PRESENTED AT THE 2003 IEEE CONFERENCE ON DECISION AND CONTROL 4399

Classical Dual-Inverted-Pendulum Control

Kent H. Lundberg James K. Roberge
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge, MA 8213
email: kl und(at) nmit. edu

Abstract—A cart with two independent inverted pendula,
called a dual-inverted-pendulum system, is analyzed and com-
pared to the single-inverted-pendulum system using classical
linear methods. Using only the angles of the pendula and
the position of the cart, a classical controller is designed that
stabilizes the pendula in the inverted position with the cart at
the center of the track. Simulations of the transient response
to initial conditions are presented. Intuitive reasoning and an
insightful approach to the control design are major emphases of
this effort. T

I. INTRODUCTION
- . . . Fig. 2. Geometry of the dual-inverted-pendulum system f{jagiservomech-
The feedback stabilization of a S|ngIe—mverted—pendulugpﬁsm not Show,f)' P Y v

system, shown in Figure 1, is a favorite lecture demonstnati

of students in control subjects, and is well covered in the li

erature [1], [2], [3]. The single-inverted-pendulum systBas center of the track is devised using only measurements of the
an elegant classical controller, requiring only easily suead pendula angle and the position of the cart.

inputs: the angle of the pendulum with respect to vertical an
the position of the cart.

The position of the cart must be measured to keep the
system from driving off the end of the track. The primary Following the development by Siebert [6], the transfer
difficulty in the design of the classical controller for the&unction for the inverted-pendulum system is written imter
inverted-pendulum system is maintaining the controligbdf of the cart position. Consider the inverted-pendulum sgste
the cart-position mode. in Figure 1. At a pendulum angle @f from vertical, gravity

produces an angular acceleration equal to

b, = (g/1)sinf

0 and a cart acceleration af produces an angular acceleration
of

Il. INVERTED-PENDULUM MODEL

0, = —(i&/1) cos .

Writing these accelerations as an equation of motion, linear
ing it, and taking its Laplace transform produces the plant
—= transfer functionG(s), as follows:

Fig. 1. Geometry of the single-inverted-pendulum systenivifty ser- 6= ég + 6, = (g/)sin@ — (&/1) cos 0
vomechanism not shown)
_ _ _ 16— g0 =—i
A cart with two independent inverted pendula [4], [5],
here called a “dual-inverted-pendulum system,” is shown in 0(s) —g2 —5%/g
Figure 2. The position of the cartis driven by a servomech- G X(s) Is2—g (rs+1)(rs—1)
anism. The angles of the pendulum with respect to vertieal ar
0p for the big pendulum andy, for the little pendulum. where the time constant is defined asr = /l/g. This
In the following sections, a compensator that stabilizes transfer function has a pole in the right half-plane, whish i
pendula in the inverted position and keeps the cart near ttensistent with our intuitive expectation of instability.
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Fig. 3. Block diagram of the inverted-pendulum loop
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[1l. SINGLE-INVERTED-PENDULUM STABILIZATION
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Fig. 5. Block diagram of the minor loop

an offset to the angle measurement that is proportionaltio ca
position. This feedback has the effect of always “leanint t
pendulum toward the center of the track, which prevents cart
drift. This positive feedback pushes one of the motor poles
into the right half-plane, as is shown in Figure 4.

IV. DUAL-INVERTED-PENDULUM CONTROL STRATEGY

The stabilizing control for the dual-inverted-pendulunssy
tem is developed using an approach similar to the single-
inverted-pendulum system.

Conceptually, in order to stabilize this system, the cdlgro
must catch the little pendulum (because it's going to fakrov
first) and then catch the big pendulum. If the little pendulum
is pointed in the same direction as the big pendulum, but at
a larger angle, then the cart must move such as to catch both
pendula. The only possible equilibrium for the system ishwit

The stabilization of the single-inverted-pendulum systeg,;p, pendula upright.

is accomplished by driving the cart position based on the opyigusly, the system cannot be stabilized if the pendula
pendulum angle, as shown in the system block diagram iR jgentical in length. If the pendula are identical theeyth

Figure 3.

are affected equally by the motion of the cart. For example,

The difficulty in stabilizing the inverted-pendulum systemk ihey are falling in opposite directions, any attempt tdcba
derives from the right half-plane pole in conjunction With,e genquium falling to the left makes the pendulum falling
the zeros at the origin. Canceling the zeros at the Origig ihe right worse by the same amount. It is this property that

makes the cart position uncontrollable. In order to stabili

makes the dual-inverted-pendulum system harder to stabili

the system, the compensator must include a right half-plagg,, the articulated-inverted-pendulum system (oftenedal

pole, as explained below.

For example, with a pendulum length bf= 9.8 cm and
acceleration due to gravity of = 9.8 m/s’>, the pendulum

transfer function is

2
Gle) = !
(0.1s+1)(0.1s — 1)
One possible stabilizing compensator is
K(s) = K(0.11s+1)
(s +1)(0.25 — 1)
as shown in the root locus in Figure 4.

the “double-inverted-pendulum system”).

To implement the above control strategy, a minor loop is
closed around the little pendulum that drives the cart posit
to regulate the little-pendulum anglg,. The little-pendulum
angle is commanded to lean in the direction that the cartsreed
to travel, as shown in the block diagram of the minor loop in
Figure 5.GL(s) is the little-pendulum transfer function, and
Ky, (s) is the minor-loop compensator. Note that the block
diagram is drawn with positive feedback sin@e (s) includes
a negative sign.

The transfer function from our command andle to the

The right half-plane pole in the compensator causes thgrt positionz is

root-locus branches in the right half-plane to break awaynfr
the real axis and travel into the left half-plane. Withou¢ th
unstable pole in the compensator, the zeros at the origidvou

X(s) —Kr(s)

Hp(s) = Oc(s)  1-Ki(s)GL(s)

prevent the root-locus branch for the right half-plane gaden  To control the angle of the big pendulum, the cart is driven

crossing the imaginary axis.

via the minor-loop inputd based on the angle of the big

Intuitively, the unstable pole in the compensator is expdi  pendulum with respect to verticalz. The control strategy is
by the need for position feedback around the driving seie make the minor-loop command some function of the big-
vomechanism. The cart position can be stabilized by addipgndulum angle, likéc = kc0p. Thus, a compensatéfo(s)
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sl
is designed, and the loop is closed frda: (s) to ©p(s), as
shown in the block diagram of the major loop in Figure 6. Mo s 0 s 0 5 10 15 20
Real Axis
V. LOOPDESIGN AND STABILIZATION Fig. 9.  Pole-zero plot of the major-loop transfer functidis) =
. . . . Ko(s)Hp(s)G
The linearized transfer function relating the angle of theC(s) £(=)G5(s)
little pendulum with respect to verticdl;, to the position of
the cartz is For the above?.,(s) and K1 (s), the pole-zero plot o (s)
o O1(s) —s2/g is shown in Figure 8.
L(s) = X(s)  (res+L)(ros—1) The transfer function for the big pendulum is
whereg is the acceleration due to gravity and the time constant Grls) = Op(s) —s%/g

is T, =+/lL/g. X(s)  (tps+1)(tps —1)
By analogy to the single-inverted-pendulum system, a com- . . .
. . wherers = /lg/g. With a big pendulum length four times
pensator for the minor loop is chosen to leave one of the : _ i
closed-loop minor-loop poles in the right half-plane. For Ié)nger than the litle penduluni £ = 41,.), the pole-zero plot

little-pendulum length of;, = 9.8 cm, such a compensator isOf the major loop transfer function
10 L(s) = Kc(s)HL(s)GB(s)
s+1 is shown in Figure 9.

as shown in the root locus of the minor-loop transfer functio The pole-zero plot in Figure 9 shows two poles in the right
half-plane, one from the minor loop and one from the big

KL(S) =

Lim(s) = Kr(s)GL(s) pendulum, as desired. Closing the major loop with a litte bi
shown in Figure 7. of lead compensation
The minor-loop transfer function is TS+ 1
P Ke(s) = ke ( Z 1>
X(s) —Ki(s) LS+

Hy(s) = Oc(s)  1-Ki(s)GL(s) produces the root-locus plot shown in Figure 10.
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Fig. 11. Root locus of the major loop with locations of clodedp poles Fig. 13. Simulation of system for initial non-zero littlesmiulum angle
for ke = 1.5

sponding to the three states of the system: little-pendulum
Choosingkc = 1.5 pushes the closed-loop poles of thangle, big-pendulum angle, and cart position.
major loop deep into the left half-plane, as shown on the
root-locus plot in Figure 11. Note that this gain correspondy |nitial Little-Pendulum Angle
to driving the little-pendulum angle to 1.5 times the big-
pendulum angle. This gain results in pole locations th?t
provide acceptable transient behavior. €
A Nyquist diagram of the major loop, as shown in Figure 1
shows that the system is stable as designed#fo= 1.5. The

two negative encirclements of thel point guarantee stability The transient deviations in angle and position make sense.

since the open-loop system starts with two poles in the rig}ﬂ order to recover from an initial angle in the littie penao,
half-plane. he cart must move to get both pendula pointing in the same

However, the Nyquist plot also shows that there is n(gjtwectlon. Only then can the cart move to make both pendula

much phase margin, so the system will likely go unstable YFrtlcal'

additional low-pass dynamics are added to the loop.

The system was simulated for the little pendulum initially
aning by one degree, with the big pendulum vertical and the
sart centered on the track. The transient response to itia in
condition is shown in Figure 13.

B. Initial Big-Pendulum Angle

The system was simulated for the big pendulum initially
leaning by one degree, with the little pendulum vertical and

The system described in the previous section was simulatbé cart centered on the track. The transient response <o thi
in Simulink [7] for three different initial conditions cagr initial condition is shown in Figure 14.

VI. SIMULATIONS
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' [ cart positon (om) the left, the little pendulum must first be pointed to the tigh

— - little pendulum (deg)

, ~_big pendulum (deg) Therefore

1) The cart moves slightly to the left to point the little
pendulum to the right

2) The cart moves to the right to point both pendula to the
left

3) The cart moves smoothly to the left, catching both
pendula and traveling the necessary distance

Intuitively, this behavior is correct. When balancing a irert
cal ruler in your hand, to move the ruler to the left, you must
N first move your hand sharply to the right, pointing the ruler
to the left, so that when you catch the ruler, you have moved
both your hand and ruler to the left.

position (centimeters), angle (degrees)

time (seconds)

Fig. 14. Simulation of system for initial non-zero big-pehdn angle VIl. CONCLUSION

A logical extension to the classical controller for the
12 e single-inverted-pendulum system has been shown for thie dua
" big pemlum (g || inverted-pendulum system. This controller is simpler ttiza
modern control result [8]. It is the result of an intuitive

approach to the problem, and is easily understood.
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APPENDIX
LIMIT ON PHASE MARGIN

The obtainable system phase margin can be estimated by
ignoring the controllability of the cart position and desioy
a minimal compensator. Starting with the transfer functién
N the little pendulum
[e) 2
S| AN S S — G ls) = 92 </

0 0.5 1 15 2 25 3
time (seconds)

position (centimeters), angle (degrees)
N IS
T T

o
T

X(s)  (rps+1)(rps—1)

The minor loop can be stabilized by makimgan appropriate
function of 8. A simple choice for this compensator (which
ignores the position mode) is

Fig. 15. Simulation of system for initial non-zero cart pmsit

Again, the transient deviations in angle and position make ~ kpg(rrs+1)
sense, despite their larger amplitude. Note the systemcdhas t - 52 ’

‘work harder” to correct a deviation in the big pendulumq vstem, shown in the block diagram of Figure 5, is stable

than to correct a deviation in the little pendulum. In order t,. any k, > 1. The transfer function for the closed minor
recover from an initial angle in the big pendulum, the carsmu|oop from command to cart position is

initially move in the direction to make the deviation worse,

Ki(s)

both pendula are pointing in the same direction. This motion Hy(s) = X(s) _ —Kr(s)
more than doubles the big pendulum angle, and creates a large r Oc(s) 1—-Kp(s)Gr(s)
transient deviation of the little pendulum. Once both pdéadu
are leaning in the same direction (with the little pendulum Hi(s) = _9(res +1) (s - 1)
leaning more), the cart moves back to correct both angles. 52(%; +1- E)
In the limiting case of making the compensator gajnvery
C. Initial Cart Position Itﬁrge, the dynamics of the real axis pole are instantaneous,
us

The system was simulated for an initial cart position of ten Hy(s) = X(s) _ glres+1)(rrs —1)
centimeters, with the pendula vertical. The transientorsp A Oc(s) 52
to this initial condition is shown in Figure 15. . . .

. . . The transfer function of the bi ndulum i

The complicated initial behavior of the cart can be readily e transfer function of the big pendulum is

explained. To move the cart to the left, the system must point Gr(s) Op(s) —s2/g
B\S) = =

the big pendulum to the left. To point the big pendulum to X(s)  (tps+1)(tps—1)
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thus the transfer function of the major loop, shown in theklo K (s) increases the amplitude of the transient deviations of
diagram of Figure 6, is the little-pendulum angle. As can be seen from the simulatio
B in Figure 14, for an initial big-pendulum angle of one degree
L(s) = Kc(s)Hr(5)GB(s) the transient deviation of the little-pendulum angle alea
L(s) = Ko (s)

(tps+1)(rs — 1) approaches seven degrees. Increasing the length ratio will
(tgs +1)(tps — 1) make the amplitude of this transient larger, possibly VYinta

One possible compensation technique for the major loop isqy" assumption thatin § = 6.

pick a K (s) that cancels all of the left half-plane dynamics
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This development suggests that the stability of the sysse
improved if the ratio of the pendula lengths is increaseds Th
result makes intuitive sense, because the system is olbyio
uncontrollable if the lengths are the same. However, it
inadvisable to increase the ratio without bound. Our choi
for the major-loop compensator



