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Abstract— Three-dimensional models and animations of
Nichols charts, Hall charts, and robust-performance diagrams Phase margin in degrees
are presented. Using these models, students can visualize the 3 20 40 60 8 100 120 140 160 180
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implications and importance of these charts and diagrams. =22 N
By viewing these animations, students develop better intuition 28 ~
concerning the connection between open-loop gain/phase plots, 05 A 1N ~ 05
open-loop polar plots, and closed-loop frequency response. % N\ ] B
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I. INTRODUCTION 15*& < 1 PZaNEIA

Upon first presentation, the Nichols chart and the Hall char 12 AL o / NP -2
are often confusing to first-term control students. Thisgoap *:“/ ><\ / AN
describes several educational animations that help stsiden °[RE73 [/ / =]
visualize the implications and importance of Nichols chart s T y?‘/y X}( -4
and Hall charts by showing the magnitude of the closed-loojf £ c A7 e — -
frequency response as the third dimension. 4 ° | KR S PIAANIN LA d

Robust performance, in the face of multiplicative plant un- 34 -‘\‘g X?—) N \ A\ \ _
certainty, can be illustrated with two disjoint sets of fuegcy- as =y S \\\ =TT\ 1 ?
dependent circles on a Nyquist diagram (one set for plan \ N W NEANTAAY LA,
uncertainty and the other set for specifications on seitgitiv 2R —*‘Y’Yl(-\ \—3*“'\”"‘ - \\ \\
However, distinct circles must be plotted at all frequescie -6 TN VIV T
By using the third dimension for frequency, a Nyquist plot IRV AN AN A i T -18
can be rendered that includes the effect of plant unceytaint -20 ‘| “ ‘\ ‘\ ‘\ I \\ \\ \\ \\ I
at all frequencies. Examining this model for intersectiofis o IHIA 11 o
the corresponding solids indicates the success or failtige o ' |
robust-performance design. -28 %
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Il. NicHOLS CHART

. Fig. 1. The original Nichols chart, reprinted from the 194%tbook by
The Nichols chart [1] has been used for many years ¥gmes, Nichols, and Phillips [1]. The curves show contoutdnstant closed-

bridge the gap between open-loop frequency response g magnitude and constant closed-loop phase. To use thi tie open-
closed-loop frequency response Plotting the open-loep ﬂloop frequency response is plotted on the rectilinear ghede coordinates,
. ’ . and the closed-loop frequency response is read from thewmbf closed-

quency response on gain/phase coordinates allows thedelog§,p magnitude and phase.
loop frequency response to be read from the chart. Unfortu-
nately, students are often bewildered by the complicatedtch
when it is first presented, likening it to a plate of spaghetti is plotted on the gain/phase plane as shown in Figure 3,
a sadistic dart board, as shown in Figure 1. the height of the surface of Mount Nichols corresponds to

A change in point of view can help students appreciate thige magnitude of the closed-loop frequency response fdr tha
importance of the chart. The Nichols chart can be thoughsof &(jw) as shown in Figure 4.

a contour map of Mount Nichols (Figure 2) where the height Showing Mount Nichols and its infinite peak also reinforces

of the mountain corresponds to the magnitude of the closabe danger of getting too close to the = —1 point, as
loop frequency response for all possible values of opep-lodlustrated by
frequency response. When the frequency response of a specific Lo(s) = 10 @
loop transfer function for a unity-feedback system, such as s(s+1)
1 shown by the upper curves in Figures 5 and 6. As the open-

Li(s) = s(s+1)’ @ loop frequency response gets closer the the peak of Mount
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Fig. 2. Mount Nichols. The height of the mountain corresportds Fig. 5. Nichols chart forL;(s) and L2(s). The change in gain between
the magnitude of the closed-loop frequency response. Whempba-loop 1, (s) and Lz (s) corresponds to a shift up the vertical axis. Sitog(jw)
frequency response is plotted on the rectilinear gainghamrdinates on approaches closer to the= —1 point, the closed-loop frequency response
the horizontal plane, the magnitude of the closed-loop feequ response is will appear much higher up the “foothills” of Mount Nichols.

shown by the height of the surface.
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Fig. 6. Closed-loop Bode plot faE1 (s) and La2(s). The extreme increase

Fig. 3. Nichols chart foil; (s). The closed-loop frequency response is reag ‘the magnitude peaking fako(s) is due to its height on Mount Nichols.

from the contours of closed-loop magnitude.
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Fig. 4. Closed-loop Bode plot fak (s). The slight peaking in the response

agrees with the 1-dB contour in Figure 3.

10

This correlation between height on Mount Nichols and cleseg magnitude
peaking is demonstrated by the animations on the next page.

Nichols, the peaking in the closed-loop frequency response
gets larger.

This transformation from the open-loop frequency response
to the closed-loop frequency response is illustrated by a
computer animation that starts with the gain/phase plot on
the surface of Mount Nichols as viewed from above. The
camera view is rotated to show the elevation of the curve on
Mount Nichols to demonstrate that the height of the opeip-loo
frequency response corresponds to the closed-loop freguen
response.

The animation can be repeated for multiple loop transfer
functions, such as (1) and (2). Still frames from these anima
tions are shown in Figures 7 and 8, respectively.
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Fig. 7. Still images from Nichols animation fdt; (s) = ——.
s(s+1)

10
s(s+1)°

Fig. 8. Still images from Nichols animation fdrz(s) =
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Fig. 9. Mount Hall. The height of the mountain correspondshi® rnagni-
tude of the closed-loop frequency response. When the omgnflequency Fig. 10. Hall chart forL;(s). The closed-loop frequency response is read
response is plotted on the Nyquist coordinates on the huat@lane, the from the contours of closed-loop magnitude.
magnitude of the closed-loop frequency response is showimdheight of
the surface.

Hall Chart

™
I1l. HALL CHART ) \\ ]
.l \\ZdB -2dB |
The Hall chart [2] predates the Nichols chart by several \\m s
years, but is not as popular with control educators. Pedagog ., '/ “6a8 ]
cally, the Hall chart is a powerful tool, since it reinforcte s e |
relationship between the Nyquist plot and the Bode plot. In g )
addition, theM -circles of the Hall chart can be used in robust i / 1
Nyquist diagrams, and early introduction of these concegts L |
improve student understanding and intuition. /
A similar change in perspective can help students appeeciat 3r / 1
the importance of the Hall chart. The Hall chart is a contour . L < ‘ ‘ ‘

-6 -5 -4 -3 -2
Real Axis

map of Mount Hall (Figure 9) where the height of the
mountain corresponds to the magnitude of the closed-loop
frequency response for all possible values of the open-lobj: 11. Hall chart forL, (s) and Lz (s). The frequency responsk; (jw)
frequency response. Mount Hall has an infinite peak at tffe”05e" ©© thes = —1 point and the peak of Mount Hall.

s = —1 point, and it has a dimple to zero at the origin, as we

expect from the magnitude of the closed-loop transfer fonct Closed-loop Bode Diagram
L
M=|——1o]I. 10 ]
‘ 1+ L ’ //
Figures 10 and 11 show the loop transfer functions (1) and g
(2) plotted with the Hall chart. Reading the -circles on the g \ ]
Hall chart provides the magnitude of the closed-loop freqye g \

response, as shown in Figure 12.

Animations similar to those shown in Figures 7 and 8 are
made to help students visualize the connection between the | |
polar plot of the open-loop frequency response and the Bode
plot of the closed-loop frequency response. The animation L
starts with the polar plot on the surface of Mount Hall as ° e oo v
viewed from above. The camera view is rotated to show the
elevation of the curve on Mount Hall to demonstrate that tHgg. 12. Closed-loop Bode plot fdt1 (s) and Lz (s). The 10-dB peaking in
height of the open-loop frequency response correspondeeto weﬁgﬁsggQﬁi ?fgﬁﬁsvg']fh,wtgfnﬁgﬁ contour in Figure 11 anddbociated
closed-loop frequency response.

20} 3
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Fig. 13. Magnitude plot of nominal-plant sensitivity tramsfunction and Fig. 14.  Performance chart showing nominal-plant loop tenginction
sensitivity boundiV; (jw). For the system to meet the specified requirements(jw) and frequency-dependent sensitivity bould, (jw). At each fre-

on dynamic-tracking error, the sensitivity transfer funotimust always be guency, the loop transfer functioh (shown by each colored“x”) must be
below the bound¥; (jw). outside the circle of radiug¥1 | (of the same color) centered at= —1.

Nyquist Diagram
IV. ROBUST-PERFORMANCEDIAGRAMS ‘

Three-dimensional visualizations can also help students of
understand the frequency dependence of robust-perfoenanc
diagrams. A robust-performance diagram shows the congpetin .l
bounds on sensitivity and uncertainty, which must not sdet
for a successfully robust design. However, the usual way of
plotting these diagrams [3] can be confusing.

As an example, consider a nominal-plant transfer function

Imaginary Axis
o

10
L(s) =
(s+1)(0.1s+1) -t
The requirements for a small dynamic-tracking error can be
specified in terms of a sensitivity bound =
Real Axis
‘ 1 < 1
; = - Fig. 15. Robust-stability chart showing loop transfer fiime and multiplica-
L+ L(jw) |W1 (jw)| tive uncertainty bound. As long as the uncertainty “smeashglthe plot of

For a particular set of dynamic-tracking requirements, th[e(jw) does not include the = —1 point, the system stability is robust to

et tainty.
sensitivity bound could be expressed as uncertainty
gy 01205 + 1)
r )= s+ 1 A bound on the multiplicative uncertainty can be developed

as shown in the Bode plot in Figure 13. from the perturbed and nominal plants

The sensitivity bound can also be written in terms of a L' (jw) .
vector length from thes = —1 point [3] as ‘ LGw) 1‘ < [Wa(jw)
1+ L(jw)| > [W1(jw)| For robust stability, thes = —1 point must lie outside the

cicles of radiugWs (jwy ) L(jws)| centered at the correspond-

ing points L(jwy) for all frequenciesv;. In above example,
the uncertainty of the unmodeled high-frequency pole can be

Therefore, the sensitivity bound can also be displayed o
Nyquist plot, as shown in Figure 14. At each frequengy
the loop transfer functior.(jw;) must be outside the circle

of radius|W; (jwy)| centered at = —1. bounded by
Now consider a perturbed plant transfer function with an 1 s P
. _ _ 1 — < m
unmodeled high-frequency pole st 1 ‘ 751 1‘ S5+ 1’
L'(s) = 10 < L ) As long as the uncertainty circles along of the ploLg¢fw) do
(s +1)(0.1s +1) \7s +1 not include thes = —1 point (as demonstrated in Figure 15),

where it is known that- < 7,,, = 0.04 second. the system stability is robust to uncertainty.
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Nyquist Diagram [ Visualization Toolkit - Win320pen6L #1
T

Froquency [lag10{w)]

Imaginary Axis
o

Real Axis Fig. 18. Three-dimensional model of the robust-performancartcn
Figure 16. Examining this model for intersections of the cgpmnding solids

Fig. 16. Robust-performance chart. At each frequency, thestestability ndicates the success or failure of the robust-performaeségd.

circle of radius|W>L| and centered af must be outside the performance

circle of radius|W| and centered at = —1.

N frequency, thus the bounds are displayed on the plot for all
T I frequencies. Robust-performance is guaranteed if therunce
\ ] tainty snake does not intersect the sensitivity cone. Using

] three-dimensional model, the absence of this intersecton

' be readily examined.

Imaginary Axis
|
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