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Pole-Zero Phase Maps

Kent H. Lundberg

INTRODUCTION

Determining the phase of the loop transfer functiofs) at
arbitrary points on the-plane is an important skill for stu-
dents in introductory control subjects. Evans showed that t
magnitude and phase of a transfer function can be determined
from the pole-zero map using simple vector geometry [1], [2]
For example, the magnitude and phase of a transfer function
of the form
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at a particular value ok = s; can be evaluated from the
vectors shown in Figure 1. The complex number z in the
numerator is represented by the vector from the poiatz to Fig. 1. Vector geometry for finding the magnitude and phasg@f;). The

the points = s;. The lengthr, of _thiS vector is the magnitUde guantity s, — p is represented by a vector whose lengthjsand which has
of s1 — z, and the angle. that this vector makes with respecthe angleg,. The magnitude of_(s1) is equal tor /rp, and the phase of

to the real axis is the phase of — z. Writing both vectors as L(s1) is equal t0¢= — ¢p.
complex numbers in polar form yields
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Despite the simplicity of this calculation, students often St s N NN S e T
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have some initial difficulty visualizing the effects of pele ANNANNANN P A e T T T T
and zeros on the phase bfs) throughout thes-plane. Using NN B A A RSttt
Matlab to produce arrow plots, the phase bfs) can be R ININ § § ; ; ; ; 07 ettt
displayed on a pole-zero map. For example, Figure 2 shows NN ANAN YV P11 77 20 0 s s
the phase of the single-pole transfer function % s 1 s o 05 1 15 2
Real Axis
1
(s) = s+1° Fig. 2. Pole-zero phase map éf(s) = 1/(s + 1). The transfer-function

pole is shown at = —1. The blue arrows point in the direction of the phase
The blue arrows point in the direction of the phaSeLQf;)_ of L(s) for the value ofs at the base of the arrow. For example, the phase

Students can verify the vector-geometry arguments above %%(s) is zero degrees for values sfon the positive real axis.
exploring a few test points.

create a much sharper transition in the phase of the freguenc
ACCURATE PHASE CHARACTERISTICS ONBODE PLOTS response. This distinction is evident in the Bode plots show

Once students grow accustomed to these phase mapsin Figure 5. The pole-zero phase map helps students visualiz

plane relationships leading to the development of Bod&splcf‘be cause of the sharper phase transition of the lightly eamp

and Evans root-locus plots can be demonstrated. For examBI%les'

Figure 3 shows that the two poles at= —1 of FINDING THE EVANS ROOT LOCUS

L(s) = 1 The branches of the Evans root locus are found where the
s(s+1)? phase of the loop transfer function is an odd integer mutipl
cause a slowly varying phase characteristic on the imagin&f —180°. Satisfying this root-locus angle condition for
axis, while Figure 4 shows that the two lightly damped I(s) — K
complex-conjugate poles of (s) = s(s24+0.2s+ 1)
1 is accomplished by finding the blue arrows that point to the

L(s) = s(s24+0.2s 4 1) left in Figure 4. Figure 6 shows the Evans root-locus plot for
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Fig. 3.
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Fig. 6. Evans root-locus plot df(s) = K/s(s?+0.2s+ 1). The branches

Pole-zero phase map B{s) = 1/s(s + 1)2. With all poles on the of the root locus lie where the phase bfs) is —180°, which corresponds

real axis, the phase df(jw) along the imaginary axis changes slowly fromto the arrows pointing left in Figure 4.
—90° at the origin to—270° for large positive values ab.
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Fig. 4. Pole-zero phase map 6{s) = 1/s(s? 4+ 0.2s + 1). The phase of
L(jw) along the imaginary axis changes quickly frer90° to —270° near

the locations of the lightly damped complex-conjugate poles.
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this transfer function, tracing the paths of the blue arrtves
point to the left.

DEMONSTRATING COMPENSATION

Pole-zero phase maps can help students appreciate the
interrelation of classical-control analysis tools and swas of
relative stability. For example, the effect of lead comadias
on phase margin and the centroid of the asymptotes of the root
locus can be seen on a single pole-zero phase map. Consider
the double integrator

L(s) = 2
The phase of the frequency response is always0°, as
shown in Figure 7. This system can be stabilized with a lead
compensator yielding the loop transfer function

L(s)—g s+1
- s2\025s+1)"

which provides a positive phase margin. Examination of the
pole-zero phase map in Figure 8 reveals that the compensated
system has phase that approachedslO° along the positive
imaginary axis, implying a phase margin greater ti3A.

The branches of the root locus have been moved into the left
half plane as desired, as seen from the new locations of the
—180° arrows.

CONCLUSIONS

Using pole-zero phase maps helps students to determine
the phase of a transfer function from a plot of the poles and
zeros. This visualization of the phase bfs) helps students
develop s-plane intuition and facilitates the introduction of
the analytical tools of classical control, such as Bodesplot
Nyquist diagrams, and Evans root-locus plots.

Fig. 5.

Bode plots ofL.(s) = 1/s(s + 1)? (blue) andL(s) = 1/s(s? +

0.2s+1) (green). The phase transition for the latter transfer fonds much
sharper due to the complex-conjugate poles close to the imagaxis, as
shown in Figure 4.



APPEARED IN IEEE CONTROL SYSTEMS MAGAZINE, VOL. 25, NO. 1, PP.-8¥, FEBRUARY 2005 3

Imaginary Axis

Fig. 7.

77 P AN NN ]
VA A S I I L W U N N
A7 7777 VN N N —
A7 777N N s~
P A AV A AV A B WA N
S I A A A A B B WA
S S I O A 0 AV A i B N
P S A A AN
”””””” )/)/////’//T&

T

/!

trrrsa
SIS
//1/7/7%

I
1
/7

SSNSNSNNNNNNN N S
SNNNNNNNNNN L S
SNNNNNNNN N T
NNNNNNNNL s
NNNNNNNVY S
NNNANVAV VWV S A
-4 -3 -2 -1 0

Real Axis

Pole-zero phase map (blue) and root locus (red) of thebld
integratorL(s) = K/s2. Since the phase along the imaginary axis is always
—180°, the root locus is confined to the imaginary axis, and thus kbsed-

loop system is unstable for all positivE.
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Fig. 8.
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Pole-zero phase map (blue) and root locus (red)Lof) =

SIDE BAR
Caveat: The vectors that represent
S1— 2
S1—P
are identical to the vectors that represent

L(s1) = —10 (2 _;) .

Evans’ vector method therefore works only to within a system
atic multiplicative factor, which can change the loop-sfamn-
function magnitude by an arbitrary amount and change the
phase byl80°.

L(Sl) =

SIDE BAR
MATLAB commands for Figure 2:

[x,y] = nmeshgrid(-2:0.2:2,-2:0.2:2);
p = angle(l./(x+ *y+1));

u = cos(p); v = sin(p);

u(11,6) = 0; %no arrow at pole
qui ver(x,y,u,v,0.7);
axis(2.2*[-1 1 -1 1])

hol d on

s =tf('s’);

pzmap(1/(s+1),'r")

hol d of f

title(’ Pol e-Zero Phase Map’)

K(s +1)/s%(0.25s + 1). With lead compensation, the double integratoKent H. Lundberg attended the Massachusetts Institute

can be stabilized. The lead zero affects the phase(¢&) along the positive
imaginary axis (improving the phase margin, as desired). Ttispensation

of Technology, earning a Ph.D. in electrical engineering in

moves the locations 0f180° phase into the left half plane, thus shifting the2002. He is now a lecturer with the Department of Electrical
branches of the root locus into the left half plane.
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