
SUBMITTED TO THE 2005 AMERICAN CONTROL CONFERENCE 1

An Educational Java Applet for Linear Systems
Kent H. Lundberg and Brian F. Williams

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract— We describe an educational web applet for students
studying Linear Systems and Feedback Control. The applet al-
lows students to manipulate a pole-zero diagram and immediately
see the corresponding changes that occur in the Bode plot,
Nyquist diagram, Nichols chart, and step response. The program
is written in Java, so that it runs in any web browser, and it is
free software, distributed under the GNU General Public License.

I. I NTRODUCTION

A web-based Java applet has been designed for students
learning Linear Systems and Feedback Control. The applet
helps students reinforce theirs-plane intuition with respect
to Bode plots, Nyquist diagrams, Nichols charts, and step
responses. These plots are created and modified as the student
manipulates a small graph area representing thes-plane. Poles
and zeros can be added, deleted, and independently moved on
the s-plane, with the resulting plots changing dynamically as
the state of the pole-zero plot changes. This allows students
to visually connect changes in pole or zero locations with the
changes in system response.

This applet was inspired by the VisDyCon software [1], [2],
which is written in C and runs under UNIX and X Windows.
This program is written entirely in Java, allowing students
to load it in any web browser with an up-to-date version of
Sun Microsystems’s free Java Virtual Machine [3]. Of course,
Matlab, Mathematica, and Maple all provide more detailed
tools to produce these same plots, but this applet can be loaded
on any machine for free, has a small learning curve, and
encourages student experimentation.

Figure 1 shows the layout of the applet window. Students
can add, remove, or relocate system poles and zeros in
the pole-zero entry frame. The output plot only displays
one response at a time, but the student can switch between
responses without affecting the current state of thes-plane.
This feature allows students to see the relationships between
any one system and all the different plots of frequency and
time responses.

The applet treats a complex-conjugate pair of poles or zeros
as a single entity, so when one of a pair is added, deleted,
or moved, the conjugate pole/zero is also affected. Poles and
zeros on the real axis are treated as a single real pole or
zero, not as a pair. Multiple poles or zeros can occupy the
same coordinate by adding or dragging additional poles to that
location. They will appear as a single entity in the pole-zero
entry frame, but the text list will show each one individually.

Fig. 1. Applet window layout, showing pole-zero entry frame (upper left),
buttons for adding, deleting, and moving the system poles andzeros (upper
right), and the current output plot (lower frame). Moving poles and zeros
is accomplished by dragging them with the mouse. The text field below the
buttons lists the pole and zero locations in(x ± yj) form.

The applet treats any pole or zero added or dragged within
0.5 units of the real axis as though it was on the axis. Even
though a pole/zero being dragged will snap to the axis when
it comes within that tolerance, it is still actively being moved
and will un-snap if the mouse moves away from the axis.

The applet can currently be accessed with any web browser
with the Java plugin from the applet home page:

http://web.mit.edu/6.302/www/pz/

Readers are encouraged to play with the program and explore
its full capabilities.

SUBMITTED TO THE 2005 AMERICAN CONTROL CONFERENCE 2

II. B ODE PLOT

When the “Bode Plot” output panel is chosen, the output
frame shows the frequency-domain Bode plot. Students can
use the applet to explore how the locations of poles and zeros
in the s-plane affect the frequency response. Figures 2 and 3
show the applet window before and after the addition of a
transmission zero.

III. N YQUIST DIAGRAM

When the “Nyquist Plot” output panel is chosen, the output
frame shows the frequency-domain Nyquist diagram. Students
can explore how the locations of poles and zeros in thes-plane
affect the polar plot. Figures 4 and 5 show the applet window
before and after the addition of another system pole.

IV. N ICHOLS CHART

When the “Nichols Plot” output panel is chosen, the output
frame shows the frequency-domain Nichols diagram. Students
can explore how the locations of poles and zeros in thes-plane
affect the gain-phase plot. Figures 6 and 7 show the applet
window before and after the relocation of a system pole.

V. STEP RESPONSE

When the “Step Response” output panel is chosen, the
output frame shows the time-domain response to a unit-step
input. Students can explore how the locations of poles and
zeros in thes-plane affect the step response. Figures 8 and 9
show the applet window before and after the addition of
another system pole.

VI. I NTRODUCTORYASSIGNMENT

Here is a sample introductory assignment [4] to familiarize
students with the applet. Once students are familiar with
the applet, they are encouraged to use it to develops-plane
intuition.

A. First-order system

Clear the pole-zero map and add a pole to the negative
real axis ats = −5 and select the “Bode Plot” tab. What
is the corner frequency of this low-pass filter? How does the
magnitude response differ from the corresponding asymptotic
Bode plot for this system?

B. Second-order system

Reset and now add a pole ats = −5 + 5j. Why does the
applet automatically add another pole ats = −5 − 5j?

Drag the conjugate poles horizontally while keeping thex
coordinate negative and they coordinate approximately equal
to 5. Does the corner frequency of the system change? What
do you notice in the transition of the phase asx → 0? How
is this mirrored in the magnitude response?

Now look at the step response and put one pole ats = −5.
Drag that pole vertically while maintaining thex coordinate.
What happens to the step response?

Fig. 2. Bode plot output panel showing pole-zero plot and Bode plot of
lightly damped second-order system.

Fig. 3. Bode plot output panel showing pole-zero plot and Bode plot of
lightly damped second-order system with transmission zero.

SUBMITTED TO THE 2005 AMERICAN CONTROL CONFERENCE 3

Fig. 4. Nyquist plot output panel showing pole-zero plot andNyquist diagram
of system with one real-axis pole.

Fig. 5. Nyquist plot output panel showing pole-zero plot andNyquist diagram
of system with two real-axis poles.

Fig. 6. Nichols plot output panel showing pole-zero plot andNichols plot
of double-integrator system with lead compensator.

Fig. 7. Nichols plot output panel showing pole-zero plot andNichols plot
of double-integrator system with extended lead compensator.

SUBMITTED TO THE 2005 AMERICAN CONTROL CONFERENCE 4

Fig. 8. Step response output panel showing pole-zero plot and step response
of lightly damped second-order system.

Fig. 9. Step response output panel showing pole-zero plot and step response
of lightly damped second-order system with additional pole.

C. Poles and zeros

Create a system with one pole and one zero. Drag each
along the real-axis and note how each singularity affects the
step response.

For each combination you should first predict the initial and
final values using the Initial-Value Theorem and the Final-
Value Theorem of the Laplace transform, and then test your
solution with the applet.

G1(s) =
0.2s + 1

0.125s + 1

G2(s) =
0.125s + 1

0.2s + 1

G3(s) =
0.2s + 1

1 − 0.2s

G4(s) =
1 − 0.2s

0.2s + 1

D. Lots of poles and zeros

Many times throughout feedback design you will encounter
a system with singularities at undesirable locations. It isoften
tempting to negate these singularities by canceling them out.
That may not always be a wise decision.

Create many poles along the negative-real axis in a linear
fashion. You should have about 8-10 poles spread evenly in
the end. Now, suppose you really wanted a system to respond
like a system with the transfer function

G(s) =
1

0.1s + 1
,

and decide to cancel all the poles with a zero with the
exception of the pole ats = −10. Use this method but don’t
take measures to line up all the cancellations exactly. What
features do you notice in the step response and Bode plot that
differ from the desired response?

VII. F URTHER ASSIGNMENTS

Once students are familiar with the applet, assignments can
be written that encourage them to investigate the interaction
of Bode plots, Nyquist diagrams, Nichols charts, and step
responses. In addition to straight-forward homework problems,
assignments in the form of “Scavenger Hunts” can also be
given, which encourage students to creatively explore various
system responses:

1) Find a transfer function whose step response under-
shoots zero.

2) Find a transfer function, using poles only, that has a step
response with greater than 100% peak overshoot.

3) Find a transfer function whose Nyquist plot encircles the
−1 point once.

4) Find a transfer function whose Nyquist plot encircles the
−1 point twice.

5) Find a transfer function whose Nyquist plot includes a
loop-de-loop off of the real axis.

SUBMITTED TO THE 2005 AMERICAN CONTROL CONFERENCE 5

6) Starting with a double integratorL(s) = 1/s2, find a
simple transfer function with a Nichols plot that dodges
the−1 point to the left.

7) Starting with a double integratorL(s) = 1/s2, find a
simple transfer function with a Nichols plot that dodges
the−1 point to the right. What happens on the Nyquist
plot in this case?

VIII. C ONCLUSIONS

These applets allow students to manipulate pole-zero dia-
grams and immediately see the corresponding changes that
occur in the Bode plot, Nyquist diagram, Nichols chart, and
step response. By adding, removing, or relocating system
poles and zeros in thes-plane, students reinforce theirs-plane
intuition.

APPENDIX I
SOFTWARE ALGORITHMS

The following appendices document the algorithms used
for finding the step response. While these results are well
known, neither we nor our colleagues were able to find a single
reference that included complete instructions for numerically
calculating the step response of an arbitrary linear transfer
function. We document our collection of findings here for
completeness, and we hope others will find them useful.

APPENDIX II
SOME MATRIX MATH

To numerically calculate the step response, the system
transfer function with a monic denominator

X

U
(s) =

b1s
3 + b2s

2 + b3s + b4

s3 + a2s2 + a3s + a4

is translated to a state-space description with the appropriate
initial conditions. The state-space description is found from
the locations of the transfer-function poles (thean in the
denominator) and the dc gain of the numerator (b4) as

ẋ = A · x + B (1)

where the states are

x =





x
ẋ
ẍ





and theA andB matrices are

A =





0 1 0
0 0 1

−a4 −a3 −a2



 B =





0
0
b4



 .

The initial conditions are found from the locations of
the zeros in the numerator. The feed-forward terms of the
observability canonical form can be found from the firstn+1
“Markov parameters” [5]:

H = F
−1

· G









h1

h2

h3

h4









=









1 0 0 0
a2 1 0 0
a3 a2 1 0
a4 a3 a2 1









−1 







b1

b2

b3

b4









.

The Markov parameters can also be found from

b1s
3 + b2s

2 + b3s + b4

s3 + a2s2 + a3s + a4

= H(s) =

∞
∑

i

his
−i

For the step response, the initial state of thex vector is
identical to these feed-forward terms

x0 =





h1

h2

h3



 . (2)

This differential equation (1) and initial condition (2) can be
easily dumped into a fourth-order Runge-Kutta solver.

APPENDIX III
FOURTH-ORDER RUNGE-KUTTA

Runge-Kutta Four is a well-known numerical method [6]
for solving differential equations of the from

ẋ = A · x + B

by

xn+1 = xn + (K1 + 2K2 + 2K3 + K4)/6

tn+1 = tn + h

whereh is the time-step size and the column vectorsK are

K1 = h(A · xn + B)

K2 = h
(

A · (xn + K1/2) + B
)

K3 = h
(

A · (xn + K2/2) + B
)

K4 = h
(

A · (xn + K3) + B
)

.

These equations are iterated at each time steptn.

APPENDIX IV
MATLAB CODE

The Matlab code shown in Figure 10 implements the above
algorithms in Appendices II and III and demonstrates the
simplicity of the implementation. This program served as a
benchmark during testing of the Java applet.

APPENDIX V
JAVA SOURCECODE

This work was inspired by the work of Will Durfee [1]
and Wilson Rugh [7]. However, in contrast to these excellent
projects, the source code for this applet is freely available, and
we encourage other students and educators to download our
code for any and all purposes. See the GNU General Public
License [8] for more details.

The Java source code for this applet can be downloaded free
of charge from the applet home page
http://web.mit.edu/6.302/www/pz/

The program includes code from Alexander Anderson’s com-
plex number package [9] and the MathWorks and the Na-
tional Institute of Standards and Technology’s matrix package
JAMA [10]. Special thanks go to them.

SUBMITTED TO THE 2005 AMERICAN CONTROL CONFERENCE 6

clear
zlist = [1.5 2.5]’;
plist = [-2-j -2+j -3 -4];
gain = abs(prod(plist));
[num,den] = zp2tf(zlist,plist,gain);

N = length(den) - 1;
A = [zeros(N-1,1) eye(N-1) ; ...

-den(N+1:-1:2)];
B = [zeros(N-1,1) ; num(N+1)];
for n = 1:N+1,

F(n,:) = [den(n:-1:1) zeros(1,N+1-n)];
end
H = inv(F)*num’;
X(:,1) = H(1:N);

% RK4: Runge-Kutta Fourth-Order Method

h = 0.01;
for n = 1:(4/h),

K1 = h*(A*X(:,n)+B);
K2 = h*(A*(X(:,n)+K1/2)+B);
K3 = h*(A*(X(:,n)+K2/2)+B);
K4 = h*(A*(X(:,n)+K3)+B);
X(:,n+1) = X(:,n)+(K1+2*K2+2*K3+K4)/6;

end % Shampoo, rinse, repeat.

t = 0:h:4;
plot(t,X(1,:))
grid

Fig. 10. Matlab code for calculating the step response. Starting with lists
of the system poles and zeros, the transfer function is generated. From this
transfer function, the state-space description (1) and theinitial conditions (2)
are found. These results are used by the Runge-Kutta fourth-order solver to
numerically calculate the step response. The Java applet described in this
paper uses this algorithm.

REFERENCES

[1] W. K. Durfee, “VisDyCon: Visual dynamics and control,”
in Proceedings of the 1991 IFAC Conference on Advances
in Control Education, Boston, 1991, pp. 128–131.

[2] M. B. Wall, “Interactive dynamics and control,”
Massachusetts Institute of Technology. [Online].
Available: http://web.mit.edu/visdycon/www/

[3] “Download Java technology,” Sun Microsystems.
[Online]. Available: http://www.java.com

[4] I. J. Dancy, “Educational hardware for feedback systems,”
Master’s thesis, Massachusetts Institute of Technology,
Cambridge, MA, Sept. 2004.

[5] T. Kailath, Linear Systems. Englewood Cliffs: Prentice-
Hall, 1980.

[6] R. K. Nagle and E. B. Saff,Fundamentals of Differential
Equations and Boundary Value Problems. Reading:
Addison-Wesley, 1986.

[7] W. J. Rugh, “Signals, systems, and control
demonstrations,” Johns Hopkins University. [Online].
Available: http://www.jhu.edu/∼signals/

[8] “GNU General Public License,” Free Software
Foundation. [Online]. Available: http://www.gnu.org/
copyleft/gpl.html

[9] A. Anderson, “JavaComplex.tgz,” a complex number class
for Java. [Online]. Available: http://www.netlib.org/java/

[10] “JAMA: a Java matrix package,” The MathWorks and the
National Institute of Standards and Technology. [Online].
Available: http://math.nist.gov/javanumerics/jama/

