation

Error Response to Ramp

Time (sec)

A
m

pl
itu

de

Fig. 23. Response of the error signal for a fast input ramp. Theincreased gain
of the two-pole op-amp transfer function significantly reduces the magnitude
of the steady-state error. The error signal for the two-polecompensated system
is always smaller than for the single-pole op amp.

reduces the magnitude of the steady-state error, and this op-
amp transfer function is easier to design using minor-loop
feedback techniques.

VI. COMPENSATION FORCAPACITIVE LOADS

This feedback approach to op-amp design can also illu-
minate and diagnose subtle problems in compensation net-
work design. Some special-purpose op-amp transfer-function
designs exhibit insidious stability problems that can be difficult
to diagnose using only circuit analysis techniques.

A. Compensation that Introduces a Zero

Consider an op-amp unity-gain buffer circuit with capacitive
load, as shown in Figure 24. The output resistance of the op

−

+Vi

Vo

CL

RO

Fig. 24. Schematic for a unity-gain buffer circuit with a capacitive load.
The output resistance and the capacitive load create a low-pass filter in the
feedback loop. There is no way to feedback from output to input without
including this pole.

+

_

+

_
Vi Ga(s)

Yc(s)

Gl(s) VoGm

Fig. 25. Block diagram for the buffer in Figure 24 showing theminor-loop
topology of the two-stage op amp. The low-frequency pole fromthe capacitive
load appears between the second stage of the op amp and the output node of
the circuit.

amp and the capacitance of the load create a low-pass filter in
the feedback loop

L(s) =
A(s)

ROCLs + 1
.

Because the output resistance is inside the op amp, feedback
from the output terminal always includes the effects of this
additional pole. The block diagram of the buffer circuit show-
ing the minor loop of the op amp is shown in Figure 25. The
low-frequency pole from the capacitive load appears between
the second stage of the op amp and the output node of the
circuit.

As an example, consider the op-amp model in Figure 12
with an input-stage transconductance of

Gm = GM1 = 10−4
0,

a second-stage transresistance of

Ga(s) =
R1GM2R2

(R1C1s + 1)(R2C2s + 1)
=

1010 Ω

(10−5s + 1)2
,

and standard capacitive compensation of

Yc(s) = sC = 10−11s 0.

The Bode plot of the forward-path and inverse-feedback-path
transfer functions for this op amp is shown in Figure 26. With
this choice ofYc(s), the high-frequency pole of the op amp
occurs two orders of magnitude above crossover.

The op-amp transfer function is

A(s) =
GmGa(s)

1 + Ga(s)Yc(s)
≈

Gm

Yc(s)
=

107

s
.

The Bode plot of the op-amp transfer function is shown
in Figure 27. This transfer functionA(s) has nearly ninety
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Fig. 26. Bode plot of the forward-path and inverse-feedback-path transfer
functions for the example op amp with standard compensation. This op amp
appears to be over-compensated since the second pole of the opamp occurs
two orders of magnitude above crossover.
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Fig. 27. Bode plot of the closed-minor-loop transfer function of the op amp
A(s). This transfer function has nearly ninety degrees of phase margin at
unity-gain crossover. This op amp is over-compensated and is much more
stable than it would need to be for most applications.

degrees of phase margin at crossover. This op amp is much
more stable than it needs to be for most applications. The
step response of the op-amp buffer (without capacitive load)
is shown in Figure 28. With ninety degrees of phase margin,
the response is first order.

However, with a finite output resistance and a capacitive
load on the output (RO = 10 Ω and CL = 0.1 µF), the
stability of the op amp is severely compromised. The transfer
function due to the load is

Gl(s) =
1

ROCLs + 1
=

1

10−6s + 1
.

With this capacitive load, the loop transfer function of the
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Fig. 28. Step response of the op-amp buffer without the capacitive load.
With ninety degrees of phase margin, the response is first order.

−200

−150

−100

−50

0

50

100

150

M
ag

ni
tu

de
 (

dB
)

10
0

10
2

10
4

10
6

10
8

10
10

−270

−225

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram
Gm = 40 dB (at 3.16e+07 rad/sec) ,  Pm = 17.8 deg (at 3.08e+06 rad/sec)

Frequency  (rad/sec)

Fig. 29. Bode plot of the loop transfer functionL(s) for the op-amp
buffer with capacitive load. The pole due to the capacitive load occurs
below crossover, and stability is significantly compromised.The load capacitor
reduces the phase margin from ninety degree (as shown in Figure 27) to less
than eighteen degrees shown here.

whole circuit is approximately

L(s) = A(s)Gl(s) ≈
GmGl(s)

Yc(s)
=

107

s(10−6s + 1)
.

The Bode plot of the loop transfer function for the op-amp
circuit with capacitive load is shown in Figure 29. The pole
due to the capacitive load occurs below crossover, so the
loop transfer function crosses over with a slope of−2 and
a small phase margin. Stability of the circuit is significantly
compromised and the phase margin has decreased from ninety
degrees to less than eighteen degrees.

This reduction in phase margin degrades the transient per-
formance of the circuit. The step response of the op-amp
buffer with capacitive load is shown in Figure 30. Clearly,
the response is no longer first order. With less than eighteen
degrees of phase margin, the response exhibits considerable
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Fig. 30. Step response of the op-amp buffer with capacitive load. With less
than eighteen degrees of phase margin, the response exhibitsconsiderable
peak overshoot and ringing.

RC CC

Fig. 31. Compensation network with an admittance pole. This pole in the
feedback-pathYc(s) introduces a zero into the op-amp transfer functionA(s).
This zero will be used to cancel the capacitive-load pole.

peak overshoot and ringing. In general, most op amps behave
badly with a capacitive load.

Using the minor-loop feedback approach to op-amp com-
pensation from Section IV to shape the transfer function, the
op amp can be redesigned to compensate for the capacitive
load. The op-amp transfer functionA(s) is changed to include
a zero near the frequency of the additional pole in the circuit
loop transfer functionL(s).

A compensation network that introduces a zero in the
op-amp transfer function [13] is shown in Figure 31. The
admittance of this network is

Yc(s) =
Ic

Vo

=
CCs

RCCCs + 1
.

The pole in the admittanceYc(s) becomes a zero in the op-
amp transfer functionA(s). This zero will be used to cancel
the effects of the capacitive load at the output. With this
compensation network the op-amp transfer function is

A(s) ≈
Gm

Yc(s)
=

Gm(RCCCs + 1)

CCs

and the loop transfer function of the circuit is

L(s) = A(s)Gl(s) ≈
Gm(RCCCs + 1)

CCs

(

1

ROCLs + 1

)

.

If the time constant of the admittance is chosen to be equal
to the time constant of the output pole (RCCC ≈ ROCL) then
the term from the minor loop and the term from the capacitive
load will cancel, and the loop transfer function returns to
single-pole roll-off behavior.
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Fig. 32. Bode plot of the forward-path and inverse-feedback-path transfer
functions for the op amp with compensation that introduces a zero. The pole
in Yc(s) becomes a zero inA(s).
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Fig. 33. Bode plot of the closed-minor-loop transfer function of the op amp
A(s). The transfer-function zero introduced by the compensationnetwork is
clearly visible near3 · 106 rps. The resonance is blithely ignored.

For this example, the minor-loop transfer admittance is

Yc(s) =
10−11s 0

3 · 10−7s + 1

and the circuit loop transfer function is approximately

L(s) ≈
107(3 · 10−7s + 1)

s

(

1

10−6s + 1

)

(theRC products are chosen to be slightly different to remain
distinct on the Bode plots and to be a bit more realistic).
The Bode plot of the forward-path and inverse-feedback-path
transfer functions for the op amp with this compensation is
shown in Figure 32. The Bode plot of the closed-minor-loop
transfer function of the op ampA(s) is shown in Figure 33.
The transfer function zero is clearly visible at3 · 106 rps.

The Bode plot of the loop transfer function for the op-amp
circuit with capacitive load is shown in Figure 34. The zero
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Fig. 34. Bode plot of the loop transfer functionL(s) for the op-amp buffer
with capacitive load. The zero from the compensation networknearly cancels
the pole from the capacitive load. The phase margin has increased from
eighteen degrees in Figure 29 to more than sixty degrees.
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Fig. 35. Step response of the compensated op-amp buffer with capacitive
load. The peak overshoot is greatly improved from Figure 30, but the high-
frequency ringing indicates that the system is on the edge ofinstability.

from the compensation network nearly cancels the pole due
to the capacitive load. The phase margin has increased from
eighteen degrees to more than sixty degrees.

However, the step response shows a problem. The step
response of the compensated op-amp buffer with capacitive
load is shown in Figure 35. While the peak overshoot is greatly
improved from Figure 30, the long-lasting high-frequency
ringing indicates that the system is on the edge of instability.
The cause of this ringing is the resonant peak in Figure 33
and the absence of gain margin in Figure 34. The frequency
of the ringing and of the resonant peak indicate a minor-loop
instability.

B. Compensation with Minor-Loop Stability

The problem with the compensation network in Figure 31
is that the minor loop is nearly unstable, which can be
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Fig. 36. Bode plot of the minor-loop transfer functionLm(s) for the op amp
with the compensation network from Figure 31. The pole in the admittance
Yc(s) becomes a zero inA(s), but the pole appears in the minor-loop transfer
function and degrades the stability of the minor loop.

CD

RC CC

Fig. 37. Compensation network with a shunt capacitance. The capacitorCD

introduces a zero into the minor-loop transfer function thatcan be used to
increase the stability of the minor loop.

demonstrated by examining the minor-loop transfer function.
As shown in the block diagram in Figure 25, the minor-loop
transfer function is

Lm(s) = Ga(s)Yc(s).

The Bode plot of this minor-loop transfer function is shown
in Figure 36. The admittance pole from the compensation
network appears directly in the minor-loop transfer function
and degrades the stability of the minor loop.

To improve the stability the minor loop, the compensation
network is augmented with a shunt capacitance [12] as shown
in Figure 37. The capacitorCD introduces a zero into the
minor-loop transfer function and is used to improve the minor-
loop phase margin. The compensation network admittance is

Yc(s) =
s(CC + CD)(RCCSs + 1)

RCCCs + 1

where

CS =
CCCD

CC + CD

.

Using RCCS = 10−8 second, the Bode plot of the minor-
loop transfer function for the op amp with this improved
compensation is shown in Figure 38. The additional zero from
the capacitorCD increases the minor-loop phase margin to
thirty-five degrees.
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Fig. 38. Bode plot of the minor-loop transfer functionLm(s) for the op amp
with the compensation network from Figure 37. The additionalzero from the
capacitorCD increases the minor-loop phase margin to thirty-five degrees.
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Fig. 39. Bode plot of the forward-path and inverse-feedback-path transfer
functions for the op amp with the compensation network from Figure 37. The
zero to cancel the capacitive-load pole is still visible near 3 · 106 rps. The
pole from the capacitorCD appears beyond both minor-loop crossover and
major-loop crossover at108 rps.

The Bode plot of the forward-path and inverse-feedback-
path transfer functions for the op amp are now shown in
Figure 39. The zero to cancel the output capacitance pole is
still visible at 3 · 106 rps. The pole fromCD appears beyond
both the major-loop crossover and minor-loop crossover fre-
quencies.

The Bode plot of the op-amp transfer function is shown
in Figure 40. The resonance from the minor loop has been
greatly reduced compared to Figure 33.

The Bode plot of loop transfer function for op-amp circuit
with capacitive load is shown in Figure 41. In contrast to
Figure 34, the loop transfer function now has adequate gain
margin as well as sixty degrees of phase margin.

The step response of the compensated op-amp buffer with
capacitive load is shown in Figure 42. The peak overshoot
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Fig. 40. Bode plot of the closed-minor-loop transfer function of the op amp
A(s). The resonance from the minor loop has been greatly reduced from
Figure 33.
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Fig. 41. Bode plot of the loop transfer functionL(s) for the op-amp buffer
with capacitive load. In contrast to Figure 34, the loop transfer function now
has adequate gain margin.
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Fig. 42. Step response of the compensated op-amp buffer with capacitive
load. The peak overshoot from Figure 30 is greatly reduced, and the high-
frequency ringing from Figure 35 is gone.
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Fig. 43. Step response of the compensated op-amp buffer with the capacitive
load removed. The special-purpose compensation developed here requires the
capacitive load to be present for proper loop behavior. Without the capacitive
load, the loop transfer function of the circuit is the transfer function of the
op amp alone from Figure 40, which does not have adequate phasemargin.

from Figure 30 is greatly reduced, and the high-frequency
ringing from Figure 35 is gone.

As a final note, the step response of the compensated
op-amp buffer with the capacitive load removed is shown
in Figure 43. This special-purpose compensation developed
here requires the capacitive load to be present for proper
loop behavior. Without the capacitive load, the loop transfer
function of the circuit is the transfer function of the op amp
alone from Figure 40, which does not have adequate phase
margin. However, with the capacitive load, the compensated
op amp performs quite well.

Using the feedback approach to op-amp compensation
design helped diagnose and solve the minor-loop stability
problem. Without this approach, the solution to the high-
frequency ringing in Figure 35 would have been extremely
difficult to determine using direct circuit analysis techniques.

VII. C ONCLUSIONS

In all applications, op amps require a deliberately designed
frequency response to ensure stability and satisfactory tran-
sient performance. Standard frequency compensation, using a
capacitor around the high-gain stage, is designed for general-
purpose op-amp applications such as amplifiers, buffers, and
integrators. Sophisticated compensation techniques can be em-
ployed in specific applications in which standard compensation
methods perform poorly.

These compensation techniques are necessary to understand
in the design of internally compensated op amps or in the use
of externally compensated op amps. A pole-splitting approach
to the compensation design is harmful to understanding. All
of these techniques can be easily understood in a simple
classical-control framework. Using a feedback approach tothe
compensation network design, insight and intuition into the
behavior and flexibility of the system are gained.

A

C

VoV1

I1
_

Fig. 44. Close-up of Figure 9 showing the compensation aroundthe high-
gain second stage. The effective input impedance of this stage is modified by
the Miller effect.

APPENDIX I
M ILLER COMPENSATION

The Miller effect is the apparent scaling of an impedance
connected from input to output of a gain stage, which was
first noticed in vacuum tubes [14]. The input current into the
second stage, as shown in Figure 44, depends on the total
voltage across the capacitor

I1 = (V1 − Vo)sC = V1(1 + A)sC.

Thus for an amplifier with a large negative gain, the effective
input capacitance appears(1 + A) times larger than the
capacitorC.

From this effective capacitance, the low-frequency pole of
the equivalent-circuit in Figure 10 can be estimated as

ω1 =
1

RCeff
=

1

R1(1 + A2)C
≈

1

R1(GM2R2)C

which agrees with equation (4). For this reason, op-amp
compensation with a capacitor around the second gain stage,
as shown in Figure 8, is often called “Miller compensation.”

APPENDIX II
FAIRCHILD µA741 COMPLETE SCHEMATIC

The complete schematic for the Fairchild Semiconductor
µA741 operational amplifier is shown in Figure 45. This
topology is classic and simple.

The primary signal path is comprised of three blocks.
The first stage is the differential quad of transistorsQ1–Q4

with active current-mirror loadQ5–Q7. The second stage is
the Darlington common-emitter amplifierQ16 and Q17 with
current source loadQ13. A push-pull emitter-follower output
buffer is implemented by transistorsQ14, Q20, andQ22.

The remaining transistors provide biasing and protection.
The network of current mirrorsQ8–Q13 produce bias currents
for the transistors in the signal path. Compensation of the
output-buffer dead-zone region is provided byQ18 and Q19.
Output-current limiting and short-circuit protection is imple-
mented byQ15 andQ21–Q25.

And of course, the frequency compensation is accomplished
by the 30 pF capacitor aroundQ16 andQ17, as discussed in
Section II.
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Fig. 45. Complete FairchildµA741 schematic [10]. The primary signal path is comprised of twogain stages. The first gain stage is a differential pair with
active load (transistorsQ1–Q6). The second gain stage is a common-emitter amplifier (transistors Q16 and Q17). The output buffer is a push-pull emitter
follower (transistorsQ14, Q20, andQ22).

APPENDIX III
EXACT TRANSFERFUNCTION MATH

The exact transfer function for the equivalent circuit in Figure 10 can be found directly from the node equations (2) and (3).
Solving the output-node equation (3) forV1

Vo

(

sC +
1

R2
+ sC2

)

= V1(sC − GM2)

Vo(R2(C2 + C)s + 1) = V1(R2Cs − GM2R2)

V1 =

(

R2(C2 + C)s + 1

R2Cs − GM2R2

)

Vo.

Massaging the input-node equation (2)

GM1Vin + sCVo = V1

(

1

R1
+ sC1 + sC

)

GM1R1Vin + R1CsVo = (R1(C1 + C)s + 1)

(

R2(C2 + C)s + 1

R2Cs − GM2R2

)

Vo

GM1R1Vin = Vo

(

(R1(C1 + C)s + 1)(R2(C2 + C)s + 1)

R2Cs − GM2R2
− R1Cs

)

.

Solving for the transfer function

Vo

Vin

(s) =
GM1R1(R2Cs − GM2R2)

(R1(C1 + C)s + 1)(R2(C2 + C)s + 1) − (R2Cs − GM2R2)R1Cs

Vo

Vin

(s) =
GM1R1GM2R2(Cs/GM2 − 1)

R1R2(C1C2 + C1C + C2C)s2 + (R1C1 + R1C + R2C2 + R2C + GM2R2R1C)s + 1
.

This second-order transfer function is the expected resultfrom the topology in Figure 10. All of this math can be avoided
using the feedback techniques in Section IV and Appendix V.
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R(s) C(s)G(s)

H(s)

Fig. 46. General block diagram for a feedback system. Standard notation
usesR(s) for the reference input,C(s) for the controlled output variable,
G(s) for the forward-path transfer function, andH(s) for the feedback-path
transfer function.

APPENDIX IV
CLOSED-LOOPTRANSFERFUNCTION TRICK

The work for finding an approximate transfer function of a
feedback system, such as shown in Figure 46, can be simplified
by taking advantage of a useful trick involving Black’s formula

C

R
(s) =

G(s)

1 + G(s)H(s)
.

Black’s formula can be simplified when

|G(s)H(s)| ≫ 1

or equivalently, when

|G(s)| ≫
1

|H(s)|
.

When this inequality is true, theGH term dominates in the
denominator, and the magnitude of the closed-loop transfer
function can be rewritten as

∣

∣

∣

∣

C

R
(s)

∣

∣

∣

∣

=

∣

∣

∣

∣

G(s)

1 + G(s)H(s)

∣

∣

∣

∣

≈
1

|H(s)|
.

Similarly, when
|G(s)H(s)| ≪ 1

or equivalently, when

|G(s)| ≪
1

|H(s)|

the unity term dominates in the denominator. The magnitude
of the closed-loop transfer function is then approximately

∣

∣

∣

∣

C

R
(s)

∣

∣

∣

∣

=

∣

∣

∣

∣

G(s)

1 + G(s)H(s)

∣

∣

∣

∣

≈ |G(s)|.

Therefore, the asymptotic frequency response of a closed-
loop feedback system, can be plotted by graphing|G(s)| and
|H(s)|−1 and then tracing the lower curve for all frequencies.

APPENDIX V
RIGHT HALF-PLANE ZERO

In the analysis in Section IV, the effect of the voltage
V1 on the current through the compensation capacitor was
ignored. Unfortunately, the output voltage of the first stage,
while indeed small, is not zero. Both currents that flow through
the compensation capacitor are shown in Figure 47, where

Ic = sCVo

V1 Vo

Ic

Ir

Fig. 47. The two currents that flow through the compensation capacitor. The
feedback currentIc is the compensation current discussed in Section IV. The
feedforward currentIr causes a right half-plane zero in the op-amp transfer
function.

R2

Vo

GM2V1

V1

C

Fig. 48. Close-up of Figure 10 showing the effect of the feedforward current
Ir on the second stage. The output voltage is zero when the totalcurrent
flowing into the output stage is zero.

and
Ir = sCV1.

The feedback currentIc is the compensation current discussed
in Section IV. The feedforward currentIr causes a right half-
plane zero in the op-amp transfer function. By superposition,
the sum of these two currents is the total current flowing in
the compensation capacitor.

A close-up of the effect of the feedforward currentIr on
the second stage is shown in Figure 48. The output voltage
is zero when the total current flowing into the output stage is
zero, that is

sCV1 − GM2V1 = 0.

This zero occurs at a frequency

ωz = +
GM2

C
.

Therefore equation (7) must now be written as

Vo = (−GM2V1 + sCV1)
R2

R2C4s + 1
.

The complete block diagram of the op-amp equivalent
circuit, including the feedforward current through the compen-
sation capacitor, is shown in Figure 49. The parallel blocksin
the forward path can be collapsed into a single block

−GM2 + sC = −GM2

(

1 −
sC

GM2

)

.

Thus the feedforward current causes a right half-plane zero.
The negative phase shift from this right half-plane zero can
place considerable limits on op-amp performance.

This problem can be fixed. A compensation network to
cancel the right half-plane zero is shown in Figure 50 with
admittance

Yc(s) =
Ic

Vo

=
Cs

RCs + 1
.



PRESENTED AT THE 2004 AMERICAN CONTROL CONFERENCE 15

+

+

+ +
GM1R1

R1C1s + 1
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R2C2s + 1

sC

−GM2

sC

GM1

Vin Vo

Fig. 49. Block diagram of the op-amp equivalent circuit, including the
feedforward current through the compensation capacitor. The feedforward
term causes a right half-plane zero in the op-amp transfer function.

C R

Fig. 50. Compensation network to cancel the right half-planezero due to
the feedforward current through the compensation capacitor.

The compensating admittanceYc(s) shows up in both the
feedback path and the feedforward path. The block in the
forward path becomes

−GM2 +
Cs

RCs + 1
=

−GM2RCs − GM2 + Cs

RCs + 1

= −GM2
(R − 1/GM2)Cs + 1

RCs + 1
.

Thus, for a choice ofR = 1/GM2, the zero moves out of the
right half-plane to infinity.

The right half-plane zero is usually not a problem in bipolar
op amps. For example, in theµA741

fz =
GM2

2πC
=

6.8 m0

2π30 pF
= 36 MHz.

In a CMOS op amp, where transistor transconductances can be
much lower, the right-half plane zero frequency can be quite
close to the unity-gain frequency of the op amp.
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