
Raymond and Beverly Sackler Faculty of Exact Sciences

Blavatnik School of Computer Science

Fast Algorithms

in Highly Structured Settings

Thesis submitted in partial fulfillment of the requirements

for the degree “Doctor of Philosophy”

by

Omri Ben-Eliezer

Under the supervision of

Prof. Noga Alon

June 2020

Abstract

The field of property testing studies what can be deduced from data given limited access to it. While

research in property testing has blossomed in the last two and a half decades, a large majority

of the work until now has been devoted to data that is relatively unstructured, like probability

distributions, or to properties with an inherent underlying symmetry, like graph properties (in

which the labels are assumed to “not matter”, a symmetry assumption that might not always be

realistic). In contrast, the understanding of property testing in highly structured settings, where

symmetry cannot be assumed and utilized, is more limited.

This thesis focuses on property testing in the highly structured regime. It develops several new

tools and frameworks which advance the state of the art in several central fronts of structured prop-

erty testing, and exhibits surprising combinatorial phenomena that arise in the study of problems

in this regime. The contributions are divided into three main lines of work.

The first part concerns property testing in ordered graphs. A well-known result by Alon and

Shapira asserts that any hereditary unordered graph property (where the labels of the vertices do

not matter) is testable with a constant number of queries. The proof of this statement, however,

heavily relies on the underlying symmetry of the problem, and does not apply to graphs where the

labels are structured (are ordered, say, or represent the rows and columns of an image, where pixel

locations are important). It was asked by Alon, Fischer and Newman in 2007 whether these results

can be extended to the structured setting. We answer this affirmatively, developing Szemerédi-

regularity schemes that are suitable for ordered settings.

The second part considers detection of global structural patterns in sequential data. Given

a sequence of real numbers that contains many disjoint copies of a (constant-length) structural

pattern, how can one detect one copy of the pattern efficiently? As it turns out, this problem

lends itself to beautiful combinatorial structure, whose investigation sheds light on its algorithmic

understanding. This answers a recent open question by Newman, Rabinovich, Rajendraprasad,

and Sohler, and yields tight adaptive and non-adaptive testing algorithms for monotone patterns

(curiously, the non-adaptive query complexity for monotone patterns of fixed length k in data of

length n is Θ((log n)blog2 kc)), as well as lower bounds showing that for almost all patterns, the

effectiveness of non-adaptive algorithms beyond naive uniform sampling is negligible.

The third part studies local properties in structured multi-dimensional data from the property

testing perspective; roughly speaking, a property is local if it is characterized by small forbidden

consecutive substructures, a definition that captures many previously investigated properties in the

structured regime. The main result is that any local property of multi-dimensional arrays is testable

with a sublinear number of queries via a canonical non-adaptive testing algorithm, querying sphere-

like structures in the data. This generic approach is widely optimal for one-dimensional arrays,

even among adaptive methods, and for some high-dimensional properties it is optimal among non-

adaptive algorithms. It provides the first known sublinear-query test for challenging properties like

convexity or submodularity in high dimensions. In addition, we prove a combinatorial modification

lemma on the structure of local properties, which allows us to prove the efficient testability of

pattern matching type properties. This answers a question of Fischer and Newman from 2001.

Acknowledgments

The journey towards this thesis has been a delightful and illuminating experience. The best part

has been the opportunity to meet many unique, intelligent and friendly people along the way.

First and foremost, I would like to express my gratitude to my advisor, Noga Alon. His constant

support and care have been invaluable; Noga’s approach to research, with a sense of humility, a

collaborative spirit, and an extremely wide knowledge base, has immensely helped in shaping myself

as an aspiring researcher with a desire for cross-disciplinary research. The discussions with Noga

throughout the years, be it on interesting research problems or on the academic life, have always

been thought-provoking and encouraging.

Eldar Fischer was like a second advisor for me, and I will always be in debt to him for his

wise guidance at multiple junctions along my PhD studies. Eldar’s insistence on doing research

the “right” way without compromising on quality, and his ability to break even the most complex

mathematical concepts into simple ideas, have been a source of inspiration to me.

I am thankful to Benny Sudakov for hosting me for a semester at ETH Zurich. Benny’s group

is the perfect environment for groundbreaking research. I wish to thank Benny and the rest of

the group at the time – Igor Balla, Matija Bucić, Nina Kamcev, Matthew Kwan, Shoham Letzter,

Alexey Pokrovskiy, and Tuan Tran – for making me feel at home from day one, and for many

interesting discussions on research and beyond.

During these last few years I’ve had the opportunity to collaborate with numerous impressive

researchers, many of whom became friends. I would like to thank all of my collaborators throughout

the years, and especially Clément Canonne, Daniel Reichman, Danny Hefetz, Erik Waingarten,

Eylon Yogev, Joel Oren, Lior Gishboliner, and Simon Korman. Being part of the combinatorics

group at Tel Aviv University was a great experience; thanks to Clara Shikhelman, Gal Kronenberg,

Peleg Michaeli, Yinon Spinka, Alon Naor, and the rest of the group for enjoyable times. (Playing

leg-breaking basketball with you was certainly the best!) I would also like to thank Sarel Cohen

for many stimulating conversations.

Embarking on this journey would not have been possible without the encouragement and never-

ending support of my family, especially my parents, Doron and Ruth, and my brother Ido. Finally,

my deepest admiration goes to my wife, Gal – your endless patience and the ability to lift me up

in difficult times have meant the world to me.

Contents

1 Introduction 1

1.1 Ordered Graphs: Regularity and Removal . 2

1.2 Property Testing Algorithms for Sequential Pattern Detection 4

1.2.1 Monotone Patterns . 6

1.2.2 Non-Monotone Patterns . 8

1.3 Understanding Locality in Structured Property Testing 9

1.3.1 Testing Local Properties: Follow the Boundary 9

1.3.2 Testing Meets Pattern Matching: the Modification Lemma 10

1.4 Notation . 11

I Ordered Graphs: Regularity and Removal 13

2 Removal Lemma for Ordered Graphs and Matrices 15

2.1 Introduction . 16

2.2 Outline . 21

2.2.1 Finding a Regularity Scheme . 22

2.2.2 Proving a Finite Removal Lemma . 24

2.3 Preliminaries and Definitions . 26

2.4 Technical Aids . 30

2.4.1 A Quantitative Ramsey-type Theorem . 30

2.4.2 Multipartitions and Rounding . 34

2.5 A Regularity Scheme for Ordered Graphs . 35

2.5.1 The Approximating Partition Framework . 35

2.5.2 The Core Lemmas . 37

2.5.3 The Finite Case for Graphs . 41

2.5.4 Representing Subsets . 41

2.5.5 The Graph of the Representatives and its Coloring 43

2.5.6 Cleaning the Original Graph . 44

vii

2.5.7 Proof of Main Theorem . 46

2.6 The Infinite Case . 46

2.6.1 Embeddability . 46

2.6.2 Adapting the Proof for Infinite Families . 47

2.6.3 Adapting the Proof for Matrices . 49

II Property Testing Algorithms for Sequential Pattern Detection 51

3 Monotone Patterns: A Non-Adaptive Θ((log n)blog2 kc) Algorithm 53

3.1 Introduction . 53

3.2 Techniques . 55

3.3 Structural Result . 61

3.3.1 Rematching Procedure . 61

3.3.2 Growing Suffixes and Splittable Intervals . 63

3.3.3 Tree Descriptors . 66

3.3.4 The Structural Dichotomy Theorem . 68

3.3.5 Proof of Structural Dichotomy Theorem . 73

3.4 The Algorithm . 79

3.4.1 High-level Plan . 79

3.4.2 Proof of Lemma 3.20: An Algorithm for Growing Suffixes 80

3.4.3 Proof of Lemma 3.21: An Algorithm for Splittable Intervals 82

4 Monotone Patterns: An Adaptive O(log n) Algorithm 91

4.1 Introduction . 91

4.1.1 Techniques . 92

4.2 Stronger Structural Dichotomy . 98

4.3 The Algorithm . 101

5 General Patterns: Stitching, Lower Bounds, and Hierarchies 113

5.1 Introduction . 113

5.1.1 Previous Work . 114

5.1.2 Our Contributions . 115

5.1.3 Discussion and Open Problems . 119

5.2 Upper Bound . 121

5.3 Lower Bounds . 124

III Understanding Locality in Structured Property Testing 131

6 Testing Local Properties: Follow the Boundaries 133

6.1 Introduction . 133

6.1.1 Previous Results on Local Properties . 135

6.1.2 Our Results . 136

6.1.3 Proof Ideas and Techniques . 139

6.1.4 Other Related Work . 141

6.1.5 Discussion and Open Questions . 142

6.2 The Grid Structure . 143

6.3 Testing with Grid Queries . 145

6.4 Systems of Grids and Testing with Spherical Queries 146

7 Testing Meets Pattern Matching: The Modification Lemma 151

7.1 Introduction . 151

7.2 Modification Lemma . 155

7.3 Characterizations of the Deletion Number . 162

7.4 Tests for Pattern Freeness . 168

7.5 Discussion and Open Questions . 170

8 Conclusions 171

8.1 Central Open Problems . 172

8.1.1 The Quest for Adaptivity . 173

8.1.2 Better Structural Understanding . 174

Chapter 1

Introduction

The recent explosion of data-driven approaches in virtually all areas of science and engineering has

raised the need to develop efficient algorithms for understanding and analyzing the data, even when

one has very limited access to it. The field of property testing investigates exactly this topic: what

can and cannot be inferred from data given small samples (possibly adaptively crafted, in a data-

driven manner). Since its initiation by Rubinfeld and Sudan [122] and by Goldreich, Goldwasser,

and Ron [83] around twenty five years ago, this field of study in computer science has enjoyed

tremendous progress, stemming both from better mathematical (usually combinatorial, algebraic

and topological) understanding of data and what small samples reveal in it, and from remarkable

algorithmic achievements in exploiting limited access to data for decision-making, that in many

cases have built upon the structural foundations. See e.g. [80, 81, 119, 120] for recent books and

surveys.

Formally, the meta-problem in property testing is as follows: we are given query access to the

data, represented as an unknown function f : X → Y with known domain X and range Y . The task

is to infer efficiently and with good probability whether f satisfies some predetermined property

P, or is far from satisfying the property. Given a proximity parameter ε > 0, we say that f is ε-far

from P if one needs to modify it on ε|X| inputs to make it satisfy P. Efficiency is measured in

terms of query complexity, that is, how many queries to the unknown function f one must make

in order to complete the above algorithmic task; sometimes the running time is also of interest.

Note that since property testing algorithms operate in the sublinear domain, where one cannot

even assume access to the whole input, answers are inherently always approximate, and algorithms

are always randomized.

Generally, our understanding of property testing is much better when the data has a symmet-

ric, easier-to-exploit structure. This phenomenon was observed and studied in numerous areas of

property testing. For example, in probability distribution testing, symmetric parameters (like the

entropy of a distribution or its distance to uniformity) are precisely those parameters characterized

by the fingerprint – the histogram of the histogram of the sample generated by the distribution –

1

which in turn led to an excellent understanding of testability in the symmetric regime [135]. In

graph property testing (in the dense regime), until recently property testing was well-understood

only under the assumption that the property at hand is invariant under vertex-relabeling. In

the algebraic front, symmetry and invariances were investigated thoroughly [129], and the general

perception is that testing problems become “easier” with more symmetry.

In contrast, for property testing in structures that do not enjoy such inherent symmetry, like

sequential data (representing e.g. text, time series data, or biological data), images, and high-

dimensional boolean functions, progress has been much slower. Generally, powerful testability

results for large families of properties have been much scarcer for these less-symmetric objects, and

advances were mostly restricted to a few specific properties of interest, like monotonicity in boolean

functions, or convexity and connectivity in images.

In this thesis, we systematically study how to make property testing algorithms “work” when

the data is highly structured and does not have any inherent symmetries. The results range from

breaking a symmetry barrier in graph property testing, to devising optimal algorithms and lower

bounds for detecting global patterns in sequential data, and to the discovery of new generic tools

to test any local property in highly structured settings. All problems discussed in this thesis lend

themselves to a beautiful combinatorial structure, whose investigation is key to the algorithmic

understanding of the problem. Some of the approaches presented here require the development of

new combinatorial notions and parameters, which seem to be interesting in their own right.

The thesis is partitioned into three parts. The first part concerns graph property testing in the

ordered setting (i.e., without symmetry between the vertices). The second part studies sequential

data from the property testing perspective, specifically the problem of detecting global structured

patterns in sequential data. In the third part we investigate the testability of local properties in

the structured regime. For each of these parts, we now describe the problem we address and its

background, the main algorithmic results, and the combinatorial ideas behind these results.

We henceforth assume that the reader is familiar with standard property testing notation and

definitions; see Section 1.4 for the relevant notation.

1.1 Ordered Graphs: Regularity and Removal

The first part of this thesis (Chapter 2) develops removal lemmas (and, as a byproduct, very

general testability results) for graphs and matrices without any symmetry requirement. A long

line of work in property testing focused on characterizing the efficiently testable unordered graph

properties, which by definition are closed under relabeling of the vertices. However, these works do

not address the case where vertex labels are important, e.g., in ordered graphs or images (which can

be viewed as ordered bipartite graphs, where the locations of pixels, and so of rows and columns

of the representing matrix, are meaningful). All results mentioned here are for the dense graph

model, where a graph is represnted by a function G :
(

[n]
2

)
→ {0, 1}.

2

In the seminal paper of Goldreich, Goldwasser and Ron [83] it was shown that all unordered

graph properties that can be represented by a certain graph partitioning, including properties such

as k-colorability and having a large clique, are testable with a constant number of queries (see

also [86]). Alon, Fischer, Krivelevich and Szegedy [7] proved that the unordered property of F-

freeness, i.e., of not containing as an induced subgraph any F ∈ F (ignoring the vertex labels) is

testable with a constant number of queries for any finite family F of forbidden graphs. Their result

follows directly from a graph-theoretic statement, the induced graph removal lemma, which is a

generalization of the well-known graph removal lemma of Ruzsa and Szemerédi [5, 131], and states

the following. For any finite family F of unordered graphs and ε > 0 there exists q = q(F , ε) > 0,

such that for any graph G which is ε-far from F-freeness, a random induced subgraph of G on q

nodes contains an induced copy of some F ∈ F with probability at least 2/3. The proof uses a

strengthening of the celebrated Szemerédi graph regularity lemma [131], known as the strong graph

regularity lemma.

Proving testability results for graphs directly from removal lemmas, which in turn are proved

using regularity lemmas, has since become the go-to method for exploring testability in graphs (and

for good reason; later it was shown [9] that constant-query testability and regularity are equivalent

in a rather strong sense). Alon and Shapira [12] generalized the induced graph removal lemma

of [7] to infinite families. Since any hereditary graph property P (i.e., any property of unordered

graphs that is closed under deletion of vertices) is characterized by a family F (finite or infinite)

of forbidden induced subgraphs, these results imply a remarkably general testability result.

Theorem ([12]). Any hereditary property of unordered graphs is constant-query testable.

An efficient finite induced removal lemma for binary unordered matrices, with no row and

column order, was obtained by Alon, Fischer and Newman [8] in 2007. Here, a matrix is a function

M : [n]× [m] → Σ, where Σ is some fixed alphabet (say, |Σ| = 2 corresponds to a binary matrix).

An s × t submatrix is any restriction of M to specific s rows and t columns (not necessarily

consecutive), where the order of the rows and columns is inherited from M . The main tool in [8] is

an efficient conditional regularity lemma for ordered binary matrices, and it was conjectured there

that this regularity lemma can be used to obtain a removal lemma for ordered binary matrices.

Again, by ordered here we mean that, unlike all previously mentioned results, labels in the forbidden

submatrix are important: being free of a forbidden family of ordered (labeled) materices F amounts

to not containing any of them as an isomorphic copy with the same row and column order. Thus,

there is no symmetry between the labels that we can utilize.

Conjecture (Ordered matrix removal lemma [8]). For any finite family F of ordered binary

matrices and any ε > 0 there exists δ = δ(F , ε) such that any n × n binary matrix which is

ε-far from F-freeness contains at least δna+b copies of some a× b matrix from F .

The main result in the first part is a proof of this conjecture from 2007, which in fact holds for

3

edge-colored graph and matrices over any fixed alphabet, and unlike all previous results for graphs,

does not assume any symmetry condition on the labels.

Theorem. Any hereditary property of graphs or matrices (over a fixed alphabet) satisfies a removal

lemma, and is thus constant-query testable; this holds for both ordered and unordered properties.

Technical Foundations. Proving graph removal lemmas (and, consequently, testability results

for hereditary graph properties) typically goes through the definition of a suitable “regularity

schemes”: a simplified, constant size structure that satisfies two crucial properties. The first of

them is closeness to the original graph, that is, one can make the original graph identical to a

blowup of the regularity scheme with only a very small number of modifications. On the other

hand, the scheme should be representative enough of the original graph, in the sense that any

substructure found in it must also be abundant in the original graph.

For the most basic (non-induced) graph removal lemma, the regularity scheme is just the regular

partition given by Szemerédi regularity lemma [131]. In the more complicated case of the induced

graph removal lemma (as well as in its infinite analogue), more complicated, nested regularity

schemes are required. However, even these schemes fail to capture order. The main technical

contribution here is the development of substantially more sophisticated schemes that take order

into account. It is shown how to construct a scheme that provides both order-regularity (extending

order-regularity notions for sequences) and graph-regularity simultaneously. Along the way, and

in order to address both order- and graph-regularity, a new type of Ramsey-type theorem with

undesirable edges in multipartite graphs is developed. Roughly speaking, this theorem states that

any sufficiently large multipartite graph contains a substructure which is monochromatic between

each two parts, while also not having many undesirable edges in the structure.

References. The results of this chapter appear in:

• N. Alon, O. Ben-Eliezer, E. Fischer, Testing hereditary properties of ordered graphs and

matrices, Proc. 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS),

2017, 848–858.

1.2 Property Testing Algorithms for Sequential Pattern Detection

In the second part of the thesis (Chapters 3-5), we consider a structured, massively parameterized

property testing problem in sequences f : [n]→ R, raised and first studied by Newman, Rabinovich,

Rajendraprasad, and Sohler [108, 109]. Fix a permutation1 π : [k] → [k]. A sequence f : [n] → R
contains π as an order pattern if there exist i1 < i2 < . . . < ik such that f(ij) < f(ij′) if and only

if j, j′ ∈ [k] satisfy that π(ij) < π(ij′). That is, intuitively, if we consider the subsequence of f in

1Despite calling π a permutation here, we view it as a combinatorial object rather than a group-theoretic one.

4

locations i1 < . . . < ik and only look at the relative order of these values, this is the exact same

structure as in π. Considering this from the property testing perspective, Newman et al. initiated

the study of testing order pattern freeness, i.e., the property of not containing a fixed known pattern

π. The focus is on the regime where k and the proximity parameter ε are constant, and on one-sided

error tests, where to deduce that a sequence is not pattern-free, the test must prove the existence

of a pattern. This problem is naturally motivated by data-series analysis, where the central task

is to efficiently identify global patterns in massive-scale sequential data, and is closely related to

other classical problems in sequences, like the estimation of the longest increasing subsequence

(LIS). The simplest special case of the problem, where π = (2, 1), corresponds to perhaps the most

well-investigated property in the testing literature, monotonicity testing (see Section 3.1 for an

extensive background).

In their paper [109], Newman et al. proved several results of interest, hinting that this problem

underlies rich combinatorial phenomena, highly dependent on the structure of the pattern π and

the adaptivity of the property testing algorithm. With regards to structure, it was shown that π-

freeness is very efficiently testable non-adaptively if and only if π is monotone: on the one hand, if

π = (1, 2, . . . , k) or π = (k, k− 1, . . . , 1) then π-freeness is testable non-adaptively with (log n)O(k2)

non-adaptive queries. On the other hand, any non-monotone pattern requires Ω(
√
n) queries -

an exponential separation. This is shown to be near-tight for π = (1, 3, 2). From the adaptivity

perspective, it was shown that again there is an exponential separation: compared with the Ω(
√
n)

non-adaptive lower bound, the pattern π = (1, 3, 2) requires only a polylogarithmic number of

adaptive queries. In summary, the results of Newman et al. reveal that both the structure of the

pattern π (i.e., monotone vs. non-monotone) and our ability to react adaptively matter a lot in

this problem. However, the general task of understanding the query complexity of optimal tests for

π-freeness – for any π – both in the adaptive and the non-adaptive case, has remained wide open.

The major open problems that they pose are the following.

1. Adaptive case. Is it true that π-freeness is testable adaptively with query complexity poly-

logarithmic in n for any permutation π?

2. Non-adaptive case. How does the structure of a pattern π correlate with the query complexity

of an optimal non-adaptive test for π-freeness? In particular, are there infinitely many non-

monotone permutations π for which π-freeness is testable with query complexity O(n0.99)?

In this thesis, we make progress in the understanding of both the adaptive and the non-adaptive

front. While the first open question above seems very difficult, we settle the second question.

Together with the work of Newman et al., the results presented here provide an essentially full

understanding of monotone patterns (both the adaptive and the non-adaptive case) for fixed ε and

k, as well as good (but not yet complete) understanding of the power of non-adaptive tests. The

results shed light on multiple intriguing combinatorial parameters that arise naturally in the study

5

of this problem (and to the best of our knowledge, did not appear before in the combinatorial

literature), which seem very interesting on their own right.

1.2.1 Monotone Patterns

The results of Newman et al. [109] show that for any monotone pattern π = (1, 2, . . . , k), the

property of order pattern freeness paramtrized by π is testable with a polylogiathmic number of

queries, (log n)O(k2), for fixed k and ε (which will in general be our domain of interest here). But

what is the correct polylogarithmic dependence here?

While the authors of [109] did not try to optimize the above dependence, their approach yields,

in principal, a query complexity of (log n)O(k). Their main observation is the decomposability of

this testing problem when π is monotone: Namely, if we concatenate two monotone subsequnces

of f of lengths `, k − `, where the starting point of the second subsequence is both “higher” (in

terms of value) and “further to the right” (in terms of location) than the last element of the

first subsequence, then together they form a monotone subsequence of length k. This property

allows one to test (1, 2, . . . , k)-freeness recursively (though non-adaptively; namely, the collection

of indices to be queried is defined recursively). By carefully unrolling the recursion and enumerating

over possible “widths” of copies (i.e., the typical distance between the end of each copy and its

beginning) on a logarithmic scale, one can obtain the (log n)O(k) upper bound. On the other hand, a

lower bound of Ω(log n), for both adaptive and non-adaptive algorithms, follows from monotonicity

testing lower bounds [63, 66], i.e. the case k = 2, for which it is tight. Between (log n)O(k) and

Ω(log n), what would be the query complexity for non-adaptive algorithms? does adaptivity help?

We resolve these two questions here. Strikingly, the answer to the first question is precisely

Θ((log n)blog2 kc) for any fixed k and ε. The answer to the second question is positive, and in

fact, for any fixed k, only O(log n) queries are required. That is, despite the fact that testing

(1, 2, . . . , k)-freeness is structurally much more complicated to analyze than monotonicity testing,

and the fact that there is a non-adaptive separation between these two properties when k ≥ 4, for

adaptive algorithms the query complexity in both tasks is of the same order of magnitude for every

fixed k.

Splittable Intervals and Growing Suffixes. The main building block for the new results on

testing monotone patterns is a surprisingly powerful characterization of sequences that are far from

(1, 2, . . . , k)-freeness, described in detail in Chapter 3. This is a “structure versus chaos” type

characterization (see e.g. the book of Tao [133] on such characterizations), stating that either most

disjoint copies of (1, 2, . . . , k) have one out of constantly many possible widths (the “structure” case,

named splittable intervals), or these copies are interwoven enough to organically form many long

and easy-to-detect monotone subsequences in the data (the “chaos” case, named growing suffixes).

6

Non-Adaptive results for monotone patterns. The lower bound of Ω(log n) for monotonicity

testing constructs log n examples, each with a different “distance profile”, where queries that are

helpful in determining whether a sequence has any particular profile are completely useless for

extracting information about other profiles. This construction can be iterated: for the pattern π =

(1, 2, . . . , k), one can construct
(

logn
log k

)
different profiles in a recursive fashion. The key observation is

that with q queries, one can only capture q−1 different iterated profiles, which establishes the non-

adaptive lower bound. The more interesting direction is algorithmic, and shows the O((log n)blog2 kc)

upper bound. In the growing suffixes (i.e., chaotic) case, monotone subsequences are easy to find

and this case equires just O(log n) queries for any fixed k. The splittable intervals case requires

substantially more work; the main idea here is to repeatedly apply this condition to construct

a “tree profile” with k nodes, which describes the typical structure of (1, 2, . . . , k)-copies in the

sequence. The key algorithmic observation is that with only O(log n) queries, one can shatter

any tree profile, non-adaptively, in a way that all the remaining subtrees are of size at most k/2.

Applying this argument inductively leads to the O((log n)blog2 kc) upper bound. See Chapter 3.

Adaptive results for monotone patterns. The algorithmic approach of the non-adaptive case,

which enumerates over all tree profiles, cannot carry on to the adaptive setting. Indeed, all previous

methods enumerate over all possible widths at any given depth of the recursion, incurring a O(log n)

multiplicative price at any such depth.

Instead, the approach here is based on “wishful thinking”. One makes only O(log n) queries,

and picks a couple of elements believed to be the endpoints (i.e., the 1- and k-entries) of some

(1, 2, . . . , k)-copy. It is shown that with good probability, either this couple of elements indeed

forms the endpoints of a copy (the hitting case), or they are much too wide to be such endpoints

(the overshooting case). The key observation, combining a strengthened form of the aforementioned

growing suffixes vs. splittable intervals characterization with additional combinatorial ideas. shows

that surprisingly, the overshooting case can also be handled efficiently. To the best of our knowledge,

these combinatorial ideas were not used before in the property testing literature. See Chapter 4

for more details.

References. The results of these chapters appear in:

• O. Ben-Eliezer, C. Canonne, S. Letzter, E. Waingarten, Finding monotone patterns in sublin-

ear time, Proc. 60th Annual IEEE Symposium on Foundations of Computer Science (FOCS),

2019, 1457–1482.

• O. Ben-Eliezer, S. Letzter, E. Waingarten, Optimal adaptive detection of monotone patterns.

7

1.2.2 Non-Monotone Patterns

The results of Newman et al. [109] indicate that for some patterns, even sophisticated non-adaptive

algorithms are almost useless. Specifically, while most naive test, based on uniform sampling,

requires O(n1−1/k) queries to locate a pattern, there exist patterns which require Ω(n1−2/(k+1))

queries. This thesis substantially extends the understanding of the non-adaptive regime. On the

positive side, it is shown that any π can be found using O(n1−1/(k−1)) queries. The algorithm

combines random samples with querying of consecutive intervals of elements. Conversely, for any

fixed k there exist patterns with a matching Ω(n1−1/(k−1)) lower bound on the query complexity.

This phenomenon is in fact much more general: for almost all patterns of length k (a fraction that

tends to 1 as k →∞) there is a non-adaptive lower bound of Ω(n1−1/(k−3)), thereby establishing that

the non-adaptive complexity of all such patterns is n1−1/(k−Θ(1)). In other words, the main message

here is that sophisticated non-adaptive methods are almost useless, they are barely sublinear, and

improve upon uniform sampling very marginally. Additionally, a structural hierarchy theorem is

proved, which shows that for any 1 ≤ ` ≤ k− 1, there are patterns whose non-adaptive complexity

is Θ̃(n1−1/`). This settles the second part of the second open question above, from [109].

From the combinatorial perspective, the lower bounds proved here seem closely related to a

combinatorial parameter of permutations, the unique signed partition number, which has not been

defined and investigated before; we conjecture that in fact, this parameter controls the non-adaptive

query complexity. The parameter is rather complicated and in this introduction we present a

simpler and more elegant parameter, the stitching number, which is of the same spirit, and whose

investigation implies the aforementioned general lower bound for almost all length-k patterns. Given

a pattern π with |π| = k and where (assuming without loss of generality that π−1(1) < π−1(k))

the stitching number s(π) of π is the number of pairs of neighboring elements one needs to stitch

together, so that the union of these stitched pairs satisfies the following:

1. For all pairs (a, b) in the stitching, a < b and π−1(b) = π−1(a) + 1.

2. For any element i ∈ [k], there exists a pair (a, b) in the stitching where a ≤ i ≤ b.

It is not hard to verify that almost all patterns of length k have stitching number 2 or 3. Our lower

bounds imply that any pattern π requires Ω(n1−1/(k−s(π))), thereby proving the aforementioned

general lower bound. Moreover, the hardest-to-test patterns are those where s(π) = 1, that is, 1

and k are neighbors. See Chapter 5 for more details.

References. The results of this chapter appear in:

• O. Ben-Eliezer, C. Canonne, Improved bounds for testing forbidden order patterns, Proc. 29th

ACM-SIAM Symposium on Discrete Algorithms (SODA), 2018, 2093–2112.

8

1.3 Understanding Locality in Structured Property Testing

In the third part of the thesis, Chapters 6-7, we consider local properties in multi-dimensional arrays.

A d-dimensional array over the alphabet Σ is a function A : [n]d → Σ. In the one dimensional case, a

property is considered k-local if it can be defined by a collection of forbidden consecutive substrings

of length k. For example, the property of monotonicity is 2-local: an array is non-decreasing if and

only if there is no pair of consecutive elements in A that are decreasing, that is, no i such that

A(i) > A(i + 1). More generally, a property of d-dimensional arrays is k-local if it can be defined

by a collection F of “forbidden” consecutive d-dimensional patterns of size k × k × . . . × k. That

is, A satisfies the local property defined by F if for any (a1, . . . , ad) ∈ [n − k]d, there is no F ∈ F
satisfying A(a1 + x1, . . . , ad + xd) = F (x1, . . . , xd) for all (x1, . . . , xd) ∈ [k]d.

Some of the most well-investigated and interesting properties in the testing literature (and many

properties never investigated from the property testing perspective) are local. Monotonicity and

Lipschitz continuity are 2-local for any d. (Discrete) convexity is usually 3- or 4-local (depending

on the definition). More generally, properties defined by discrete derivatives of order k are (k+ 1)-

local. Submodularity is 2-local. Many problems in more applied areas, like computational biology

or computer vision, are k-local for small k. See Section 6.1 for a definition and discussion of these

properties.

Despite being relatively natural and capturing a wide range of properties, the above definition

of locality has never been formally defined and analyzed in the literature. In this part, general

testability results are proved for all local properties. Furthermore, improved bounds are obtained

for the property of pattern-freeness, where F consists of a single forbidden pattern, through a

combinatorial analysis of a pattern deletion problem.

1.3.1 Testing Local Properties: Follow the Boundary

The main result of Chapter 6 is a generic one-sided error test for all k-local properties in d-

dimensional arrays over any finite (but not necessarily bounded-size) alphabet Σ. The query com-

plexity of the test is O(kε · log εn
k) for d = 1 and k

ε1/d
· (O(n))d−1 for d > 1. When k and ε are

fixed, these expressions are O(log n) and O(nd−1), respectively. The results imply, in particular,

that any property with locality o(n) is sublinearly testable. They are tight in various cases, both

in one dimension and in higher dimensions.

Interestingly, the generic test proposed here gives the first sublinear-query test for two chal-

lenging properties in high dimensions, convexity and submodularity. The query complexity for

both is O(nd−1). This, obviously, leaves much to be desired. Subsequent work by Belovs, Blais,

and Bommireddi [20] shows that to get a significant improvement for convexity testing, one would

have to understand how to use adaptivity when testing these local properties. Specifically, without

adaptivity, the O(n) query complexity of the generic test is optimal for two-dimensional convexity,

and for higher fixed d, there is a lower bound of Ω((n/d)d/2) for testing d-dimensional convexity

9

with non-adaptive algorithms.

Technical Foundations. Let us revisit the original proof that monotonicity is testable with

O(log n) queries, by Ergün et al. [63]. Pick i ∈ [n] uniformly at random, and consider an imaginary

binary search in [n], starting in the middle point of the array and culminating in i. Let Q ⊆ [n]

be the set of all visited points in the binary search. The main claim of [63] is that if a sequence

is ε-far from monotonicity, then with probability at least ε, querying Q will reveal a violation to

monotonicity and lead to rejection.

A striking feature of the above idea is that it (essentially, with suitable extensions) can be

applied to any local property P. For simplicity, let us focus on the simplest case d = 1 and k = 2.

We say that a consecutive subarray S of an array A is unrepairable if, when fixing the values on

the boundaries of the subarray S (i.e., its first and last element) but allowing one to change the

values in the interior of S arbitrarily, the modified S will never satisfy P. For monotonicity, this

notion is rather natural: S is unrepairable if and only if its first element is larger than the last one.

However, as it turns out, the above test for monotonicity actually works for any local property, with

the only change being that instead of verifying whether pairs of queried elements do not violate

monotonicity, we check whether these pairs are unrepairable.

References. The results of this chapter appear in:

• O. Ben-Eliezer, Testing local properties of arrays, Proc. 10th Innovations in Theoretical Com-

puter Science (ITCS), 2019, 11:1–11:20.

1.3.2 Testing Meets Pattern Matching: the Modification Lemma

The generality of the above test makes it, naturally, sub-optimal for many properties of interest.

One of them is the property of P -freeness for a single forbidden pattern P , studied in Chapter 7. The

motivation for studying this property stems from pattern matching applications in computational

biology, computer vision, and other areas, where the fast detection of local patterns is among the

most important algorithmic tasks. The main result here is a tolerant test for pattern freeness (for

large enough patterns), whose query complexity depends only on the dimensionality d and (inversely

linearly) on ε. Crucially, unlike the above generic test, the complexity is independent of n. In one

dimension, it is shown that computing the exact distance of an array A from P -freeness can be

done in linear time (in high dimensions, however, exactly computing the distance is NP-hard [72]).

Indeed, there exists an explicit “hitting set” of entries in A, whose modification simultaneously

deletes all existing P -copies in A, without creating any new copies of P in A. That is, the hitting

number of the copies in P is equal to the distance from freeness. This observation seems useful in

computational biology, where it is required to clean genetic sequences from undesirable patterns

with as few modifications as possible; we leave this as an open problem.

10

Technical Foundations. The combinatorial core of the proof, which we call a modification

lemma (as it is somewhat similar in spirit to removal lemmas), states the following: for almost

any large enough d-dimensional pattern P , and any array A containing a copy of P , there exists

an entry within the copy with the following property: if we change the value of this entry, the

copy of P will obviously be destroyed, but additionally, no new copies of P will be created. Such

a modification lemma leads naturally to a removal lemma: it means that the number of P -copies

in A is at least its distance from P -freeness.

References. The results of this chapter appear in:

• O. Ben-Eliezer, S. Korman, D. Reichman, Deleting and testing forbidden patterns in multi-

dimensional arrays, Proc. 44th International Colloquium on Automata, Languages and Pro-

gramming (ICALP), 2017, 9:1–9:14.

1.4 Notation

The general setting in property testing is as follows. We are given query access to an unknown

function f : X → Y where the domain X and the range Y are known. A query is the operation

of obtaining the value of f(x) for x ∈ X of our choice. Given a property P (a family of functions

from X to Y), and a proximity parameter ε > 0, we say that f is ε-far from P if any function

g ∈ P differs from f on at least ε|X| inputs. if f is not ε-far from P, then we say that it is ε-close

to P. The algorithmic task in property testing is to decide, with success probability at least (say)

2/3, whether f satisfies P or is ε-far from P. Here P and ε are generally known in advance.2 An

algorithm for the above task is called an ε-test. There are also other variants of the testing task,

such as tolerant testing, where the algorithm is required to distinugish between ε1-closeness to P
and ε2-farness from P, for some 0 ≤ ε1 < ε2. Many of the algorithms discussed in this thesis are

non-adaptive; by this we mean that all queries are chosen in advance, before seeing any of the

values of f . Any algorithm whose decisions depend in some way on the results of queries it makes

is considered adaptive.

A property testing algorithm which, for f ∈ P always (with probability 1) decides correctly that

f indeed satisfies P, is said to have one-sided error. Any testing algorithm that does not satisfy

this condition has two-sided error.

Along the thesis we use several standard notions. [n] denotes the set {1, 2, . . . , n}; the notion

of Θ̃(·) will usually refer to an expression that hides terms that are polylogarithmic in n (but

not always; we will indicate whenever this is not the case). We sometimes omit floor and ceiling

signs when they are not essential; note that one of the results in this thesis has a floor sign in

2Another model for property testing, proximity oblivious testing, does not assume that ε is known, and instead

focuses on designing basic testing algorithms with small success probability, which can be amplified by repeating the

basic test many times. See e.g. the book of Goldreich [81] for an extensive discussion.

11

the exponent, which is essential and included wherever relevant. Logarithms are in base 2, unless

stated otherwise. We will, at times, suppress polynomial factors by writing poly(·) to refer to a large

enough polynomial in the relevant parameter, whose degree is a large enough universal constant.

Terms such as Ok(·) and Ωk(·) are similar to O(·) and Ω(·) except that the underlying constants

may depend on the parameter k.

12

Part I

Ordered Graphs:

Regularity and Removal

13

Chapter 2

Removal Lemma for Ordered Graphs

and Matrices

The results in this chapter appear in [4].

We focus here on property testing of two-dimensional structures over a fixed finite alphabet Σ, in

particular graphs and matrices, and start with some notation. Graphs are functionsG :
(
V
2

)
→ {0, 1}

where V is the vertex set; more generally edge-colored graphs (with fixed finite color set Σ) are

functions G :
(
V
2

)
→ Σ. Matrices over the alphabet Σ (or images) are functions M : U × V → Σ.

We generally consider edge-colored graphs rather than standard graphs, as the added generality

will prove useful later; the term graph usually refers to an edge-colored graph. Thus, any collection

of (edge-colored) graphs G :
(
V
2

)
→ Σ is an ordered graph property. As a special case, an unordered

graph property is an ordered graph property that is also invariant under vertex permutations: If

G ∈ P and π is any permutation on VG, then the graph Gπ, defined by Gπ(π(u)π(v)) = G(uv) for

any u 6= v ∈ VG, satisfies Gπ ∈ P. Similarly, an (ordered) matrix property, or an image property, is

a collection of functions M : [m]× [n]→ Σ. We generally assume here (unless it is explicitly stated

that we consider unordered graphs) that the vertex set V of a graph G has a total ordering (e.g.

the natural one for V = [n]), which we denote by <. The (induced) ordered subgraph of the graph

G :
(
V
2

)
→ Σ on U ⊆ V , where the elements of U are u1 < . . . < uk, is the graph H :

(
[k]
2

)
→ Σ which

satisfies H(ij) = G(uiuj) for any i < j ∈ [k]. For a family F of “forbidden” graphs, the property

PF of F-freeness consists of all graphs G for which any ordered subgraph H of G satisfies H /∈ F .

Finally, a property P is hereditary if it is closed under taking induced subgraphs. That is, for any

G ∈ P and ordered subgraph H of G, it holds that H ∈ P. Note that a property P is hereditary if

and only if P = PF for some (finite or infinite) family F of graphs over Σ. The analogous notions

of ordered subgraphs, F-freeness and hereditary properties for matrices are “structure preserving”.

Here, the ordered submatrix of the matrix M : [m]× [n]→ Σ on A×B, where the elements of A and

B are a1 < . . . < ak and b1 < . . . < bl, is the matrix N : [k]× [l]→ Σ defined by N(i, j) = M(ai, bj)

for any i ∈ [k] and j ∈ [l].

15

2.1 Introduction

Some of the most interesting results in property testing have been those that identify large families

of properties that are efficiently testable, and those that show that large families of properties

cannot be tested efficiently. One of the most widely investigated questions in property testing

has been that of characterizing the efficiently testable unordered graph properties. In the seminal

paper of Goldreich, Goldwasser and Ron [83] it was shown that all unordered graph properties

that can be represented by a certain graph partitioning, including properties such as k-colorability

and having a large clique, are constant-query testable (see also [86]). Alon, Fischer, Krivelevich

and Szegedy [7] showed that the property of F-freeness is constant-query testable for any finite

family F of forbidden unordered graphs (here the term unordered graphs refers to the usual notion

of graphs with no order on the vertices). Their main technical result, now known as the induced

graph removal lemma, is a generalization of the well-known graph removal lemma [5, 124].

Theorem 2.1 (Induced graph removal lemma [7]). For any finite family F of unordered graphs

and ε > 0 there exists δ = δ(F , ε) > 0, such that any graph G which is ε-far from F-freeness

contains at least δnq copies of some F ∈ F with q vertices.

The original proof of Theorem 2.1 uses a strengthening of the celebrated Szemerédi graph

regularity lemma [131], known as the strong graph regularity lemma.

It is clear that having a removal lemma for a family F immediately implies that F-freeness is

constant-query testable: A simple test which picks a subgraph H whose size depends only on F and

ε, and checks whether H contains graphs from F or not, is a valid one-sided test for F-freeness.

Hence, removal lemmas have a major role in property testing. They also have implications in

different areas of mathematics, such as number theory and discrete geometry. For more details, see

the survey of Conlon and Fox [56].

By proving a variant of the induced graph removal lemma that also holds for infinite families,

Alon and Shapira [12] generalized the results of [7]. The infinite variant is as follows.

Theorem 2.2 (Infinite graph removal lemma [12]). For any finite or infinite family F of unordered

graphs and ε > 0 there exist δ = δ(F , ε) > 0 and q0 = q0(F , ε), such that any graph G which is

ε-far from F-freeness contains at least δnq copies of some F ∈ F on q ≤ q0 vertices.

Theorem 2.2 implies that any hereditary unordered graph property is constant-query testable,

exhibiting the remarkable strength of Szemerédi regularity based approaches for property testing.

Theorem 2.3 (Hereditary graph properties are constant-query testable [12]). Let Σ be a finite set

with |Σ| ≥ 2. Any hereditary unordered graph property over Σ is constant-query testable.

Alon, Fischer, Newman and Shapira later presented [9] a complete combinatorial characteriz-

ation of the graph properties that are testable (with two-sided error) using a constant number of

queries, building on results from [70, 86]. Independently, Borgs, Chayes, Lovász, Sós, Szegedy and

16

Vesztergombi obtained an analytic characterization of such properties through the theory of graph

limits [37]. See also [101, 102].

An efficient finite induced removal lemma for binary matrices with no row and column order

was obtained by Alon, Fischer and Newman [8]. In this case, δ−1 is polynomial in ε−1 (where ε, δ

play the same roles as in the above removal lemmas). It was later shown by Fischer and Rozenberg

[71] that when the alphabet is bigger than binary, the dependence of δ−1 on ε−1 is super-polynomial

in general. Actually, the main tool in [8] is an efficient conditional regularity lemma for ordered

binary matrices, and it was conjectured there that this regularity lemma can be used to obtain a

removal lemma for ordered binary matrices.

Conjecture 2.4 (Ordered binary matrix removal lemma [8]). For any finite family F of ordered

binary matrices and any ε > 0 there exists δ = δ(F , ε) such that any n× n binary matrix which is

ε-far from F-freeness contains at least δna+b copies of some a× b matrix from F .

In contrast to the abundance of general testing results for two-dimensional structures with an

inherent symmetry, such as unordered graphs and matrices, no similar results for ordered two-

dimensional structures (i.e. structures that do not have any underlying symmetry) have been

established. Even seemingly simple special cases, such as F -freeness for a single ordered graph F ,

or M -freeness for a single 2 × 2 ordered matrix M , are not known to be constant-query testable

in general [6]. A good survey on the role of symmetry in property testing is given by Sudan [129],

who suggests that the successful characterization of the constant-query testable unordered graph

properties is attributable to the underlying symmetry of these properties; See also [84].

Despite the lack of general results as above for the ordered case, property testing of multi-

dimensional ordered structures has recently been an active area of research. This is discussed in

the third part of this thesis. Ordered graphs were less investigated in the context of property testing,

but are the subject of many works in Combinatorics and other areas. See, e.g., a recent work on

Ramsey-type questions in the ordered setting [57], in which it is shown that Ramsey numbers of

simple ordered structures might differ significantly from their unordered counterparts.

Finally, we mention a relevant result on one-dimensional structures. Alon, Krivelevich, Newman

and Szegedy [10] showed that regular languages are constant-query testable. One can combine this

result with the well-known Higman’s lemma in order theory [91] to show that any hereditary

property of words (i.e. one dimensional functions) over a finite alphabet is constant-query testable.

Our contributions

We prove generalizations of Theorems 2.3 and 2.2 to the ordered setting, as well as analogous results

for matrices. The following result generalizes Theorem 2.3.

Theorem 2.5 (Hereditary properties of ordered graphs are constant-query testable). Fix a finite

set Σ with |Σ| ≥ 2. Any hereditary ordered graph property over Σ is constant-query testable.

17

To prove Theorem 2.5, we establish an order-preserving induced graph removal lemma, which

holds for finite and infinite families of ordered graphs. This is a generalization of Theorem 2.2.

Theorem 2.6 (Infinite ordered graph removal lemma). Fix a finite set Σ with |Σ| ≥ 2. For

any (finite or infinite) family F of ordered graphs F :
(

[nF]
2

)
→ Σ and any ε > 0 there exist

q0 = q0(F , ε) and δ = δ(F , ε) > 0, such that any ordered graph G :
(

[n]
2

)
→ Σ that is ε-far from

F-freeness contains at least δnq induced copies of some graph F ∈ F on q ≤ q0 vertices.

An analogue of Theorem 2.5 for matrices is also proved.

Theorem 2.7 (Hereditary properties of ordered matrices are constant-query testable). Fix a finite

set Σ with |Σ| ≥ 2. Any hereditary (ordered) matrix property over Σ is constant-query testable.

As in the case of ordered graphs, to prove Theorem 2.7 we establish the following ordered matrix

removal lemma, which holds for finite and infinite families of matrices, and settles a generalized

form of Conjecture 2.4.

Theorem 2.8 (Infinite ordered matrix removal lemma). Fix a finite set Σ with |Σ| ≥ 2. For any

(finite or infinite) family F of ordered matrices over Σ and any ε > 0 there exist q0 = q0(F , ε) > 0

and δ = δ(F , ε) > 0, such that any ordered matrix over Σ that is ε-far from F-freeness contains at

least δnq+q
′

copies of some q × q′ matrix F ∈ F , where q, q′ ≤ q0.

Actually, the proof of Theorem 2.8 is almost identical to that of Theorem 2.6, so we only describe

what modifications are needed to make the proof of Theorem 2.6 also work here, for the case of

square matrices. However, all proofs can be adapted to the non-square case as well. An outline for

the proof of the graph case is given in Section 2.2, and all of the sections after it are dedicated to

the full proof. The needed modifications for the matrix case appear in Section 2.6.3.

To the best of our knowledge, Theorems 2.5 and 2.7 are the first known testing results of

this type for ordered two-dimensional structures, and Theorems 2.6 and 2.8 are the first known

order-preserving removal lemmas for two-dimensional structures.

The author and Fischer [24] showed that for any property P of ordered graphs and matrices

which is constant-query testable using a canonical test, which picks uniformly at random vertices

and queries the subgraph (or submatrix) induced over these vertices, one can also tolerantly test

P, or equivalently, estimate with probability 2/3 the distance of the input to P, with a constant

number of queries. That is, we have the following corollary.

Corollary 2.9 (see also [24]). Any hereditary property P of ordered graphs and matrices is tolerantly

testable with a constant number of queries. That is, for any 0 ≤ α < 1, the property of α-closeness

to P is constant-query testable.

It is interesting to note that some properties previously investigated in the literature, such

as monotonicity, k-monotonicity [41, 89], and forbidden-poset type properties in matrices [69], are

18

hereditary (as all of them can be characterized by a finite set of forbidden submatrices), so Theorem

2.7 gives a new proof that these properties, and many of their natural extensions, are constant-

query testable. Naturally, our general tests are much less efficient than the tests specifically tailored

for each of these properties (in terms of dependence of the underlying constants on the parameters

of the problem), but the advantage of our result is its generality, that is, the fact that it applies

to any hereditary property. Thus, for example, for any fixed ordered graph H and any integer k,

the property that an ordered graph G admits a k-edge coloring with no monochromatic (ordered)

induced copy of H is constant-query testable. As mentioned above, Ramsey properties of this type

have been considered in the combinatorics literature, see [57] and the references therein. Another

family of examples includes properties of (integer) intervals on the line. Any interval can be encoded

by an edge connecting its two endpoints, where the order on the vertices (the endpoints) is the

usual order on the real line. A specific example of a hereditary property is that the given set of

intervals is closed under intersection. The forbidden structure is a set of 4 vertices i < j < k < l

where ik and jl are edges (representing intervals) whereas jk is a non-edge.

Finally, there are various examples of unordered hereditary graph properties that have simple

representations using a small finite forbidden family of ordered subgraphs, while in the unordered

representation, the forbidden family is infinite. Some examples of such properties are bipartiteness,

being a chordal graph, and being a strongly chordal graph [39, 59]. For such properties, when

the input graph is supplied with the “right” ordering of the vertices, one can derive the strong

testability using the version of Theorem 2.6 for finite families of forbidden ordered subgraphs – see

Theorem 2.34 below – instead of using the infinite unordered version, Theorem 2.2.

Related and Subsequent results

Several additional results exploring the landscape of property testing in ordered structures have been

established by the author and multiple coauthors. In [6], Alon and the author prove several removal

lemma type results for ordered and partially ordered binary matrices, in which the dependence

between the parameters in the removal lemma is polynomial (rather than tower-type or worse as

is inherent when using Szemerédi regularity; see discussion below). The results there rely on the

efficient regularity lemma for binary matrices [8], and extend the (unordered) testability results

from the same paper. In [24], the author and Fischer study regularity-based transformations of

constant-query tests to constant-query tolerant tests in ordered structures, thereby generalizing

well-known results in the unordered context [9, 70]. In [25], the author, Fischer, Levi and Yoshida

develop a limit object for ordered graphs and matrices, the orderon, also discussing implications

for property testing. One such implication is an analytical proof of the ordered graph (and matrix)

removal lemma presented here.

19

Discussion and open questions

Several possible directions for future research follow from the results.

Dependence between the parameters of the ordered removal lemmas Our proofs rely

heavily on strong variants of the graph regularity lemma. Regularity-based proofs generally have

a notoriously bad dependence between the parameters of the problem. In the notation of Theorem

2.6, for a fixed finite family F of forbidden ordered subgraphs, δ−1 is generally very large in terms

of ε−1, meaning that the number of queries required for the corresponding test for such properties

is very large in terms of ε−1. Indeed, the original Szemerédi regularity lemma imposes a tower-type

dependence between these parameters [75, 88, 104], while the variant we use is at least as strong

(and at least as expensive) as the strong regularity lemma [7], which is known to have a wowzer

(tower of towers) type dependence between its parameters [55, 93]. Note that for infinite families

F the dependence between the parameters may be arbitrarily bad [11].

In a breakthrough result of Fox [73], the first known proof for the (unordered) graph removal

lemma that does not use the regularity lemma is given. However, the dependence between the

parameters there is still of a tower type. In any case, it will be interesting to try to obtain a proof

for the ordered case, that does not go through the strong regularity needed in our proof.

Better dependence for specific properties As discussed above, for ordered binary matrices

there is an efficient conditional regularity lemma [8], in which the dependence of δ−1 on ε−1 is

polynomial. It will be interesting to try to combine the ideas from our proof with this binary

matrix regularity lemma, to obtain a removal lemma for finite families of ordered binary matrices

with better dependence between the parameters. Ideally, one hopes for a removal lemma with

polynomial dependence, but even obtaining such a lemma with, say, exponential dependence will

be interesting. More generally, it will be interesting to find large families of hereditary ordered

graph or matrix properties that have more efficient tests than those obtained from our results. See,

e.g., [79] for recent results of this type for unordered graph properties.

Characterization of constant-query testable ordered properties For unordered graphs,

Alon and Shapira [12] showed that a property is constant-query testable using an oblivious one-

sided test, which is a test whose behavior is independent of the size of the input, if and only if

the property is (almost) hereditary. It will be interesting to obtain similar characterizations in the

ordered case. The work of the author and Fischer [24] provides such a characterization for two-

sided error testability for earthmover resilient properties, which roughly speaking are all properties

for which a slight change in the order of the base elements (i.e., vertices in a graph, or rows and

columns in a matrix) does not substantially change the distance from the property. We believe that

similarly to the unordered case, being testable with one-sided-error by a canonical test, that picks

a random induced substructure and queries it, is roughly equivalent among earthmover resilient

20

properties to being hereditary. Note that here, unlike the unordered setting, the restriction to

canonical tests is essential; in the third part of this thesis we consider local properties that are not

testable efficiently by a canonical test, but have very efficient locality-based tests.

Generalization to ordered hypergraphs and hypermatrices It will be interesting to ob-

tain similar removal lemmas (and consequently, testing results) for the high-dimensional analogues

of ordered graphs and matrices, namely ordered k-uniform hypergraphs and k-dimensional hyper-

matrices. Such results were proved for unordered hypergraphs [106, 118, 132].

2.2 Outline

A proof of a graph removal lemma typically goes along the following lines: First, the vertex set of

the graph is partitioned into a “constant” (not depending on the input graph size itself) number of

parts, and a corresponding regularity scheme is found. The regularity scheme essentially allows that

instead of considering the original graph, one can consider a very simplified picture of a constant size

structure approximately representing the graph. On one hand, the structure has to approximate

the original graph in the sense that we can “clean” the graph, changing only a small fraction of the

edges, so that the new graph will not contain anything not already “predicted” by the representing

structure. On the other hand, the structure has to be “truthful”, in the sense that everything

predicted by it in fact already exists in the graph.

In the simplest case, just a regular partition given by the original Szemerédi Lemma would

suffice. More complex cases, like [7, 12], require a more elaborate regularity scheme. In our case,

Section 2.5 provides a regularity scheme that addresses both edge configuration and vertex order,

combining a graph regularity scheme with a scheme for strings.

Given a regularity scheme, we have to provide the graph cleaning procedure, as well as prove that

if the cleaned graph still contains a forbidden subgraph, then the original graph already contains

a structure containing many such graphs (this will consist of some vertex sets referenced in the

regularity scheme). In Section 2.5.3 we show how to use the scheme to prove the removal lemma

and the testability theorem for the case of a finite family F of forbidden subgraphs, while in Section

2.6 we show how to extend it for the case of a possibly infinite family F . The latter section also

contains a formal definition of what it means for the regularity scheme to predict the existence of

a forbidden subgraph, while for the finite case it is enough to keep it implicit.

To extract the regularity scheme we need two technical aids. One of which, in Section 2.4.2,

is just a rounding lemma that allows us to properly use integer quantities to approximate real

ones. While in many works the question of dealing with issues related to the divisibility of the

number of vertices is just hand-waved away, the situation here is complex enough to merit a formal

explanation of how rounding works.

In Section 2.4.1 we develop a Ramsey-type theorem that we believe to be interesting in its own

21

right. The use of Ramsey-type theorems is prevalent in nearly all works dealing with regularity

schemes, as a way to allow us to concentrate only on “well-behaved” structures in the scheme when

we are about to clean the graph. Because of the extra complication of dealing with vertex-ordered

graphs, we cannot just find Ramsey-type instances separately in different parts of the regularity

scheme. Instead, we need to find the well-behaved structure “all at once”, and furthermore assure

that we avoid enough of the “undesirable” parts where the regularity scheme does not reflect the

graph. The fraction of undesirable features, while not large, must not depend on any parameters

apart from the original distance parameter ε (and in particular must not depend on the size of the

regularity scheme), which requires us to develop the new Ramsey-type theorem.

Roughly speaking, the theorem states the following: If we have a k-partite edge-colored graph

with sufficiently many vertices in each part, then we can find a subgraph where the edges between

every two parts are of a single color (determined by the identity of the two parts). However, we do

it in a way that satisfies another requirement: If additionally the original graph is supplied with a

set of “undesirable” edges comprising an α fraction of the total number of edges, then the subgraph

we find will include not more than an (1 + η)α fraction of the undesirable edges, for an η as small

as we would like (in our application η = 1 will suffice).

2.2.1 Finding a Regularity Scheme

To prove the removal lemma we need a regularity scheme, that is a sequence of vertex sets whose

“interaction” with the graph edges, and in our case also the graph vertex order, allows us to carry

a cleaning procedure using combinatorial lemmas.

Historically, in the case of properties like triangle-freeness in ordinary graphs, a regular equipar-

tition served well enough as a regularity scheme. One needs then to just remove all edges that are

outside the reach of regularity, such as edges between the sets that do not form regular pairs. When

moving on to more general properties of graphs, this is not enough. We need a robust partition

(see [70]) instead of just a regular one, and then we can find a subset in each of the partition sets so

that these “representative” sets will all form regular pairs. This allows us to decide what to do with

problem pairs, e.g. whether they should become complete bipartite graphs or become edgeless (we

also need to decide what happens inside each partition set, but we skip this issue in the sketch).

For vertex ordered graphs, a single robust partition will not do. The reason is that even if we

find induced subgraphs using sets of this partition, there will be no guarantees about the vertex

order in these subgraphs. The reason is that the sets of the robust partition could interact in

complex ways with regards to the vertex order. Ideally we would like every pair of vertex sets to

appear in one of the following two possible ways: Either one is completely before the other, or the

two are completely “interwoven”.

To interact with the vertex order, we consider the robust partition along with a secondary

interval partition. If we consider what happens between two intervals, then all vertices in one of

the intervals will be before all vertices in the other one. This suggests that further dividing a robust

22

partition according to intervals is a good idea. However, we also need that inside each interval,

the relevant robust partition sets will be completely interwoven. In more explicit terms, we will

consider what happens when we intersect them with intervals of a refinement of the original interval

partition. If these intersections all have the “correct” sizes in relation of the original interval (i.e., a

set that intersects an interval also intersects all relevant sub-intervals with sufficient vertex count),

then we will have the “every possible order” guarantee.

Section 2.5 is dedicated to the formulation and existence proof of a regularity scheme suitable for

ordered graphs. In Section 2.5.1 we present the concept of approximating partitions, showing several

useful properties of them. Importantly, the notion of a robust partition is somewhat preserved when

moving to a partition approximating it.

In Section 2.5.2 we develop the lemma that gives us the required scheme. Roughly speaking, it

follows the following steps.

• We find a base partition P of the graph G, robust enough with regards to the graph edge

colors, so as to ensure that it remains robust even after refining it to make it fit into a

secondary interval partition.

• We consider an interval partition J of the vertex set V of G, that is robust with respect to P .

That is, if we partition each interval of J into a number of smaller intervals (thus obtaining

a refinement J ′), most of the smaller intervals will contain about the same ratio of members

of each set of P as their corresponding bigger intervals.

• Now we consider what happens if we construct a partition resulting from taking the intersec-

tions of the members of P with members of J ′. In an ideal world, if a set of P intersects an

interval of J , then it would intersect “nicely” also the intervals of J ′ that are contained in

that interval. However, this is only mostly true. Also, this “partition by intersections” will

usually not be an equipartition.

• We now modify a bit both P and J , to get Q and I that behave like the ideal picture, and are

close enough to P and J . Essentially we move vertices around in P to make the intersections

with the intervals in J ′ have about the same size inside each interval of J . We also modify

the intersection set sizes (which also affects J a little) so they will all be near multiples of a

common value (on the order of n). This is so we can divide them further into an equipartition

that refines both the robust graph partition and the interval partition. The rounding Lemma

2.25 helps us here.

The above process generates the following scheme. Q is the modified base equipartition, and its

size (i.e. number of parts) is denoted by k. I is the modified “bigger intervals” equipartition, and

its size is denoted by m. We are allowed to require in advance that m will be large enough (that is,

to have m bigger than a predetermined constant m0). There is an equipartition Q′ of size mt which

23

refines both Q and I. That is, each part of Q′ is fully contained in a part of Q and a part of I,

and so each part of Q contains exactly mt/k parts of Q′. Moreover, there is the “smaller intervals”

equipartition I ′ which refines I, and has size mb where b = r(m, t) for a two-variable function r

that we are allowed to choose in advance (r is eventually chosen according to the Ramsey-type

arguments needed in the proof). Each part of I contains exactly b parts of I ′. Finally, there is a

“perfect” equipartition Q′′ which refines Q′ and I ′ and has size mbt, such that inside any bigger

interval from I, the intersection of each part of Q′ with each smaller interval from I ′ consists of

exactly one part of Q′′. Additionally, Q′ can be taken to be very robust, where we are allowed to

choose the robustness parameters in advance.

We are guaranteed that the numbers m and t are bounded in terms of the above function r, the

robustness parameters, and m0 for which we required that m ≥ m0. These bounds do not depend

on the size of the input graph. See Lemma 2.33 for more details.

2.2.2 Proving a Finite Removal Lemma

Consider an ordered colored graph G :
(

[n]
2

)
→ Σ, and consider a regularity scheme consisting of

equipartitions Q, I,Q′, I ′, Q′′ for G as described above.

We start by observing that if Q′′ is robust enough, then there is a tuple W of “representatives”

for Q′′, satisfying the following conditions.

• For each part of Q′′ there is exactly one representative, which is a subset of this part.

• Each representative is not too small: it is of order n (where the constants here may depend

on all other parameters discussed above, but not on the input size n).

• All pairs of representatives are very regular (in the standard Szemerédi regularity sense).

• The densities of the colors from Σ between pairs of representatives are usually similar to the

densities of those colors between the pairs of parts of Q′′ containing them. Here the density

of a color σ ∈ Σ between vertex sets A and B is the fraction of σ-colored edges in A×B.

Actually, the idea of using representatives, as presented above, was first developed in [7]. Note

that each part of Q′ contains exactly b representatives (since it contains b parts from Q′′) and each

small interval of I ′ contains exactly t representatives.

Now if Q′ is robust enough then the above representatives for Q′′ also represent Q′ in the

following sense: Densities of colors between pairs of representatives are usually similar to the

densities of those colors between the pairs of parts of Q′ containing them.

Consider a colored graph H whose vertices are the small intervals of I ′, where the “color” of the

edge between two vertices (i.e. small intervals) is the t×t “density matrix” described as follows: For

any pair of representatives, one from each small interval, there is an entry in the density matrix.

This entry is the set of all colors from Σ that are dense enough between these two representatives,

i.e., all colors whose density between these representatives is above some threshold.

24

An edge between two vertices of H is considered undesirable if the density matrix between

these intervals differs significantly from a density matrix of the large intervals from I containing

them. If Q′ is robust enough, then most density matrices for pairs of small intervals are similar

to the density matrices of the pairs of large intervals containing them. Therefore, the number of

undesirables in H is small in this case.

Consider now H as an m-partite graph, where each part consists of all of the vertices (small

intervals) of H that are contained in a certain large interval from I. We apply the undesirability-

preserving Ramsey on H, and then a standard multicolored Ramsey within each part, to obtain an

induced subgraph D of H with the following properties.

• D has exactly dF vertices (small intervals) inside each part of H, where dF is the maximum

number of vertices in a graph from the forbidden family F .

• For any pair of parts of H, all D-edges between these parts have the same “color”, i.e. the

same density matrix.

• For any part of H, all D-edges inside this part have the same “color”.

• The fraction of undesirables among the edges of D is small.

Finally we wish to “clean” the original graph G as dictated by D. For any pair Q′1, Q
′
2 of (not

necessarily distinct) parts from Q′, let I1, I2 be the large intervals from I ′ containing them, and

consider the density matrix that is common to all D-edges between I1 and I2. In this matrix there

is an entry dedicated to the pair Q′1, Q
′
2, which we refer to as the set of colors from Σ that are

“allowed” for this pair. The cleaning of G is done as follows: For every u ∈ Q′1 and v ∈ Q′2, if the

original color of uv in G is allowed, then we do not recolor uv. Otherwise, we change the color of

uv to one of the allowed colors.

It can be shown that if D does not contain many undesirables, then the cleaning does not

change the colors of many edges in G. Therefore, if initially G is ε-far from F-freeness, then there

exists an induced copy of a graph F ∈ F in G with l ≤ dF vertices after the cleaning. Considering

our cleaning method, it can then be shown that there exist representatives R1, . . . , Rl with the

following properties. For any i, all vertices of Ri come before all vertices of Ri+1 in the ordering

of the vertices, and for any i < j, the color of F (ij) has high density in Ri × Rj . Recalling that

all pairs of representatives are very regular, a well-known lemma implies that the representatives

R1, . . . , Rl span many copies of F , as desired.

From finite to infinite removal lemma

After the finite removal lemma is established, adapting the proof to the infinite case is surprisingly

not difficult. The only problem of the finite proof is that we required D to have exactly dF vertices

in each large interval, where dF is the maximal number of vertices of a graph in F . This requirement

25

does not make sense when F is infinite. Instead we show that there is a function dF (m, t) that

“plays the role” of dF in the infinite case.

dF (m, t) is roughly defined as follows: We consider the (finite) collection C(m, t) of all colored

graphs with loops that have exactly m vertices, where the set of possible colors is the same as that

of H (so the number of possible colors depends only on |Σ| and t). We take dF (m, t) to be the

smallest number that guarantees the following. If a graph C ∈ C(m, t) exhibits (in some sense) a

graph from F , then C also exhibits a graph from F with no more than dF (m, t) vertices.

The rest of the proof follows as in the finite case, replacing any occurrence of dF in the proof

with dF (m, t). Here, if G contains a copy of a graph from F after the cleaning, then there is a

set of no more than dF (m, t) different representatives that are very regular in pairs and have the

“right” densities with respect to some F ∈ F with at most dF (m, t) vertices, so we are done as in

the finite case.

From ordered graphs to ordered matrices To prove Theorem 2.8 for square matrices, we

reduce the problem to a graph setting. Suppose that M : U × V → Σ is a matrix, and add an

additional color σ0 to Σ. All edges between U and V will have the original colors from Σ, and

edges inside U and inside V will have the new color σ0. Note that we are not allowed to change

colors to or from the color σ0, as it actually signals “no edge”. The proof now follows from the

proof for graphs: We can ask the partition I into large intervals to “respect the middle”, so all

parts of I are either fully contained in U or in V . Moreover, colors of edges inside U or inside V are

not modified during the cleaning step, and edges between U and V are not recolored to σ0, since

this color does not appear at all between the relevant representatives (and in particular, does not

appear with high density).

To adapt the proof of Theorem 2.8 for non-square matrices, we need the divisibility condition

to be slightly different than respecting the middle. In the case that m = o(n), we need to construct

two separate “large intervals” equipartitions, one for the rows and one for the columns, instead of

one such equipartition I as in the graph case. The rest of the proof does not change.

2.3 Preliminaries and Definitions

In general, we may and will assume whenever needed throughout the chapter that n is large enough

with respect to all relevant parameters. We generally denote “small” parameters and functions

(whose values are always positive but can be arbitrarily close to zero) by small Greek letters1,

and “large” parameters and functions (whose values are always finite natural numbers but can be

arbitrarily large) by Latin letters. We assume that all parameters in all statements of the lemmas

are monotone in the “natural” direction, as in the following examples: T (α, b) ≤ T (α′, b′) for

1The only exception is λ, which will denote general real numbers, and ` which will denote their rounding.

26

α ≥ α′, b ≤ b′, and γ(c, δ) ≤ γ(c′, δ′) for c ≥ c′, δ ≤ δ′. We also assume that all “small” parameters

are smaller than one, and all “large” parameters are larger than one.

We also assume that all functions are “bounded by their parameters”, for example γ(α, k) ≤ α
and T (α, k) ≥ k. These definitions extend naturally to any set of parameters, and are easily seen

to be without loss of generality as long as we do not try to optimize bounds.

Colored graphs and charts A Σ-colored graph G = (V, cG) is defined by a totally ordered

set of vertices V and a function cG :
(
V
2

)
→ Σ. That is, G is a complete ordered graph whose

edges are colored by elements of Σ. The standard notion of an (ordered) graph is equivalent to a

{0, 1}-colored graph. A Σ-colored graph with loops G′ = (V, cG′) is defined by a totally ordered set

V and a function cG′ :
(
V
2

)
∪ V → Σ. We identify the notation cG′(vv) with cG′(v) for any v ∈ V .

With a slight abuse of notation, we denote by U1 × U2 = {{u1, u2} : u1 ∈ U1, u2 ∈ U2} the set

of edges between two disjoint vertex sets U1 and U2. A (k,Σ)-chart C = (V1, . . . , Vk, cC) is defined

by k disjoint vertex sets V1, . . . , Vk and a function cC : EC → Σ, where EC =
⋃

1≤i<j≤k Ui × Uj .
In other words, it is an edge-colored complete k-partite graph. For C and G as above, we say

that C is a partition of G if V =
⋃k
i=1 Vi and cG(e) = cC(e) for any edge e ∈ EC . Moreover, C

is equitable if ||Vi| − |Vj || ≤ 1 for any 1 ≤ i, j ≤ k; an equitable partition is sometimes called an

equipartition. The size |C| of the partition C is the number of parts in it. For a partition C as above,

a (k′,Σ)-chart C ′ which is also a partition of G is said to be a G-refinement of C if we can write

C ′ = (V11, . . . , V1j1 , . . . , Vk1, . . . , Vkjk , cC′) where Vi =
⋃ji
l=1 Vil. Note that cG(e) = cC(e) = cC′(e)

for any edge e ∈ EC . We sometimes omit the coloring from the description of a partition when

it is clear from the context (as the coloring is determined by the partition of the vertices and the

coloring of the graph). For two disjoint sets of vertices U,W and a coloring c : U ×W → Σ, we

say that the density of σ ∈ Σ in (U,W, c) is dσ(U,W, c) = |(U ×W) ∩ c−1(σ)|/|U ||W |. the squared

density is denoted by d2
σ(U,W, c). The index of (U,W, c) is

ind(U,W, c) =
∑
σ∈Σ

d2
σ(U,W, c).

Note that 0 ≤ ind(U, V, c) ≤ 1 always holds. When the coloring c is clear from context, we usually

simply write dσ(U, V) for density and ind(U, V) for index. For a chart C as above we define the

index of C as

ind(C) =
∑

1≤i<i′≤k

|Vi||Vi′ |(|V |
2

) ind(Vi, Vi′ , c �Vi×Vi′)

where V =
⋃k
i=1 Vi. By the Cauchy-Schwarz inequality, for any two partitions C, C ′ of G where

C ′ is a G-refinement of C we have

0 ≤ ind(C) ≤ ind(C ′) ≤ 1. (2.1)

For a function f : N → N and a constant γ > 0, we say that an equipartition C of size k

is (f, γ)-robust if there exists no refining equipartition C ′ of C of size at most f(k) for which

27

ind(C ′) > ind(C) + γ. The following observation states that for any colored graph G and any

equipartition C of G, there exists an (f, γ)-robust equipartition C ′ refining C. The first explicit

definition of robustness was given in [70].

Observation 2.10 (Robust partitioning of colored graphs [70]). For any integer k > 0, function

f : N → N and real γ > 0 there exists T = T2.10(k, f, γ) such that for any equipartition C of a

colored graph G with |C| = k, there exists an (f, γ)-robust equipartition C ′ = C ′2.10(C, f, γ) that

refines C, where |C ′| ≤ T .

Proof. Initially pick C ′ = C. Now, as long as C ′ is not (f, γ)-robust, let k′ denote the number of

parts of C ′; we may replace C ′ by a G-refinement C ′′ of it with at most f(k′) parts and ind(C ′′) >

ind(C ′) + γ. This process stops after at most 1/γ iterations, by inequality (2.1).

The definition of robustness immediately implies the following.

Observation 2.11. Let P = (V1, . . . , Vk) be an equipartition of a Σ-colored graph G = (V, c), and

suppose that P is (f ◦ g, γ)-robust for two functions f, g : N → N and γ > 0. Then any equitable

refinement of P with no more than g(k) parts is (f, γ)-robust.

The notion of robustness is stronger than the more commonly used notion of regularity. For a

Σ-colored graph G = (V, c) and an equipartition P = (V1, . . . , Vk) of G, a pair (Vi, Vj) is ε-regular if

|dσ(Vi, Vj)−dσ(V ′i , V
′
j)| ≤ ε for any σ ∈ Σ and V ′i ⊆ Vi, V ′j ⊆ Vj that satisfy |V ′i | ≥ ε|Vi|, |V ′j | ≥ ε|Vj |.

P is an ε-regular partition if all but at most ε
(
k
2

)
of the pairs (Vi, Vj) are ε-regular. The following

lemma states that robust partitions are also regular; a lemma like it is implicit in the ideas of the

original proof of [131]. The original was formulated only for non-colored graphs (Σ = {0, 1}), but

the extension to colored graphs is not hard (and was also done in prior work).

Lemma 2.12 ([131], see also [70]). For any ε > 0 there exist f = f
(ε)
2.12 : N → N and δ =

δ2.12(|Σ|, ε) > 0 such that any (f, δ)-robust equipartition P of a Σ-colored graph G is also ε-regular.

The next lemma was first formulated (with different notation and without the extension to

general Σ) in [7], but in a sense the basic idea was already used in implicitly proving Lemma 2.12

in [131]. It will be useful for us later.

Lemma 2.13 ([7], see also [70]). For any ε > 0 there exists δ = δ2.13(|Σ|, ε) > 0, so that for

every f : N → N, any (f, δ)-robust equipartition P = (V1, . . . , Vk) of a Σ-colored graph G, and

any equitable refinement P ′ = (V11, . . . , V1b, . . . , Vk1, . . . , Vkb) of P where kb ≤ f(k), choosing the

indexes so that Vi =
⋃b
r=1 Vir for any i ∈ [k], it holds that

1(
k
2

)
b2

∑
σ∈Σ

∑
i,i′∈[k]

∑
j,j′∈[b]

|dσ(Vij , Vi′j′)− dσ(Vi, Vi′)| ≤ ε.

Another lemma that will be useful later is the following. This is Lemma 3.2 in [7].

28

Lemma 2.14 ([7]). For any η > 0 there exists a function β = βη2.14 : N → N, so that for

any integer l > 0 there exists κ = κ2.14(η, l) with the following property: If H = ([l], cH) and

V1, . . . , Vl are disjoint vertex sets of G = (V, c), such that for any i < j, (Vi, Vj) is β(l)-regular and

dcH(ij)(Vi, Vj) ≥ η, then the number of induced H-copies in G with a vertex from Vi playing the role

of vertex i of H is at least κ
∏l
i=1 |Vi|.

Strings and intervals Consider an ordered set V whose elements are v1 < . . . < vn. A string S :

V → Σ is a mapping from the ordered set V to an alphabet Σ. An interval partition I = (I1, . . . , Ik)

of the string S : V → Σ is a partition V = I1 . . . Ik into consecutive substrings of S: That is, there

exist 0 = a0 < . . . < ak−1 < ak = n such that Ii = S(vai−1+1) . . . S(vai) for any 1 ≤ i ≤ k. I is

equitable (or an interval equipartition) if ai − ai−1 ∈ {bn/kc, dn/ke} for any 1 ≤ i ≤ k. An interval

refinement I ′ of I is an interval partition of S such that any part of I ′ is fully contained in a part

of I. The size |I| of an interval partition I is its number of parts.

Next we define notions of index and robustness that are suitable for strings and interval parti-

tions. Similar notions were established in [17, 65]. For a string S : V → Σ, the density of σ ∈ Σ

in S is dσ(S) = |S−1(σ)|/|S| where S−1(σ) = {v ∈ V : S(v) = σ}, and the squared density of σ in

S is denoted by d2
σ(S). The index of S is ind(S) =

∑
σ∈Σ d

2
σ(S). Finally, the index of an interval

partition I = (I1, . . . , Ik) of S is

ind(I) =
k∑
i=1

|Ii|
|V |

ind(Ii).

As in the case of charts, for an interval equipartition I of a string S, we say that I is (f, γ)-robust

if any interval equipartition I ′ of size at most f(k) that refines I satisfies ind(I ′) ≤ ind(I) + γ (in

the other direction, ind(I) ≤ ind(I ′) always holds). The following is an analogue of Observation

2.10, and its proof is essentially identical.

Observation 2.15 (Robust partitioning of intervals). For any integer k > 0, function f : N→ N
and real γ > 0 there exists T = T2.15(k, f, γ) such that any interval equipartition I of a string S

where |I| = k has an (f, γ)-robust interval refinement I ′ = I ′2.15(I, f, γ) consisting of at most T

intervals.

The next lemma is an analogue of Lemma 2.13 for strings, and its proof is similar.

Lemma 2.16. For any ε > 0 there exists δ = δ2.16(|Σ|, ε) > 0, so that for every f : N → N, any

(f, δ)-robust interval equipartition I = (I1, . . . , Ik) of a string S : V → Σ, and any equitable interval

refinement I ′ = (I11, . . . , I1b, . . . , Ik1, . . . , Ikb) of I where kb ≤ f(k), choosing the indexes so that

Ii =
⋃b
r=1 Iir for any i ∈ [k], it holds that

1

kb

∑
σ∈Σ

∑
i∈[k]

∑
j∈[b]

|dσ(Iij)− dσ(Ii)| ≤ ε.

29

We finish by defining the string that a partition of an ordered set induces on that set. The

strings that we will consider in this chapter are of this type.

Definition 2.17 (String of a partition). For a partition P = (V1, . . . , Vk) of an ordered set V , the

P -string SP : V → [k] maps any v ∈ V to the element i ∈ [k] such that v ∈ Vi.

With slight abuse of notation, we will also use the notion of an interval partition in the context of

ordered graphs; here each interval will simply be a set of consecutive vertices (with no accompanying

function, in contrast to the case of strings).

2.4 Technical Aids

We develop here two tools that we will use for our proofs. The first tool is a Ramsey-type theorem

that we believe to be interesting in its own right. We will use it to find a “uniform” structure with

a global view on our graph. The second tool is a rounding lemma that allows us to evenly partition

graphs also when the number of sets does not divide the number of vertices, without hand-waving

away the divisibility issues (which might have been questionable in our context).

2.4.1 A Quantitative Ramsey-type Theorem

The multicolored Ramsey number Ram(s, k) is the minimum integer n so that in any coloring of

Kn with s colors there is a monochromatic copy of Kk. It is well known that this number exists

(i.e. is finite) for any s and k. For our purposes, we will also need a different Ramsey-type result,

that keeps track of “undesirable” edges, as described in the following subsection.

Given a k-partite Σ-chart, we would like to pick a given number of vertices from each partition

set, so that all edges between remaining vertices in each pair of sets are of the same color. However,

in our situation we also have a “quantitative” requirement: A portion of the edges is marked

as “undesirable”, and we require that in the chart induced on the picked vertices the ratio of

undesirable edges does not increase by much. Formally, we prove the following, which we state as

a theorem because we believe it may have uses beyond the use in this thesis.

Theorem 2.18. There exists a function R2.18 : N×N×N×(0, 1]→ N, so that if G = (V1, . . . , Vk, c)

is a k-partite Σ-chart with n ≥ R2.18(|Σ|, k, t, α) vertices in each class, and B ⊆
⋃
i<j∈[k](Vi ×

Vj) is a set of “undesirable edges” of size at most ε
(
k
2

)
n2, then G contains an induced subchart

H2.18(G,B, t, α) = (W1, . . . ,Wk, c �⋃1≤i<j≤k(Wi×Wj)) with the following properties.

• |Wi| = t for every 1 ≤ i ≤ k.

• c �Wi×Wj is a constant function for every 1 ≤ i < j ≤ k.

• The size of B ∩ (
⋃

1≤i<j≤k(Wi ×Wj)) is at most (1 + α)ε
(
k
2

)
t2.

30

In our use, these “vertices” would actually be themselves sets of a robust partition of the original

graph, and “colors” will encode densities; an undesirable pair would have the “wrong” densities.

Also, in our use case the undesirability of an edge will be determined solely by its color and the

Wi that its end vertices belong to, which means that for each 1 ≤ i < i′ ≤ k the edge set Wi ×Wi′

consist of either only desirable edges or only undesirable edges. When this happens, a later pick of

smaller sets W ′i ⊂Wi will still preserve the ratio of undesirable edges (we will in fact perform such

a pick using the original Ramsey’s theorem inside each Wi). The following corollary summarizes

our use of the theorem.

Definition 2.19. Given a k-partite Σ-chart G = (V1, . . . , Vk, c) and a set B ⊆
⋃
i<j∈[k](Vi×Vj), we

say that B is orderly if for every 1 ≤ i < j ≤ k there are no e ∈ (Vi×Vj)∩B and e′ ∈ (Vi×Vj) \B
for which c(e) = c(e′). In other words, the “position” and color of an edge fully determines whether

it is in B.

Corollary 2.20. There exists a function R2.20 : N × N × N → N, so that if G = (
⋃k
i=1 Vi, c) is a

Σ-colored graph with |Vi| = n ≥ R2.20(|Σ|, k, t) for any i ∈ [k] and Vi ∩ Vj = ∅ for any i 6= j ∈ [k],

and B ⊆
⋃
i<j∈[k](Vi × Vj) is an orderly set of “undesirable edges” of size at most ε

(
k
2

)
n2, then G

contains an induced subgraph D satisfying the following.

• The vertex set of D is
⋃l
i=1 Ui where Ui ⊆ Vi and |Ui| = t for any i ∈ [k].

• For any i ∈ [k], all edges inside Ui have the same color.

• For any i < j ∈ [k], all edges in Ui × Uj have the same color.

•
∑

i<j∈[k] |B ∩ (Ui × Uj)| ≤ 2ε
(
k
2

)
t2.

Proof. Take R2.20(s, k, t) = R2.18(s, k,Ram(s, t), 1) (recall that Ram(s, t) denotes the “traditional”

s-colored Ramsey function). By Theorem 2.18, there exists a chart H = (W1, . . . ,Wk) with the

following properties.

• Wi ⊆ Vi and |Wi| = Ram(t, |Σ|) for every i ∈ [k].

• For any pair i < j ∈ [k], all edges in Wi ×Wj have the same color.

•
∑

i<j∈[k] |B ∩ (Wi ×Wj)| ≤ 2ε
(
k
2

)
(Ram(t, |Σ|))2.

Observe that for any pair i < j ∈ [k], either Wi ×Wj ⊆ B or (Wi ×Wj) ∩ B = ∅, since all edges

in Wi ×Wj have the same color and B is orderly. Therefore, the number of pairs i < j for which

(Wi ×Wj) ∩ B 6= ∅ is at most 2ε
(
k
2

)
. Now we apply the traditional Ramsey’s theorem inside each

Wj to obtain a set Uj ⊆ Wj of size t such that all edges inside Wj have the same color. Since∑
i<j |B ∩ (Ui × Uj)| ≤

∑
i<j:(Wi×Wj)∩B 6=∅ |B ∩ (Ui × Uj)| ≤ 2ε

(
k
2

)
t2, the proof follows.

31

Before moving to the proof of Theorem 2.18 itself, let us quickly note that a quantitative

counterpart for the traditional (not k-partite) graph case does not exist (indeed, Corollary 2.20 is

a way for us to circumvent such issues).

Proposition 2.21. For any α > 0, m, k, and large enough l, for infinitely many n there is a graph

G and a set of undesirable pairs B, so that G has n vertices, B consists of at most 1
mk

(
n
2

)
pairs,

G has no independent set of size l, and every clique of l vertices in G holds at least (1
m − α)

(
l
2

)
members of B.

Proof. We construct G for any n that is a multiple of mk larger than lk. The graph G will be the

union of k vertex-disjoint cliques, each with n/k vertices. In particular, G contains no independent

set with l vertices, and any clique with l vertices must be fully contained in one of the cliques of G.

Now B will be fully contained in the edge-set of G, and will consist of the edge-set of mk vertex-

disjoint cliques with n/mk vertices each, so that each of the cliques of G contains m of them. It is

now not hard to see that any clique with l vertices in G will contain at least (1
m −αl)

(
l
2

)
) members

of B, where liml→∞ αl = 0.

Moving to the proof, the following is our main lemma. It essentially says that we can have

a probability distribution over “Ramsey-configurations” in our chart that has some approximate

uniformity properties.

Lemma 2.22. There exists a function R2.22 : N×N×N× (0, 1]→ N, so that if G = (V1, . . . , Vk, c)

is a k-partite Σ-chart with n ≥ R2.22(|Σ|, k, t, δ) vertices in each class, then G contains a ran-

domized induced subchart H2.22(G, t, δ) = (W1, . . . ,Wk, c �⋃1≤i<j≤k(Wi×Wj)) satisfying the following

properties.

• Either |Wi| = t for every 1 ≤ i ≤ k, or the chart is empty (Wi = ∅ for every i).

• c �Wi×Wj is a constant function for every 1 ≤ i < j ≤ k (with probability 1).

• For every 1 ≤ i ≤ k, every v ∈ Vi will be in Wi with probability at most t/n.

• For every 1 ≤ i < j ≤ k, every v ∈ Vi and every w ∈ Vj, the probability for both v ∈ Wi and

w ∈Wj to hold is bounded by (t/n)2.

• The probability that the chart is empty is at most δ.

Before we prove this lemma, we show how it implies Theorem 2.18.

Proof of Theorem 2.18. We set R2.18(a, k, t, α) = R2.22(a, k, t, α/3). Given the k-partite Σ-chart

G, we take the randomized subchart H = H2.22(G, t, α/3) = (W1, . . . ,Wk, c �⋃1≤i<j≤k(Wi×Wj)), and

prove that with positive probability it is the required subchart.

Let B′ = B ∩ (
⋃

1≤i<j≤kWi ×Wj) denote the set of undesirable pairs that are contained in

H. By the probability bound on pair containment and by the linearity of expectation, E[|B′|] ≤

32

(t/n)2|B| ≤ ε
(
k
2

)
t2. Therefore, the probability for |B′| to be larger than (1 + α)ε

(
k
2

)
t2 is bounded

by 1
1+α ≤ 1−α/2. Therefore, with positive probability, both |B′| is not too large and H is not the

empty chart. Such an H is the desired subchart.

To prove Lemma 2.22 we shall make good use of the following near-trivial observation.

Observation 2.23. There exists a function m2.23 : N × N × (0, 1] → N, such that if A is a set of

size at least m2.23(k, t, δ) and A = (A1, . . . , Ak) is a partition of A to k sets, then there exists a

randomized subset B = B2.23(A, t, δ) satisfying the following properties.

• Either |B| = t or B = ∅.

• B is fully contained in a single Ai.

• For every a ∈ A, the probability for a ∈ B is at most t/|A|.

• The probability for B = ∅ is at most δ.

Proof. To choose the randomized subset B, first choose a random index I where Pr[I = i] = |Ai|/|A|
for all 1 ≤ i ≤ k. Next, if |AI | < t then set B = ∅, and otherwise set B to be a subset of size exactly

t of AI , chosen uniformly at random from all
(|AI |

t

)
possibilities. Setting m2.23(k, t, δ) = tk/δ, it is

not hard to see that all properties for the random set B indeed hold.

Proof of Lemma 2.22. The proof is done by induction over k. The base case k = 1 is easy – set

R2.22(|Σ|, 1, t, δ) = t, and let W1 be a uniformly random subset of size t of V1.

For the induction step from k − 1 to k, we set R2.22(|Σ|, k, t, δ) = m2.23(|Σ|s, r, 1
k+1δ), where

s = m2.23(|Σ|k−1, t, 1
k+1δ) and r = R2.22(|Σ|, k − 1, t, 1

k+1δ). We set W1, . . . ,Wk to be the result of

the following random process.

First, we set V ′1 ⊆ V1 to be a uniformly random subset of size exactly s. Then, for every

2 ≤ i ≤ k, we set V ′i ⊆ Vi to be the random set B2.23(Vi, r, 1
k+1δ), where Vi is the partition of Vi

obtained by classifying every v ∈ Vi according to the colors 〈c(w, v)〉w∈V ′1 , i.e., two vertices in Vi

are in the same partition set if all their pairs with vertices from V ′1 have the same colors.

If any of the V ′i came out empty, we set all Wi to ∅ and terminate the algorithm (this occurs

with probability at most k−1
k+1δ), and otherwise we continue. Note now, in particular, that for every

w ∈ V1 and v ∈ Vi the probability for both w ∈ V ′1 and v ∈ V ′i to hold is bounded by (s/n)(r/n).

This is since the probability guarantees of Observation 2.23 hold for any possible value of V ′1 . Also,

since each V ′i was independently drawn, for v ∈ Vi and w ∈ Vj (where 1 < i < j ≤ k) the probability

for both v ∈ V ′i and w ∈ V ′j to hold is bounded by (r/n)2.

We now let H ′ denote the (k− 1)-partite Σ-chart induced by V ′2 , . . . , V
′
k, and use the induction

hypothesis to (randomly) set W2, . . . ,Wk as the corresponding vertex sets of H2.22(H ′, t, 1
k+1δ). As

before, if we receive empty sets then we also set W1 = ∅ and terminate. Note that for 1 < i ≤ k

and v ∈ V ′i , the probability for v to be in Wi is bounded by t/r. Hence, for v ∈ Vi, the probability

33

for v ∈ Wi to hold is bounded by (r/n)(t/r) = t/n. Similarly, for 1 < i < j ≤ k, for every v ∈ Vi
and w ∈ Vj the probability for both v ∈ Wi and w ∈ Wj to hold is bounded by (t/n)2. Also by

similar considerations, for v ∈ V1 and w ∈ Vi, the probability for both v ∈ V ′1 and w ∈ Wi to hold

is bounded by (s/n)(t/n).

Finally, we setW1 to be the random setB2.23(V ′, t, 1
k+1δ), where V ′ is the partition of V ′1 obtained

by classifying each v ∈ V ′1 by the colors 〈c(v, w)〉w∈Wi . Note that c(v, w) in that expression depends

only on v and the index i for which w ∈Wi, because of how we chose each V ′i above. In particular,

after the choice of W1, the function c �W1×Wi is constant for each 1 < i ≤ k. Again, if we got an

empty set for W1, we set all W2, . . . ,Wk to be empty as well. By similar considerations as in the

preceding steps, also here, for any v ∈ V1 the probability of v ∈ W1 is bounded by t/n, and for

w ∈ Vi where 1 < i ≤ k, the probability of both v ∈W1 and w ∈Wi is bounded by (t/n)2.

The probability of obtaining empty sets in any of the steps is bounded by δ by a union bound,

and all other properties of the random sets W1, . . . ,Wk have already been proven above.

2.4.2 Multipartitions and Rounding

The following is a mechanism to handle “with one stroke” rounding issues throughout the chapter.

Definition 2.24 (Multipartitions). A multipartition of a set L is a family M of subsets of L,

that in particular includes L and all the singletons {i} for i ∈ L, and furthermore every two sets

A,B ∈M are either disjoint or one is contained in the other.

To get an idea, an object that can be modeled as a multipartition is a partition of L (the

multipartition would contain the partition sets, along with L itself and all singleton sets {i}), but

also other objects, such as a partition and its refinement together, can be modeled as multipartitions.

Here is the main lemma.

Lemma 2.25 (rounding feasibility). If M and N are two multipartitions of the same set L, and

λi ∈ R is a real value attached to every i ∈ L, then there exist integer values `i ∈ Z attached to

i ∈ L, satisfying the following.

• `i ∈ {bλic, dλie} for every i ∈ L.

•
∑

i∈A `i ∈ {b
∑

i∈A λic, d
∑

i∈A λie} for every A ∈M and for every A ∈ N .

•
∑

i∈L `i ∈ {b
∑

i∈L λic, d
∑

i∈L λie}.

Proof. Note that the middle item implies the other two (since M and N in particular include L

and all singleton sets {i} for i ∈ L). We define the following problem of solving a flow network

with minimal and maximal constraints (for an exposition of flow networks see [136]).

• The node set of the flow network is {uA : A ∈M} ∪ {wA : A ∈ N}.

34

• The start node is uL and the target node is wL.

• For every A,B ∈M , so that A (B and there is no C ∈M for which A (C (B, we put an

edge from uB to uA with minimum flow b
∑

i∈A λic and maximum flow d
∑

i∈A λie.

• For every A,B ∈ N , so that A (B and there is no C ∈ N for which A (C (B, we put an

edge from wA to wB with minimum flow b
∑

i∈A λic and maximum flow d
∑

i∈A λie.

• For every i ∈ L we put an edge from ui to wi with minimum flow bλic and maximum flow

dλie.

• We require the total flow of the network to be between b
∑

i∈L λic and d
∑

i∈L λie.

This flow network has a real-valued solution by assigning λi flow to each edge of the type ui, wi,

and then assigning the corresponding sums to all other network edges. Hence (since all constraints

are integer-valued), the flow network has an integer-valued solution as well (see, e.g., the analysis

of Lawler’s algorithm in [136], page 602). Fixing such a solution, and setting `i to be the flow in

the edge ui, wi for every i ∈ L, completes the proof.

An example of using the lemma is when we want to round the values in a 2-dimensional matrix

so that the row sums and column sums are also rounded versions of the original sums (and in

particular equal to the original sums if they happen to be integers). In our use the resulting integer

values would be set sizes for an equipartition, that in turn refines other partitions with set size

requirements.

We also note here that the statement of this lemma is false when we are presented with three

multipartitions. Take for example the 3-dimensional matrix of size 2× 2× 2, where λ111 = λ100 =

λ010 = λ001 = 1
2 , with all other λ values being zero. Also for each of the three dimensions take the

partition into two axes-parallel planes. The values on every set of every partition sum up to 1, and

yet there are no corresponding `ijk ∈ {bλijkc, dλijke} satisfying these constraints.

2.5 A Regularity Scheme for Ordered Graphs

2.5.1 The Approximating Partition Framework

Definition 2.26 (δ-approximating partitions). Let P = (V1, . . . , Vk) and Q = (U1, . . . , Ul) be

partitions of a set V of size n. We say that Q is a δ-approximation of P , or equivalently, that

P and Q are δ-close, if there exists T ⊆ V with |T | ≤ δn such that Vi \ T = Ui \ T for any

1 ≤ i ≤ max{k, l}, where for i > k we define Vi = φ, and similarly Ui = φ for i > l.

Lemma 2.27. For any ε > 0 there exists δ = δ2.27(ε) > 0 such that any two δ-close partitions P

and Q of (the vertex set of) a colored graph G = (V, c) satisfy |ind(P)− ind(Q)| ≤ ε.

35

Proof. Let P = (V1, . . . , Vk) and Q = (U1, . . . , Ul) be δ-close partitions of G, where we assume

w.l.o.g. that k < l. For any 1 ≤ i ≤ k let Wi = Vi ∩ Ui, and observe that
∑k

i=1 |Wi| ≥ (1 − δ)n.

we say that i is bad if |Wi| ≤ (1−
√
δ) min{|Vi|, |Ui|} and good otherwise. Then

∑
i bad |Vi| ≤

√
δn

and
∑

i bad |Ui| ≤
√
δn. When i and j are both good, we have∣∣ind(Vi, Vj)− ind(Wi,Wj)

∣∣ ≤∑
σ∈Σ

∣∣(d2
σ(Vi, Vj)− d2

σ(Wi,Wj)
∣∣ ≤ 2

∑
σ∈Σ

∣∣dσ(Vi, Vj)− dσ(Wi,Wj)
∣∣

≤ 2
∑
σ∈Σ

(
dσ(Vi, Vj)

(
|Vi||Vj |
|Wi||Wj |

− 1

)
+
|c−1(σ) ∩ ((Vi × Vj) \ (Wi ×Wj))|

|Wi||Wj |

)
= O(

√
δ)

where the second inequality holds since dσ(Vi, Vj) + dσ(Ui, Uj) ≤ 2, the third inequality follows

from the fact that |x − y| ≤ z − x + z − y for z ≥ max{x, y} and the last inequality follows

from the observation that |Vi||Vj | = (1 + O(
√
δ))|Wi||Wj |. Similarly, it holds that |ind(Ui, Uj) −

ind(Wi,Wj)| = O(
√
δ), so |ind(Vi, Vj) − ind(Ui, Uj)| = O(

√
δ) when i, j are good. We finish by

observing that

ind(P)− ind(Q) ≤
∑

i<j good

(
|Vi||Vj |(

n
2

) ind(Vi, Vj)−
|Ui||Uj |(

n
2

) ind(Ui, Uj)

)
+ 2
√
δ = O(

√
δ)

where the first inequality holds since
∑

i bad

∑
j 6=i |Vi||Vj |ind(Vi, Vj)/

(
n
2

)
≤ 2
√
δ and the second

inequality is true since |Vi||Vj | =
(

1 +O(
√
δ)
)
|Ui||Uj | and ind(Vi, Vj) =

(
1 +O(

√
δ)
)

ind(Ui, Uj)

when i and j are good, and since ind(Q) ≤ 1. Therefore, taking a suitable δ = Θ(ε2) in the

statement of the lemma suffices.

Lemma 2.28. Let P,Q be δ-close equipartitions of a colored graph G, where |P | = |Q|. Then any

equitable refinement Q′ of Q is δ-close to an equitable refinement P ′ of P , with |P ′| = |Q′|.

Proof. Write P = (V1, . . . , Vk), Q = (U1, . . . , Uk), Q
′ = (U11, . . . , U1r, . . . , Uk1, . . . , Ukr) where Ui =⋃r

j=1 Uij . Also, for any i, j let Wi = Vi ∩ Ui and Wij = Vi ∩ Uij . Then
∑k

i=1

∑r
r=1 |Wij | =∑k

i=1 |Wi| ≥ (1− δ)n, so we may take a refinement P ′ = (Vij)1≤i≤k,1≤j≤r of P as follows: For any

i, j we take Vij that contains Wij and `ij arbitrary additional elements from Vi \Wi, where `ij is

chosen by using Lemma 2.25 in the following manner.

For 1 ≤ i ≤ k and 1 ≤ j ≤ r we set λij = |Vi|/r − |Wij |. We set the multipartition M to

consist of all singleton sets {ij}, the set [k] × [r], and the sets {i} × [r] for 1 ≤ i ≤ k. We set the

multipartition N to be the trivial one, just the singleton sets and [k]× [r]. Invoking Lemma 2.25,

we claim the following about the resulting `ij : Since
∑r

j=1 λij = |Vi|−|Wi|, which is an integer, this

will also equal the corresponding sum
∑r

j=1 `ij = |Vi| − |Wi|, so we can get this way a refinement

of P . Also, for any integer m (in our case |Vi|) it holds that bmr c = dm+1
r e − 1, so the resulting Vij

would form an equipartition. The last issue that we need to deal with is when we have `ij = −1

for some i and j, which could in fact happen. We claim however that in such a case we can move

to another solution for which `ij = 0. To see this, we note that `ij = −1 only if |Vi|/r is not an

36

integer, |Wij | = |Uij | = d|Vi|/re, and `ij = bλijc. But in this case one can see that there exists

j′ 6= j so that `ij′ = dλij′e > 0, and so we can increase `ij by 1 at the expense of `ij′ .

Lemma 2.29. For any ε > 0 there exists δ = δ2.29(ε) > 0 such that the following holds: If P

and Q are δ-close equipartitions of a colored graph G, P is (f, δ)-robust and |P | = |Q|, then Q is

(f, ε)-robust.

Proof. Let P,Q be equipartitions as in the statement and pick δ = δ2.27(ε/3). Consider an equitable

refinement Q′ of Q of size at most f(|Q|) = f(|P |). By Lemma 2.28 there exists some equitable

refinement P ′ of P which δ-approximates Q′ where |P ′| = |Q′| ≤ f(|P |). The robustness of

P implies that ind(P ′) − ind(P) ≤ δ ≤ ε/3. By Lemma 2.27, |ind(P) − ind(Q)| ≤ ε/3 and

|ind(P ′)− ind(Q′)| ≤ ε/3. We conclude that ind(Q′)− ind(Q) ≤ ε. Thus, Q is (f, ε)-robust.

The definition of δ-close partitions works exactly the same for interval partitions. We observe

that interval equipartitions and their densities are mostly determined by the number of parts.

Observation 2.30. Any two interval equipartitions I and J of [n] into m parts are m2

n -close to

each other. In particular, for any f , m and ε, if n is large enough as a function of m and ε, then

for such I and J the densities satisfy 1
m

∑m
i=1

∑
σ∈Σ |dσ(Ii)− dσ(Ji)| ≤ ε.

Proof. If I and J are two interval equipartitions of [n] with |I| = |J | = m, then we can set

T =
⋃m−1
i=1 [ib nmc + 1, idmme]. Clearly |T | < m2 and Ii \ T = Ji \ T for every i ∈ [m]. The second

part of the observation then follows easily from the first part for n large enough.

2.5.2 The Core Lemmas

Definition 2.31 (Least Common Refinement). For two partitions P = (V1, . . . , Vk) and Q =

(U1, . . . , Ul) of a colored graph G, the least common refinement (LCR) P u Q of P and Q is the

partition (V1 ∩ U1, . . . , V1 ∩ Ul, . . . , Vk ∩ U1, . . . , Vk ∩ Ul) (after removing empty sets from the list).

Note that even if P and Q are equitable, P uQ is not necessarily equitable.

The following lemma allows us to combine an “order-respecting” interval partition and a robust

graph partition. The last statement in the formulation (about even n and m) is not needed for

the rest of the proofs concerning ordered graphs, but we will refer to it when we discuss ordered

matrices.

Lemma 2.32. For any δ > 0 and positive integers k, m and b, there exists γ = γ2.32(δ, k) > 0

such that the following holds: If P is an equipartition of an n-vertex colored graph G (for n ≥
N2.32(δ, k,m, b)) with |P | = k, and J is an interval equipartition of SP of size m which is (f, γ)-

robust, where f(m) ≥ mb, then there exist an interval equipartition I = I2.32(δ, P,m, b) of size

m, an interval equipartition I ′ = I ′2.32(δ, P,m, b) of size mb which refines I, an equipartition Q =

Q2.32(δ, P,m, b) of size k which δ-approximates P , and an equipartition Q′ = Q′2.32(δ, P,m, b) of

37

size at most T2.32(δ, k,m) which is a refinement of both I and Q, all satisfying that the LCR

Q′′ = I ′ u Q′ is an equipartition of size |Q′′| = b|Q′| = |Q′||I ′|/|I| (i.e., each set of Q′ intersects

“nicely” all subintervals of the interval of I that contains it).

Furthermore, if m and n are even, then I “respects the middle”, that is
∑m/2

i=1 |Ii| =
n
2 .

Proof. We denote P = (V1, . . . , Vk), and set γ2.32(δ, k) = δ2.16(k, δ/20). The sets of the original

interval equipartition J will be denoted by J1, . . . , Jm.

We denote the eventual intervals of I by (I1, . . . , Im), denote the eventual intervals of I ′ by

(I11, . . . , I1b, . . . , Im1, . . . , Imb) where Ii =
⋃b
j=1 Iij for any i ∈ [m]. The eventual sets of Q will be

denoted by (U1, . . . , Uk), the sets of Q′ by (W11, . . . ,W1t, . . . ,Wm1, . . . ,Wmt) where Ii =
⋃t
s=1Wis,

and the eventual sets of Q′′ will be denoted as Wijs = Wis ∩ Iij . We pick t = kd20/δe, and

correspondingly T2.32(δ, k,m) = mt.

Before choosing the partition intervals and sets themselves, we will choose sizes for the sets,

and also choose sets of indexes K1, . . . ,Kk describing the connection of Q to its refinement Q′.

That is, eventually we will have Ua =
⋃

(is)∈KaWis for every a ∈ [k]. Finally defining the eventual

Kia = {s : (is) ∈ Ka}, Uia = Ii ∩ Ua and Uija = Iij ∩ Ua, we will also have Uia =
⋃
s∈KiaWis and

Uija =
⋃
s∈KiaWijs.

We next determine the sizes |Kia|, which will be found through our first use of Lemma 2.25

(and some further processing). We set the following parameters and multipartitions.

• λia = t|Ji ∩ Va|/|Ji|.

• N contains the singleton sets {(ia)}, the set [m]× [k], and the set {i} × [k] for every i ∈ [m].

Note that in particular
∑k

a=1 λia = t is an integer, so we also have
∑k

a=1 `ia = t.

• M contains the singleton sets {(ia)}, the set [m] × [k], and the set [m] × {a} for every

a ∈ [k]. Note that since |Ji| = n
m ± 1 = (1± m

n) nm and |Va| = (1± k
n)nk , we have

∑m
i=1 λia =

(1± 2m+k
n)mtk , which means that for n large enough all the sums

∑m
i=1 `ia will equal mt

k ± 1

(note that mt
k is an integer), and moreover the number of a ∈ [k] for which

∑m
i=1 `ia = mt

k + 1

will equal the number of a ∈ [k] for which this value is mt
k − 1.

After obtaining the values `ia through Lemma 2.25, we obtain `′ia from `ia through the following

process: For all a for which
∑m

i=1 `ia = mt
k , we set `′ia = `ia for all i ∈ [m]. Otherwise we each time

take an a for which
∑m

i=1 `ia = mt
k + 1 and an a′ for which

∑m
i=1 `ia′ = mt

k − 1. We choose i for

which `ia > `ia′ set `′ia = `ia−1, `′ia′ = `ia′ + 1, and for all other i′ we set `′i′a = `i′a and `′i′a′ = `i′a′ .

The resulting `′ia satisfy
∑k

a=1 `
′
ia = t,

∑m
i=1 `

′
ia = mt

k , and `′ia = λia ± 2.

Now we construct disjoint K1, . . . ,Kk ⊂ [m]× [t] so that for every i ∈ [m] and every a ∈ [k] we

have |Kia| = `′ia. By the equations on the sums of `′ia above this is doable, and results in |Ka| = mt
k

for every a ∈ [k].

Next, we determine the sizes of the sets Iij of I ′ and Wijs of Q′′, through a second use of Lemma

2.25. We set the following parameters and multipartitions, for determining `ijs = |Wijs|.

38

• We plainly set λijs = λ = n
mbt for all i ∈ [m], j ∈ [b] and s ∈ [t]. Since all values are the same,

the `ijs will have value differences bounded by 1, as befits the equipartition Q′′.

• M consists of the singletons, the set [m]× [b]× [t], and the following.

– The set
⋃
s∈Kia({i} × {j} × {s}) for every i ∈ [m], j ∈ [b] and a ∈ [k]. This will make

Uija have size between b |Kia|t |Iij |c and d |Kia|t |Iij |e (see about |Iij | below).

– The set {i} × {j} × [t] for each i ∈ [m] and j ∈ [b]. Eventually we will have |Iij | =∑t
s=1 `ijs ∈ {b

n
mbc, d

n
mbe}, so I ′ will be equitable.

– The set {i} × [b]× [t] for each i ∈ [m]. Eventually we will have |Ii| =
∑t

s=1

∑b
j=1 `ijs ∈

{b nmc, d
n
me}, so I will be equitable.

– If n and m are both even, we also add the sets [1,m/2]×[b]×[t] and [m/2+1,m]×[b]×[t]

to M . Eventually we will have
∑m/2

i=1 |Ii| =
∑m

i=m/2+1 |Ii| = n/2.

• N consists of the singletons, the set [m]× [b]× [t], and the following.

– The set {i} × [b]× {s} for every i ∈ [m] and s ∈ [t]. This will ensure that the eventual

Q′ is equitable.

– The set
⋃
s∈Kia({i} × [b]× {s}) for every i ∈ [m] and a ∈ [k]. This will make every Uia

have size between b |Kia|t |Ii|c and d |Kia|t |Ii|e.

– The set
⋃

(is)∈Ka({i} × [b]× {s}) for every a ∈ [k]. This will ensure that the eventual Q

is equitable.

After obtaining the values `ijs for the respective set sizes |Wijs|, we finally construct the partitions

themselves. First we construct I as the only interval partition for which |Ii| =
∑t

s=1

∑b
j=1 `ijs for

every i ∈ [m], and I ′ as the only refinement of I for which |Iij | =
∑t

s=1 `ijs for every i ∈ [m] and

j ∈ [b]. For every i ∈ [m] and s ∈ [t] let bis ∈ [k] be the index such that (is) ∈ Kbis . We now go over

the indexes i ∈ [m] and j ∈ [b], and partition the vertices of Iij into the sets Wijs so that as many

members of Vbis ∩ Iij as possible will go into every Wijs. When we can no longer assign vertices

in this manner (because |Iij ∩ Vb| will not necessarily equal
∑

bis=b
`ijs), we assign the remaining

vertices to complete the sets that do not yet have the correct size.

Having defined I, I ′ and Q′′, we define Q′ by setting Wis =
⋃b
j=1Wijs for every i ∈ [m] and

s ∈ [t], and define Q by setting Ua =
⋃

(is)∈KaWis. All properties of I, I ′, Q, Q′ and Q′′ immediately

follow from the construction, apart from the relationship between Q and P that we still need to

prove.

Because of the way we chose the sets Wijs to maximize the number of vertices they contain

from the “correct” sets of P , The partitions P and Q will be δ-close if

m∑
i=1

b∑
j=1

k∑
a=1

∣∣|Va ∩ Iij | − |Ua ∩ Iij |∣∣ ≤ δn.
39

Denote the densities according to the string SP by dP,a(Iij) (where a ∈ [k]), and the densities

according to SQ by dQ,a(Iij). For n large enough, because I ′ is an equipartition (interval sizes

differ by not more than 1), we have

1

n

m∑
i=1

b∑
j=1

k∑
a=1

∣∣|Va ∩ Iij | − |Ua ∩ Iij |∣∣ ≤ 2

mb

m∑
i=1

b∑
j=1

k∑
a=1

|dP,a(Iij)− dQ,a(Iij)|.

From now on we bound the sums on the right hand side. Recall that J denotes the original

interval equipartition of size m, and let J ′ be any refinement of J of size mb. By Observation

2.30, for n large enough we have 1
mb

∑
a∈[k]

∑
i∈[m]

∑
j∈[b] |dP,a(Iij)− dP,a(Jij)| ≤ δ/20. By Lemma

2.16, we know that 1
mb

∑
a∈[k]

∑
i∈[m]

∑
j∈[b] |dP,a(Jij) − dP,a(Ji)| ≤ δ/20. Now, recall that we

chose the sets Ka so that |Kia| = t · dP,a(Ji) ± 2. This means that 1
m

∑
a∈[k]

∑
i∈[m] |dP,a(Ji) −

dQ,a(Ii)| ≤ δ/5 (recalling also how we chose t). Finally, by our construction, for n large enough,
1
mb

∑
a∈[k]

∑
i∈[m]

∑
j∈[b] |dQ,a(Ii)− dQ,a(Iij)| ≤ δ/20. This follows from the size restriction that we

ensured for the sets Uia and Uija. Using triangle inequalities with all these bounds on the density

differences concludes the proof.

Lemma 2.33. For any positive integer k, real value γ, functions r : N×N→ N and f : N→ N, and

any n-vertex ordered colored graph G (for large enough n), there exist an interval equipartition I into

m parts where k ≤ m ≤ S2.33(γ, k, f, r), an equipartition Q′ of G into mt parts (not necessarily an

interval equipartition) which refines I and is additionally (f, γ)-robust, where mt ≤ T2.33(γ, k, f, r),

and an interval equipartition I ′ into m · r(m, t) parts also refining I, so that the LCR Q′′ = Q′ u I ′

is an equipartition into exactly mt · r(m, t) parts (so each set of Q′ intersects “nicely” all relevant

intervals in I ′).

Moreover, if n is even, then m will be even and I will respect the middle.

Proof. For each l ∈ N we define a function gl : N→ N by setting for every m ∈ N

gl(m) = m · r(m,T2.32(δ2.29(γ), l,m)/m).

Then we define a function h : N→ N setting for every l ∈ N

h(l) = f(T2.32(δ2.29(γ), l, T2.15(k, gl, γ2.32(δ2.29(γ), l)))).

We start with an equipartition P that is (h, δ2.29(γ))-robust that we obtain by Observation 2.10,

and then with respect to the string SP we obtain by Observation 2.15 an interval equipartition J

that has at least k parts and is (g|P |, γ2.32(δ2.29(γ), |P |))-robust. Note that |P | ≤ T2.10(1, h, δ2.29(γ)),

and hence |J | ≤ T2.15(k, gT2.10(1,h,δ2.29(γ)) , γ2.32(δ2.29(γ), T2.10(1, h, δ2.29(γ)))), which we set as our

S2.33(γ, k, f, r).

If n is even, then we make sure that k is also even (otherwise we replace it with k + 1 in all of

the above), and then |J | will be even as well (and our subsequent use of Lemma 2.32 will provide

an I that respects the middle).

40

We then invoke Lemma 2.32 to get our partitions I = I2.32(δ2.29(γ), P, |J |, g|P |(|J |)/|J |), I ′ =

I ′2.32(δ2.29(γ), P, |J |, g|P |(|J |)/|J |), and Q′ = Q′2.32(δ2.29(γ), P, |J |, g|P |(|J |)/|J |). By the size guar-

antees of Lemma 2.32 we have |I| = |J | (ensuring our size bound for |I|), and |Q′| is bounded by

T2.32(δ2.29(γ), T2.10(1, h, δ2.29(γ)), S2.33(γ, k, f, r)), which we set as our T2.33(γ, k, f, r).

Lemma 2.32 guarantees all requirements apart from the robustness of Q′. To prove it, we

note that Q′ is a refinement of the partition Q = Q2.32(δ2.29(γ), P, |J |, g|P |(|J |)/|J |) into at most

T2.32(δ2.29(γ), |P |, T2.15(k, g|P |, γ2.32(δ2.29(γ), |P |))) parts, where |Q| = |P | and Q and P are δ2.29(γ)-

close. Hence by invoking Lemma 2.29 (which makes Q (h, γ)-robust), and then Observation 2.11,

we get that Q′ is indeed (f, γ)-robust.

2.5.3 The Finite Case for Graphs

This section contains the proof of Theorem 2.6 for the case that the forbidden family F is finite.

This is the ordered generalization of the finite induced graph removal lemma (Theorem 2.1).

Theorem 2.34 (Finite ordered graph removal lemma). Fix a finite set Σ with |Σ| ≥ 2. For any

finite family F of ordered graphs F :
(

[nF]
2

)
→ Σ and any ε > 0 there exists δ = δ(F , ε) > 0, such

that any ordered graph G :
(
V
2

)
→ Σ that is ε-far from F-freeness contains at least δnq induced

copies of some graph F ∈ F .

The proof of Theorem 2.6 is completed in Section 2.6, by considering the case where F is infinite.

The proof for the infinite case mostly relies on ideas and tools presented in this section, but requires

another step, which is motivated by the ideas of Alon and Shapira [12] for the unordered case.

2.5.4 Representing Subsets

Fix a finite alphabet Σ and a finite family F over Σ. Let dF denote the largest number of ver-

tices in a graph from F . Now let G = (V, c) be an n-vertex Σ-colored graph and suppose that

I, I ′, Q′, Q′′ are equipartitions of G of sizes m,mb,mt,mbt respectively, so that I, I ′ are interval

partitions, I ′ and Q′ refine I, and Q′′ = I ′ u Q′. More specifically, we write I = (I1, . . . , Im),

I ′ = (I11, . . . , I1b, . . . , Im1, . . . , Imb), Q
′ = (U11, . . . , U1t, . . . , Um1, . . . , Umt), Q

′′ = (U111, . . . , Umbt),

where Ij =
⋃b
r=1 Ijr =

⋃t
s=1 Ujs for any j ∈ [m] and Ujrs = Ijr ∩Ujs for any j ∈ [m], r ∈ [b], s ∈ [t].

Note that this is the same setting as the one obtained in Lemma 2.33, but we do not apply the

lemma at this point; in particular, we currently do not make any assumptions on the equipartitions

other than those stated above. We may and will assume whenever needed that n is large enough

(as a function of all relevant parameters), and that any tuple of subsets of V considered in this

section has at least two parts (i.e., it is not trivial).

Definition 2.35 (Representing subsets). Let α, β, µ > 0 be real numbers and suppose that A =

(A1, . . . , Al) is an equipartition of G. We say that B = (B1, . . . , Bl) represents A if Bi ⊆ Ai for

any i ∈ [l]. Furthermore, we say that B (α, β, µ)-represents A if the following holds.

41

• Bi ⊆ Ai and |Bi| ≥ αn for any i ∈ [l].

• All pairs (Bi, Bj) with i < j ∈ [l] are β-regular.

• 1

(l2)

∑
i<j∈[l]

∑
σ∈Σ |dσ(Bi, Bj)− dσ(Ai, Aj)| ≤ µ.

The following lemma is a slight variant of Corollary 3.4 in [7], suggesting that partitions that

are robust enough have good representing subsets. The proof follows along the same lines of the

proof of Lemma 3.2 in [56], so we omit it.

Lemma 2.36 ([7, 56]). For any µ > 0 and function β : N → (0, 1) there exist a function f =

f
(β,µ)
2.36 : N → N and a real number γ = γ2.36(µ) > 0, such that for any integer l > 0 there is a real

number α = α2.36(β, µ, l) > 0, all satisfying the following. If A = (A1, . . . , Al) is an (f, γ)-robust

equipartition of G, then there exists a tuple B = (B1, . . . , Bl) which (α, β(l), µ)-represents A.

The next lemma is not hard to derive from Lemma 2.36 using Lemma 2.13, and is more suitable

to our setting.

Lemma 2.37. For any function β : N→ (0, 1), function g : N→ N, and real number µ > 0, there

exist a function f = fβ,g,µ2.37 : N→ N and a real number γ = γ2.37(µ) > 0, so that for any integer l > 1

there exists α = α2.37(β, g, µ, l) > 0 satisfying the following: If A = (A1, . . . , Al) is an (f, γ)-robust

equipartition of G and A′ = (A11, . . . , A1L, . . . , Al1, . . . AlL) is an equitable refinement of A, where

lL ≤ g(l) and Ai =
⋃L
j=1Aij for any i ∈ [l], then there exists B = (B11, . . . , B1L, . . . Bl1, . . . , BlL)

which (α, β(lL), µ)-represents A′, and satisfies

1(
l
2

)
L2

∑
i<i′∈[l]

∑
j,j′∈[L]

∑
σ∈Σ

|dσ(Bij , Bi′j′)− dσ(Ai, Ai′)| ≤ 2µ.

Proof. Pick f = fβ,g,µ2.37 = f
(β,µ)
2.36 ◦ g and γ = γ2.37(µ) = min{δ2.13(|Σ|, µ), γ2.36(µ)}. Also pick

α = α2.37(β, g, µ, l) = α2.36(β, µ, g(l)), and suppose that A is (f, γ)-robust. By Observation 2.11

and the fact that |A′| = lL ≤ g(l), we know that A′ is (f
(β,µ)
2.36 , γ2.36(µ))-robust, so by Lemma 2.36

there exists a tuple B = (B11, . . . , B1L, . . . Bl1, . . . , BlL) which (α2.36(β, µ, lL), β(lL), µ)-represents

A′, and by the monotonicity of α, B also (α, β(lL), µ)-represents A′. In particular,

1(
l
2

)
L2

∑
i<i′∈[l]

∑
j,j′∈[L]

∑
σ∈Σ

|dσ(Bij , Bi′j′)− dσ(A′ij , A
′
i′j′)| ≤ µ.

Now by Lemma 2.13, and since |A′| ≤ g(l) ≤ f(l),

1(
l
2

)
L2

∑
i<i′∈[l]

∑
j,j′∈[L]

∑
σ∈Σ

|dσ(A′ij , A
′
i′j′)− dσ(Ai, Ai′)| ≤ µ.

Combining the above two inequalities and using the triangle inequality concludes the proof.

42

2.5.5 The Graph of the Representatives and its Coloring

For the next step, let Γ = Γ(Σ, t) denote the collection of all t× t matrices M of the following form:

Each entry of M is a non-empty subset of the color set Σ (where a subset is allowed to appear in

multiple entries of M), so |Γ(Σ, t)| < 2|Σ|t
2
.

Definition 2.38 (Threshold color matrices, threshold graphs, undesirability). Suppose

that W = (W111, . . . ,Wmbt) represents Q′′ and define Wjr = (Wjr1, . . . ,Wjrt) and Xj = (Uj1, . . . , Ujt)

for any j ∈ [m] and r ∈ [b]. Let 0 < η < ρ < 1/|Σ| be real numbers.

For two t-tuples A = (A1, . . . , At) and B = (B1, . . . , Bt) where As, Bs ⊆ V for any s ∈ [t], the

η-threshold matrix M = M(A,B, η) ∈ Γ of the pair A,B is the t× t matrix whose (s, s′) entry (for

(s, s′) ∈ [t]2) is the set of colors σ ∈ Σ that satisfy dσ(As, Bs′ , c �As,Bs′) ≥ η. Note that this set

cannot be empty since η < 1/|Σ|.
The (η,W)-threshold graph Hη

W is an (ordered) Γ-colored graph defined as follows: The vertices

of Hη
W are all parts of I ′, and the color of the edge IjrIj′r′ is M(Wjr,Wj′r′ , η).

The edge IjrIj′r′ of Hη
W is ρ-undesirable if j′ > j and at least ρt2 of the pairs (s, s′) ∈ [t]2 satisfy

M(Xj , Xj′ , ρ)[s, s′] *M(Wjr,Wj′r′ , η)[s, s′]. Finally, Hη
W is ρ-undesirable if at least ρ

(
m
2

)
b2 of the

edges IjrIj′r′ in it are ρ-undesirable, and ρ-desirable otherwise.

In other words, an edge IjrIj′r′ is undesirable if there are many pairs of sets Wjrs,Wj′r′s′ in

W , for which the density of some original edge color in Wjrs ×Wj′r′s′ is significantly smaller than

its density in Ujs × Uj′s′ . Hη
W is undesirable if it contains many undesirable edges. Note that the

set of ρ-undesirable edges in Hη
W is orderly: Whether an edge Ijr, Ij′r′ of Hη

W is undesirable or not

depends only on its color M(Wjr,Wj′r′ , η) and on M(Xj , Xj′ , ρ).

The following lemma relates the robustness of our partitions to the desirability of the resulting

threshold charts.

Lemma 2.39. For any 0 < ρ < 1/|Σ| and functions β : N → (0, 1/|Σ|) and g : N → N, there

exist a function f = fρ,β,g2.39 : N → N and positive real numbers µ = µ2.39(ρ) ≤ ρ, γ = γ2.39(ρ) and

α = α2.39(ρ, β, g,m, t), such that if Q′ is (f, γ)-robust and |Q′′| ≤ g(|Q′|), then there is a tuple

W = (W111, . . . ,Wmbt) which (α, β(mbt), µ)-represents Q′′, and furthermore H
ρ/2
W is ρ-desirable.

Proof. Let 0 < ρ < 1/|Σ| and suppose that H
ρ/2
W is ρ-undesirable, where W is any tuple that

represents Q′′. The definition of undesirability implies that

1(
m
2

)
t2b2

∑
j<j′∈[m]

∑
s,s′∈[t]

∑
r,r′∈[b]

∑
σ∈Σ

|dσ(Wjrs,Wj′r′s′)− dσ(Ujs, Uj′s′)| ≥
ρ
(
m
2

)
b2ρt2ρ/2(
m
2

)
t2b2

=
ρ3

2
. (2.2)

Indeed, if M(Xj , Xj′ , ρ)[s, s′] * M(Wjr,Wj′r′ , ρ/2)[s, s′] then there exists some σ ∈ Σ for which

dσ(Ujs, Uj′s′) ≥ ρ but dσ(Wjrs, Uj′r′s′) ≤ ρ/2, so each such event contributes ρ/2 to the sum in the

left hand side.

43

Therefore, H
ρ/2
W is ρ-desirable if the above sum is smaller than ρ3/2. Thus, we pick µ(ρ) = ρ3/5.

Also pick fρ,β,g2.39 = fβ,g,µ2.37 , γ2.39(ρ) = γ2.37(µ), and α2.39(ρ, β, g,m, t) = α2.37(β, g, µ,mt). Since

Q′ is
(
fβ,g,µ2.37 , γ2.37(µ)

)
-robust, and since |Q′′| ≤ g(|Q′|), Lemma 2.37 implies that there exists

W = (W111, . . . ,Wmbt) which (α, β(mbt), µ)-represents Q′, also guaranteeing that the left hand

side of (2.2) is at most 2µ < ρ3/2, so H
ρ/2
W is ρ-desirable.

Definition 2.40 (Nicely colored subgraph). Let W = (W111, . . . ,Wmbt) be a tuple of subsets that

represents Q′′ and let η > 0. A subgraph D = (
⋃m
j=1Dj , cD) of Hη

W is said to be nicely colored if

the following conditions hold.

• For any j ∈ [m], Dj ⊆ Ij and |Dj | = dF .

• For any fixed j ∈ [m], all edges inside Dj have the same color from Γ, denoted by C
(D)
jj .

• For any fixed j < j′ ∈ [m], all edges between Dj and Dj′ have the same color from Γ, denoted

by C
(D)
jj′ .

The next lemma follows directly from Corollary 2.20.

Lemma 2.41. For any two integers m, t > 0 there exists R = R2.41(m, t) satisfying the following:

If b ≥ R2.41(m, t), then for any tuple W = (W111, . . . ,Wmbt) that represents Q′′ and any η > 0

there exists a nicely colored subgraph D = D2.41(W, η) of Hη
W . Moreover, if Hη

W is ρ-desirable for

some η < ρ < 1/|Σ|, then the number of ρ-undesirable edges in D is at most 2ρ
(
m
2

)
(dF)2.

Proof. Take R2.41(m, t) = R2.20(2|Σ|t
2
,m, dF) > R2.20(|Γt|,m, dF). Since the set of ρ-undesirable

edges in Hη
W is orderly, we may apply Corollary 2.20 on Hη

W , to get a nicely colored subgraph D

of it. If Hη
W is ρ-desirable for some η < ρ < 1/|Σ|, then by definition it has at most ρ

(
m
2

)
b2 ρ-

undesirable edges, and so the last condition in Corollary 2.20 implies that D has at most 2ρ
(
m
2

)
(dF)2

ρ-undesirable edges.

2.5.6 Cleaning the Original Graph

Definition 2.42 (Cleaned graph). Let W = (W111, . . . ,Wmbt) be a tuple of subsets which represents

Q′′, let η > 0, and suppose that D is a nicely colored subgraph of Hη
W . The cleaned graph G′ =

G′(G,D) = (V, c′) is defined as follows. For any u < v ∈ V where u ∈ Ijs and v ∈ Ij′s′, we

set c′(uv) = c(uv) if c(uv) ∈ C
(D)
jj′ [s, s′], and otherwise we set c′(uv) to an arbitrary color from

C
(D)
jj′ [s, s′].

The next lemma states that if D comes from a desirable Hη
W , then G′(G,D) is close to G.

Lemma 2.43. Suppose that D is a nicely colored subgraph of some Hη
W with W representing Q′′

and 0 < η < ρ, such that at most 2ρ
(
m
2

)
d2
F edges of D are ρ-undesirable. Then G′ = G′(G,D) is

(7|Σ|ρ+ 2/m)-close to G, where m = |I|.

44

Proof. Write G′ = (V, c′) and let J denote the set of pairs j < j′ ∈ [m] such that Dj×Dj′ contains

an undesirable edge. An edge e ∈
(
V
2

)
may satisfy c′(e) 6= c(e) only if at least one of the following

holds (some of the inequalities stated below rely on the assumption that n is large enough).

1. e lies inside some part Ij of I. The number of such edges is
∑m

j=1

(|Ij |
2

)
≤ m

(dn/me
2

)
< 2

m

(
n
2

)
.

2. e ∈ Ij1 × Ij2 where (j1, j2) ∈ J . But |J | ≤ 2ρ
(
m
2

)
: The number of ρ-undesirable edges in D is

exactly |J |d2
F , since D is orderly (with respect to the parts D1, . . . , Dm) and has dF vertices

in each Di. Thus, |J |d2
F ≤ 2ρ

(
m
2

)
d2
F , which implies the desired inequality. Therefore, the

number of edges e of of this type is less than 3ρ
(
n
2

)
.

3. e ∈ Ujs × Uj′s′ where j < j′ ∈ [m], (j, j′) /∈ J , and M(Xj , Xj′ , ρ)[s, s′] * Cjj′(D)[s, s′]. But

since the number of pairs (s, s′) ∈ [t]2 that satisfy this condition for a fixed (j, j′) /∈ J is at

most ρt2, only at most 3ρ|Ij ||Ij′ |/2 of the edges e ∈ Ij × Ij′ belong here, implying that the

total number of edges of this type is less than 2ρ
(
n
2

)
.

4. e ∈ Ujs × Uj′s′ where j < j′ ∈ [m], (j, j′) /∈ J , and M(Xj , Xj′ , ρ)[s, s′] ⊆ Cjj′(D)[s, s′], but

dc(e)(Ujs, Uj′s′) < ρ. The number of such edges in Ujs×Uj′s′ is at most |Σ| · ρ|Ujs||Uj′s′ |, and

the total number of such edges is less than 2ρ|Σ|
(
n
2

)
.

Therefore, the total number of edges e with c(e) 6= c′(e) is less than (7ρ|Σ|+ 2/m)
(
n
2

)
.

Lemma 2.44. Let W = (W111, . . . ,Wmbt) be a tuple that represents Q′′ and let η > 0. If D is a

nicely colored subgraph of Hη
W and the cleaned G′(G,D) contains a copy of some F = ([nF], cF) ∈ F ,

then there exist Wj1r1s1 , . . . ,WjnF rnF snF
∈W with the following properties.

• For any i ∈ [nF − 1], either ji+1 > ji, or ji+1 = ji and ri+1 > ri.

• For any i < i′ ∈ [nF] it holds that dcF (ii′)(Wjirisi ,Wji′ri′si′) ≥ η.

Proof. Suppose that G′(G,D) = (V, c′) contains a copy of F whose vertices in V are v1 < . . . <

vnF . For any i ∈ [nF], let ji ∈ [m], si ∈ [t] be the indices for which vi ∈ Ijisi and denote

the vertices of D inside Iji by Dji = {Ijiri1 , . . . , IjiridF }, where ri1 < . . . < ridF ∈ [b] for any

i ∈ [nF]. Then for any i, i′ ∈ [nF] and l, l′ ∈ [dF], for which either i < i′, or i = i′ and l < l′,

it holds that cF (ii′) = c′(vi, vi′) ∈ C
(D)
jiji′

[si, si′] = M(Wjiril ,Wji′ri′l′ , η)[si, si′], and so by definition

dcF (ii′)(Wjirilsi ,Wji′ri′l′si′) ≥ η.

Therefore, the sets Wj1r11s1 , . . . ,WjnF rnF nF snF
satisfy the conditions of the lemma: They exist,

since nF ≤ dF . The first condition holds since j1 ≤ . . . ≤ jnF , and if ji = ji+1 then rii = r(i+1)i <

r(i+1)(i+1). The second condition holds by the first paragraph of the proof (putting l = i and

l′ = i′).

45

2.5.7 Proof of Main Theorem

Suppose that G is ε-far from F-freeness. Take the function r = R2.41 (note that r is a two-variable

function) and let g : N → N be defined by g(l) = lr(l, l) for any l ∈ N. Also take k = d20/εe,
ρ = ε/8|Σ|, and β : N → (0, 1/|Σ|) as a constant function that satisfies β(l) = β

ρ/2
2.14(dF) for any

l ∈ N. Also take f = fρ,β,g2.39 , and γ = γ2.39(ρ).

Apply Lemma 2.33 with parameters k, γ, r, f , obtaining the equipartitions I, I ′, Q′, Q′′ of sizes

m,mb,mt,mbt as in the statement of the lemma, where k ≤ m ≤ S2.33(γ, k, f, r), mt ≤ T2.33(γ, k, f, r),

b = r(m, t) = R2.41(m, t), and Q′ is (f, γ)-robust. Observe that |Q′′| = mtr(m, t) ≤ g(mt) = g(|Q′|).
Next, define α = α2.39(ρ, β, g, S2.33(γ, k, f, r), T2.33(γ, k, f, r)) and µ = µ2.39(ρ). By Lemma

2.39, and since β(l) = β
ρ/2
2.14(dF) for any l ∈ N, there is a tuple W which (α, β

ρ/2
2.14(dF), µ)-represents

Q′′, and H
ρ/2
W is ρ-desirable. By Lemma 2.41, and since b = R2.41(m, t), there is a nicely colored

subgraph D = D2.41(W,ρ/2), containing at most 2ρ
(
m
2

)
(dF)2 ρ-undesirable edges.

Lemma 2.43 implies that G′ = G′(G,D) is (7|Σ|ρ + 2/m)-close to G; but 7|Σ|ρ + 2/m ≤
7ε/8 + 2/k < ε, so G′ contains a copy of some F = ([nF], cF) ∈ F . Therefore, by Lemma 2.44

(putting η = ρ/2 in the statement of the lemma), there exist Wj1r1s1 , . . . ,WjnF ,rnF ,snF
∈ W that

satisfy the conditions of the lemma. As all pairs of sets from W are β
ρ/2
2.14(nF)-regular (since

nF ≤ dF), we can apply Lemma 2.14 to conclude that the number of F -copies in G is at least δnq

for q = nF ≤ dF and δ = κ2.14(ρ/2, nF)αnF ≥ κ2.14(ρ/2, dF)αdF , concluding the proof.

2.6 The Infinite Case

In this section we use the same notation as in Section 2.5.3, unless stated otherwise. The proof of

Theorem 2.6 follows that of Theorem 2.34 almost word by word, with only one major difference:

In the proof of Theorem 2.34 we have picked dF to be the largest number of vertices in a graph

from F , and showed that if G is ε-far from F-freeness than there must be a set of at most dF

representatives of parts in Q′′, that span a large number of F -copies for some F ∈ F . However, in

the infinite case, such a definition of dF cannot work. Instead, we take dF (m, t) to be a parameter

that depends on the family F , the size of the alphabet |Σ| and the integers m, t (where m = |I|,
mt = |Q′|). It is then shown that with this choice of dF , the proof follows similarly to the finite

case, with Lemmas 2.41 and 2.44 being replaced with similar lemmas that are suitable for the

infinite case (Lemmas 2.47 and 2.49 below, respectively).

2.6.1 Embeddability

Definition 2.45 (Embeddability). For a finite alphabet Σ, integers m, t > 0, Γ(Σ, t)-colored graph

with loops H = ([m], cH) and Σ-colored graph F = ([nF], cF), we say that F is embeddable in H

if there exists a mapping h : [nF]→ VH with the following properties.

• h is weakly order-preserving: h(1) ≤ . . . ≤ h(nF).

46

• There exist integers s1, . . . , snF ∈ [t] so that cF (ii′) ∈ cH(h(i), h(i′))[si, si′] for any i < i′ ∈
[nF].

A family F of Σ-colored graphs is embeddable in H if some F ∈ F is embeddable in H.

The next lemma states that the desired dF is indeed well-defined. It is similar in spirit to the

ideas of Alon and Shapira [12] (see Section 4 there).

Lemma 2.46. Fix a finite alphabet Σ. For any (finite or infinite) family F of Σ-ordered graphs

and integers m, t > 0, there exists dF = d
(2.46)
F (m, t) with the following property. If H = ([m], cH)

is a Γ(Σ, t)-colored graph with loops, and if F is embeddable in H, then there is a graph F ∈ F
which is embeddable in H and has at most d

(2.46)
F (m, t) vertices.

Proof. Let H = Hm,t denote the set of all Γ(Σ, t)-colored graphs H = ([m], cH) with loops, such

that F is embeddable in H. Note that |Hm,t| ≤ |Γ(Σ, t)|m2 ≤ 2|Σ|t
2m2

. For any H ∈ H let FH ⊆ F
denote the collection of all graphs in F that are embeddable in H. Finally define

d
(2.46)
F (m, t) = max

H∈Hm,t
min
F∈FH

|F |

where |F | denotes the number of vertices in F . Since Hm,t is finite, and since the set FH is non-

empty for any H ∈ H (by definition of H), the function d
(2.46)
F (m, t) is well defined. Now let H be a

graph as in the statement of the lemma and suppose that F is embeddable in H. Then H ∈ Hm,t,
so there exists F ∈ FH of size at most d

(2.46)
F (m, t).

2.6.2 Adapting the Proof for Infinite Families

For what follows, a nicely colored (m, t)-subgraph is defined exactly like a nicely colored subgraph

(see Definition 2.40), except that each set Dj is of size d
(2.46)
F (m, t). The following is a variant of

Lemma 2.41 for the infinite case.

Lemma 2.47. For any two integers m, t > 0 there exists R = R2.47(m, t) satisfying the following:

If b ≥ R2.47(m, t), then for any tuple W = (W111, . . . ,Wmbt) that represents Q′′ and any η > 0 there

exists a nicely colored (m, t)-subgraph D = D2.47(W, η) of Hη
W . Moreover, if Hη

W is ρ-desirable for

some η < ρ < 1/|Σ|, then the number of ρ-undesirable edges in D is at most 2ρ
(
m
2

)
(d

(2.46)
F (m, t))2.

The proof of Lemma 2.47 is essentially identical to that of Lemma 2.41, with any occurrence of

dF replaced by d
(2.46)
F (m, t). In particular we take R2.47(m, t) = R2.20(2|Σ|t

2
,m, d

(2.46)
F (m, t)).

Next we state the variant of Lemma 2.43 for the infinite case. The proof is essentially identical.

Lemma 2.48. Suppose that D is a nicely colored (m, t)-subgraph of some Hη
W with W representing

Q′′ and 0 < η < ρ, such that at most 2ρ
(
m
2

)
(d

(2.46)
F (m, t))2 edges of D are ρ-undesirable. Then

G′ = G′(G,D) is (7|Σ|ρ+ 2/m)-close to G, where m = |I|.

47

The next lemma is the variant of Lemma 2.44 that we use in the infinite case. In contrast to

the previous two lemmas, here the proof is slightly modified, and makes use of Lemma 2.46.

Lemma 2.49. Let W = (W111, . . . ,Wmbt) be a tuple that represents Q′′ and let η > 0. If D is a

nicely colored (m, t)-subgraph of Hη
W and G′(G,D) contains a copy of a graph from F , then there

exist F = ([nF], cF) ∈ F , where nF ≤ d(2.46)
F (m, t), and sets Wj1r1s1 , . . . ,WjnF rnF snF

∈W , with the

following properties.

• For any i ∈ [nF − 1], either ji+1 > ji, or ji+1 = ji and ri+1 > ri.

• For any i < i′ ∈ [nF] it holds that dcF (ii′)(Wjirisi ,Wji′ri′si′) ≥ η.

Proof. Consider the Γ-colored graph with loops D′ = ([m], cD′): For any j ≤ j′, cD′(jj
′) = C

(D)
jj′ .

Suppose that G′(G,D) = (V, c′) contains a copy of A = ([nA], cA) ∈ F , whose vertices in V are

v1 < . . . < vnA . For any i ∈ [nA], let ji ∈ [m], si ∈ [t] be the indices for which vi ∈ Ijisi . Then for any

i < i′ ∈ [nA] we have cA(ii′) = c′(viv
′
i) ∈ C

(D)
jiji′

[si, si′] = cD′(jiji′)[si, si′], and so A is embeddable in

D′ (by the mapping i 7→ ji). By Lemma 2.46, there exists F = ([nF], cF) ∈ F which is embeddable

in D′, where nF ≤ d
(2.46)
F (m, t). Let h : [nF] → D′ denote a mapping that satisfies the conditions

of Definition 2.45 and let s′1, . . . , s
′
nF
∈ [t] be the indices satisfying cF (ii′) ∈ cD′(h(i), h(i′))[s′i, s

′
i′]

for any i < i′ ∈ [nF].

For any i ∈ [nF] denote the vertices of D inside Ih(i) by Ih(i)r′i1
, . . . , Ih(i)r′

idF (m,t)
, where r′i1 <

. . . < r′idF (m,t) ∈ [b] for any i ∈ [nF]. The sets Wh(1)r′11s
′
1
, . . . ,Wh(nF)r′nF nF s

′
nF

satisfy the desired

conditions: They exist, since nF ≤ d(2.46)
F (m, t), the first condition holds since h is order-preserving,

and the second condition holds since cF (ii′) ∈ cD′(h(i), h(i′))[s′i, s
′
i′] = C

(D)
h(i)h(i′)[s

′
i, s
′
i′].

Proof of Theorem 2.6. The proof goes along the same lines as the proof of Theorem 2.34, but any

occurrence of dF in the proof of Theorem 2.34 and the accompanying lemmas is replaced here by

d
(2.46)
F (m, t), including in the definitions of the functions β, r, and the term nicely colored subgraph

is replaced by nicely colored (m, t)-subgraph. More specifically, here are the exact changes needed

with respect to the proof of Theorem 2.34.

• We take the functions β = β
ρ/2
2.14 and r = R2.47 (in the finite case we took β as a suitable

constant function and r = R2.41). The function g is defined as g(l) = lr(l, l). Following the

application of Lemma 2.33, we have b = R2.47(m, t).

• As in the the proof of Theorem 2.34, there is a tuple W which (α, β(mbt), µ)-represents Q′′,

and H
ρ/2
W is ρ-desirable. By Lemma 2.47, and by our new choice of b, there is a nicely colored

(m, t)-subgraph D of H
ρ/2
W , with at most 2ρ

(
m
2

) (
d

(2.46)
F (m, t)

)2
ρ-undesirable edges.

• Lemma 2.48 implies that G′ contains a copy of a graph from F . Now Lemma 2.49 implies

the existence of sets Wj1r1s1 , . . . ,WjnF ,rnF ,snF
∈ W with nF ≤ d

(2.46)
F (m, t), that satisfy the

conditions of the lemma for η = ρ/2. Since all pairs of sets from W are β
ρ/2
2.14(mbt)-regular,

48

and since mbt ≥ b ≥ d
(2.46)
F (m, t) ≥ nF , these pairs are also β

ρ/2
2.14(nF)-regular. We apply

Lemma 2.14 to get that the number of F -copies in G is at least δnq for

q = nF ≤ d(2.46)
F (m, t) ≤ d(2.46)

F (S2.33(γ, k, f, r), T2.33(γ, k, f, r)),

δ = κ2.14 (ρ/2, nF)αnF ≥ κ2.14

(
ρ/2, d

(2.46)
F (m, t)

)
αd

(2.46)
F (m,t)

≥ κ2.14(ρ/2, d
(2.46)
F (S2.33(γ, k, f, r), T2.33(γ, k, f, r)))αd

(2.46)
F (S2.33(γ,k,f,r),T2.33(γ,k,f,r)).

Indeed, the above bounds for q and δ depend only on |Σ|, ε,F , and not on n.

2.6.3 Adapting the Proof for Matrices

Finally we give a sketch of the proof of Theorem 2.8 for square matrices. The proof is very similar

to the graph case, so we only describe why the proof for graphs also works here. Finally, we describe

shortly how the proof can be adapted to the case of non-square matrices.

Proof sketch for Theorem 2.8. Given a square matrix M : U × V → Σ where U, V are ordered,

and a family F of forbidden submatrices, consider the Σ′-colored graph G = (U ∪ V, c) where

Σ′ = Σ∪ {σ0} for some σ0 /∈ Σ, and the union U ∪ V is ordered as follows: All elements of V come

after all elements of U , and the internal orders of U and V remain as before. The edge colors of G

satisfy c(uv) = M(uv) for any u ∈ U and v ∈ V , and c(uv) = σ0 otherwise.

The proof now follows as in the graph case. It is important to note that while in the graph case

one is allowed to change the color of any edge, here we are not allowed to change the color of an

edge from or to the color σ0. However, the proof still works, by the following observations. First,

since |U | = |V |, the number of vertices in G is even, and so the interval partition I obtained here

“respects the middle”. That is, each part Ij of I will be fully contained in U or in V . Therefore, for

every two parts Ij , Ij′ of I, either all edges in Ij × Ij′ are colored by σ0 or none of them is colored

by σ0. Second, it follows that the set of edges of the cleaned graph G′ = G′(G,D) that are colored

by σ0 is identical to that of G. In other words, to generate the cleaned graph we do not modify

edge colors to or from σ0. Since G is made F-free only by modifying colors between U and V to

other colors in Σ, one needs to modify at least ε|U ||V | edge colors, so the proof follows without

changing the main arguments.

The above proof works for square matrices, but it can be adapted to general m×n matrices: If

m = Θ(n), then the condition on I needed is slightly different than respecting the middle, but this

only slightly changes the structure of the equipartitions that we obtain via Lemma 2.33, without

significantly affecting the proof. The proof can also be formulated for matrices with, say, m = o(n)

and m = ω(1), but then Lemma 2.33 needs to be especially adapted to accommodate the two

“types” of vertices (row and column). Essentially we will have two interval equipartitions, one

of the row vertices and one of the column vertices, along with their corresponding refinements.

49

Finally, the case where m = Θ(1) is essentially the case of testing one-dimensional strings; strings

can be handled as per the discussion in Section 2.1.

It is important to note that one cannot use Theorem 2.6 as a black box to prove Theorem 2.8,

as the distance of the graph G to F-freeness might (potentially) be significantly smaller than ε,

considering that the set of σ0-colored edges in the F-free graph that is closest to G might differ

from the set of σ0-colored edges in G.

50

Part II

Sublinear Algorithms

for Sequential Pattern Detection

51

Chapter 3

Monotone Patterns: A Non-Adaptive

Θ((log n)blog2 kc) Algorithm

The results in this chapter appear in [22].

3.1 Introduction

For a fixed integer k ∈ N and a function (or sequence) f : [n]→ R, a length-k monotone subsequence

of f is a tuple of k indices, (i1, . . . , ik) ∈ [n]k, such that i1 < · · · < ik and f(i1) < · · · < f(ik).

More generally, for a permutation π : [k] → [k], a π-pattern of f is given by a tuple of k indices

i1 < · · · < ik such that f(ij1) < f(ij2) whenever j1, j2 ∈ [k] satisfy π(j1) < π(j2). A sequence f

is π-free if there are no subsequences of f with order pattern π. Pattern avoidance and detection

in an array is a central problem in theoretical computer science and combinatorics, dating back

to the work of Knuth [97] (from a computer science perspective), and Simion and Schmidt [128]

(from a combinatorics perspective); see also the survey [137]. Recently, Newman, Rabinovich, Ra-

jendraprasad, and Sohler [109] (see [108] for the conference version) initiated the study of property

testing for forbidden order patterns in a sequence. Their paper was the first to analyze algorithms

for finding π-patterns in sublinear time (for various classes of the permutation π). The main mo-

tivation for testing order patterns arises in data-series analysis. In this context, a huge amount

of continuous sequential data may arrive from various sources (e.g. sensors), with a need to de-

velop algorithms that are as efficient as possible to understand the structural behavior of the data.

Additional motivation naturally arises in combinatorics and other areas. See [109] for more details.

Of particular interest of π-freeness testing is the case where π = (12 . . . k), i.e., π is a monotone

permutation. In this case, avoiding length-k monotone subsequence may be equivalently rephrased

as being decomposable into k−1 monotone non-increasing subsequences, via Dilworth theorem [60].

Specifically, a function f : [n] → R is (12 . . . k)-free if and only if [n] can be partitioned into k − 1

disjoint sets A1, . . . , Ak−1 such that, for each i ∈ [k−1], the restriction f |Ai is non-increasing. When

53

interested in algorithms for testing (12 . . . k)-freeness that have a one-sided error, the algorithmic

task becomes the following. For k ∈ N and ε > 0, design a randomized algorithm that, given query

access to a function f : [n]→ R guaranteed to be ε-far from being (12 . . . k)-free, outputs a length-k

monotone subsequence of f with probability at least 2/3.

The task above is a natural generalization of monotonicity testing of a function f : [n] → R

with algorithms that make a one-sided error, a question which dates back to the early works in

property testing, and has received significant attention since in various settings (see, e.g., [1, 18,

32, 67, 82, 111, 138], Chapter 6 of this thesis, and the recent textbook [81]). For the problem

of testing monotonicity, Ergün, Kannan, Kumar, Rubinfeld, and Viswanathan [63] were the first

to give a non-adaptive algorithm which tests monotonicity of functions f : [n] → R with one-

sided error making O(log(n)/ε) queries. (Recall that an algorithm is non-adaptive if its queries

do not depend on the answers to previous queries, or, equivalently, if all queries to the function

can be made in parallel.) Furthermore, they showed that Ω(log n) queries are necessary for non-

adaptive algorithms. Subsequently, Fischer [66] showed that Ω(log n) queries are necessary even

for adaptive algorithms. Generalizing from monotonicity testing (when k = 2), Newman et al. gave

in [109] the first sublinear-time algorithm for (12 . . . k)-freeness testing, whose query complexity

is (log(n)/ε)O(k2). Their algorithm is non-adaptive and has one-sided error; as such, it outputs a

length-k monotone subsequence with probability at least 9/10 assuming the function f is ε-far from

(12 . . . k)-free. However, other than the aforementioned lower bound of Ω(log n) which follows from

the case k = 2, no lower bounds were known for larger k.

The main result in this chapter settles the dependence on n in the query complexity of testing

for (12 . . . k)-freeness with non-adaptive algorithms making one-sided error. Equivalently, we settle

the complexity of non-adaptively finding a length-k monotone subsequence under the promise that

the function f : [n]→ R is ε-far from (12 . . . k)-free.

Theorem 3.1. Let k ∈ N be a fixed parameter. For any ε > 0, there exists an algorithm that,

given query access to a function f : [n] → R which is ε-far from (12 . . . k)-free, outputs a length-k

monotone subsequence of f with probability at least 9/10. The algorithm is non-adaptive and makes

(log n)blog2 kc · poly(1/ε) queries to f .

Our algorithm thus significantly improves on the (log(n)/ε)O(k2)-query non-adaptive algorithm

of [109]. Furthermore, its dependence on n is optimal; in the full version of the results given here

[22], we provide a matching lower bound of Ω((log n)blog2 kc) on the non-adaptive query complexity.

The lower bound holds even for the more restricted case where f is a permutation.

Related work Testing monotonicity of a function over a partially ordered set X is a well-studied

and fruitful question, with works spanning the past two decades. Particular cases include when

X is the line [n] (see [18, 63, 66, 111] and Chapter 6), the Boolean hypercube {0, 1}d [19, 35, 40,

45, 47, 48, 50, 52, 53, 95, 138], and the hypergrid [n]d [33, 36, 46]. We refer the reader to [81,

Chapter 4] for further discussion on monotonicity testing.

54

This part of the thesis contributes to the line of work on finding order patterns in sequences

and permutations. For the exact case, Guillemot and Marx [90] showed that an order pattern π of

length k can be found in a sequence f of length n in time 2O(k2 log k)n; in particular, the problem

of finding order patterns is fixed-parameter tractable (in the parameter k). Fox [74] later improved

the running time to 2O(k2)n. In the regime k = Ω(log n), an algorithm of Berendsohn, Kozma, and

Marx [28] running in time nk/4+o(k) provides the state-of-the-art. The analogous counting problem

has also been actively studied, see [64] and the references within.

Two related questions are that of estimating the distance to monotonicity and the length of

the longest increasing subsequence (LIS), which have also received significant attention from both

the sublinear algorithms perspective [2, 113, 126], as well as the streaming perspective [62, 76, 87,

107, 125]. In particular, Saks and Seshadhri gave in [126] a randomized algorithm which, on input

f : [n] → R, makes poly(log n, 1/δ) queries and outputs m̂ approximating up to additive error δn

the length of the longest increasing subsequence of f . This chapter and the following one also

study monotone subsequences of the input function, albeit from a different (and incomparable) end

of the problem. Loosely speaking, in [126] the main object of interest is a very long monotone

subsequence (of length linear in n), and the task at hand is to get an estimate for its total length,

whereas in our setting, there are Ω(n) disjoint copies of short monotone subsequences (of length

k, which is a constant parameter), and these short subsequences may not necessarily combine to

give one long monotone subsequence. Considering general permutations π of length k and exact

computation, Guillemot and Marx [90] showed how to find a π-pattern in a sequence f in time

2O(k2 log k)n, later improved by Fox [74] to 2O(k2)n.

3.2 Techniques

We now give a detailed overview of the techniques underlying Theorem 3.1, and provide some

intuition behind the algorithms and notions we introduce. The starting point of our discussion

will be the algorithm of Newman et al. [109], which we re-interpret in terms of the language used

throughout this chapter; this will set up some of the main ideas behind our structural result (stated

in Section 3.3), which will be crucial in the analysis of the algorithm. For simplicity, let ε > 0 be a

small constant and let k ∈ N be fixed. Consider a function f : [n]→ R which is ε-far from (12 . . . k)-

free. This implies that there is a set T ⊆ [n]k of εn/k disjoint (12 . . . k)-patterns. Specifically, the

set T is comprised of k-tuples (i1, . . . , ik) ∈ [n] where i1 < · · · < ik and f(i1) < · · · < f(ik) and

each i ∈ [n] appears in at most one k-tuple in T .1 A key observation made in [109] is that if, for

some c ∈ [k − 1], (i1, . . . , ic, ic+1, . . . , ik) and (j1, . . . , jc, jc+1, . . . , jk) are two k-tuples in T which

1To see why such T exists, take T to be a maximal set of disjoint (12 . . . k)-patterns. Suppose |T | < εn/k and

consider the function g given by greedily eliminating all (12 . . . k)-patterns in f , and note that g is (12 . . . k)-free and

differs on f in less than εn indices.

55

satisfy ic < jc+1 and f(ic) < f(jc+1), then their combination

(i1, . . . , ic, jc+1, . . . , jk)

is itself a length-k monotone subsequence of f . Therefore, in order to design efficient sampling

algorithms, one should analyze to what extent parts of different (12 . . . k)-tuples from T may be

combined to form length-k monotone subsequences of f .

Towards this goal, assign to each k-tuple (i1, . . . , ik) in T a distance profile dist-prof(i1, . . . , ik) =

(d1, . . . , dk−1) ∈ [η]k−1, where η = O(log n).2 This distance profile is a (k−1)-tuple of non-negative

integers satisfying

2dj ≤ ij+1 − ij < 2dj+1 j ∈ [k − 1] ;

and let gap(i1, . . . , ik) = c ∈ [k − 1] be the smallest integer where dc ≥ dj for all j ∈ [k − 1]

(i.e., dc denotes an (approximately) maximum length between two adjacent indices in the k-tuple).

Suppose, furthermore, that for a particular c ∈ [k−1], the subset Tc ⊆ T of k-tuples whose gap is at

c satisfies |Tc| ≥ εn/k2 (such a c ∈ [k− 1] must exist since the Tc’s partition T). If (i1, . . . , ik) ∈ Tc
and dist-prof(i1, . . . , ik) = (d1, . . . , dk), then the probability that a uniformly random element ` of

[n] “falls” into that gap is

Pr
`∼[n]

[ic ≤ ` ≤ ic+1] ≥ 2dc

n
. (3.1)

Whenever this occurs for a particular k-tuple (i1, . . . , ik) and ` ∈ [n], we say that ` cuts the tuple

(i1, . . . , ik). Note that the indices ic+1, . . . , ik are contained within the interval [`, `+ k · 2dc+1] and

the indices i1, . . . , ic are contained within the interval [`− k · 2dc+1, `]. As a result, if we denote by

δd(`) ∈ [0, 1], for each d ∈ [η], the density of k-tuples from Tc lying inside [`− k · 2d+1, ` + k · 2d+1]

(i.e., the fraction of this interval comprised of elements of Tc), we have

E
`∼[n]

∑
d∈[η]

δd(`)

 =
∑
d∈[η]

∑
(i1,...,ik)∈Tc

dist-prof(i1,...,ik)c=d

Pr
`∼[n]

[ic ≤ ` ≤ ic+1] · 1

2 · k · 2d+1
&
|Tc|
n
& ε. (3.2)

For any ` achieving the above inequality, since η = O(log n), there exists some d∗ ∈ [η] such that

δd∗(`) & ε/ log n. Consider now the set of k-tuples Tc,d∗(`) ⊆ Tc contributing to δd∗(`), i.e., those

k-tuples in Tc which are cut by ` and lie in [`−k ·2d∗+1, `+k ·2d∗+1]. Denote rmed = median{f(ic) :

(i1, . . . , ik) ∈ Tc,d∗(`)}, and let

TL = {(i1, . . . , ic) : (i1, . . . , ik) ∈ Tc,d∗(`) and f(ic) ≤ rmed} , and

TR = {(ic+1, . . . , ik) : (i1, . . . , ik) ∈ Tc,d∗(`) and f(ic) ≥ rmed} ,

2We remark that the notion of a distance profile is solely used for the introduction and for explaining [109], and

thus does not explicitly appear in subsequent sections.

56

where we note that TL and TR both have size at least |Tc,d∗(`)|/2. If the algorithm finds a c-tuple

in TL and a (k − c)-tuple in TR, by the observation made in [109] that was mentioned above, the

algorithm could combine the tuples to form a length-k monotone subsequence of f . At a high level,

one may then recursively apply these considerations on [`−k · 2d∗+1, `] with TL and [`, `+k · 2d∗+1]

with TR. A natural algorithm then mimics the above reasoning algorithmically, i.e., samples a

parameter ` ∼ [n], and tries to find the unknown parameter d∗ ∈ [η] in order to recurse on both

the left and right sides; once the tuples have length 1, the algorithm samples within the interval

to find an element of TL or TR. This is, in essence, what the algorithm from [109] does, and this

approach leads to a query complexity of (log n)O(k2). In particular, suppose that at each (recursive)

iteration, the parameter c, corresponding to the gap of tuples in T , always equals 1. Note that this

occurs when all (12 . . . k)-patterns (i1, . . . , ik) in T have dist-prof(i1, . . . , ik) = (d1, . . . , dk−1) with

d1 ≥ d2 ≥ · · · ≥ dk−1. (3.3)

Then, if k is at k0, a recursive call leads to a set TL containing 1-tuples, and TR containing (k0−1)-

tuples. This only decreases the length of the subsequences needed to be found by 1 (so there

will be k − 1 recursive calls), while the algorithm pays for guessing the correct value of d∗ out of

Ω(log n) choices, which may decrease the density of monotone k0-subsequences within the interval

of the recursive call by a factor as big as Ω(log n).3 As a result, the density of the length-k0

monotone subsequence in the relevant interval could be as low as ε/(log n)k0 , which means that

(log n)Ω(k0) samples will be needed for the k0-th round according to the above analysis, giving a

total of (logn)Ω(k2) samples (as opposed to O((log n)blog2 kc), which is the correct number, as we

prove).

In order to overcome the above difficulty, we consider a particular choice of a family T of length-

k monotone subsequences given by the “greedy” procedure (see Figure 3.1). Loosely speaking, this

procedure begins with T = ∅ and iterates through each index i1 ∈ [n] \T . Each time, if (i1) can be

extended to a length-k monotone subsequence (otherwise it continues to the next available index),

the procedure sets i2 to be the first index, after i1 and not already in T , such that (i1, i2) can be

extended to a length-k monotone subsequence; then, it finds an index i3 which is the next first index

after i2 and not in T such that (i1, i2, i3) can be extended; and so on, until it has obtained a length-k

monotone subsequence starting at i1. It then adds the subsequence as a tuple to T , and repeats.

This procedure eventually outputs a set T of disjoint, length-k monotone subsequences of f which

has size at least εn/k2, and satisfies another crucial “interleaving” property (see Lemma 3.3):

(?) If (i1, . . . , ik) and (j1, . . . , jk) are k-patterns from T and c ∈ [k − 1] satisfy j1 < i1,

jc < ic, and ic+1 < jc+1, then f(ic+1) < f(jc+1).

3Initially, the density of T within [n] is ε, and the density of TL or TR in [` − k · 2d
∗+1, `] and [`, ` + k · 2d

∗+1] is

ε/ logn.

57

Moreover, a slight variant of (3.1) guarantees that for any (i1, . . . , ik) ∈ Tc with dist-prof(i1, . . . , ik) =

(d1, . . . , dk−1),

Pr
`∼[n]

[
ic + 2dc/3 ≤ ` ≤ ic+1 − 2dc/3

]
&

2dc

n
.

Whenever the above event occurs, we say ` ∼ [n] cuts (i1, . . . , ik) at c with slack, and note that

i1, . . . , ic lie in [`−k ·2dc+1, `] and ic+1, . . . , ik in [`, `+k ·2dc+1]. We denote, similarly to the above,

δd(`) ∈ [0, 1] to be the density of k-tuples from Tc which are cut with slack by `, and conclude (3.2).

We then utilize (?) to make the following claim: suppose two k-tuples (i1, . . . , ik), (j1, . . . , jk) ∈ Tc
satisfy dist-prof(i1, . . . , ik) = (d1, . . . , dk−1), and dist-prof(j1, . . . , jk) = (d′1, . . . , d

′
k−1), where dc ≤

d′c − a log k, for some constant a which is not too small. If (i1, . . . , ik) and (j1, . . . , jk) are cut at c

with slack, this means that ` lies roughly in the middle of ic and ic+1 and of jc and jc+1, and since

the distance between ic and ic+1 is much smaller than that between jc and jc+1, the index j1 will

come before i1, the index jc will come before ic, but the index ic+1 will come before jc+1. By (?),

f(ic+1) < f(jc+1) (cf. Lemma 3.14). In other words, the value, under the function f , of (c+ 1)-th

indices from tuples in Tc,d(`) increases as d increases.

As a result, if ` ∈ [n] satisfies
∑

d∈[η] δd(`) & ε, and δd(`) � ε for all d ∈ [η], that is, if the

summands in (3.2) are spread out, an algorithm could find a length-k monotone subsequence by

sampling, for many values of d ∈ [η], indices which appear as the (c+1)-th index of tuples in Tc,d(`).

We call such values of ` the starts of growing suffixes (as illustrated in Figure 3.2). In Section 3.4.2,

we describe an algorithm that makes Õ(log n/ε) queries and finds, with high probability, a length-k

monotone subsequence if there are many such growing suffixes (see Lemma 3.20). The algorithm

works by randomly sampling ` ∼ [n] and hoping that ` is the start of a growing suffix; if it is, the

algorithm samples enough indices from the segments [`+ 2d, `+ 2d+1] to find a (c+ 1)-th index of

some tuple in Tc,d(`), which gives a length-k monotone subsequence.

The other case corresponds to the scenario where ` ∈ [s] satisfies
∑

d∈[η] δd(`) & ε, but the

summands are concentrated on few values of d ∈ [η]. In this case, we may consider a value of

d∗ ∈ [η] which has δd∗(`) & ε, and then look at the intervals [`−k ·2d∗+1, `] and [`, `+k ·2d∗+1]. We

can still define TL and TR, both of which have size at least |Tc,d∗ |/2 and have the property that any

c-tuple from TL can be combined with any (k− c)-tuple from TR. Additionally, since δd∗(`) & ε, we

crucially do not suffer a loss in the density of TL and TR in their corresponding intervals – a key

improvement over the Ω(log n) loss in density incurred by the original approach we first discussed.

We refer to these intervals as splittable intervals (cf. Figure 3.3), and observe that they lead to a

natural recursive application of these insights to the intervals [`− k · 2d∗+1, `] and [`, `+ k · 2d∗+1].

The main structural result, given in Theorem 3.11, does exactly this, and encodes the outcomes of

the splittable intervals in an object we term a k-tree descriptor (see Section 3.3.3) whenever there

are not too many growing suffixes. Intuitively, a k-tree descriptor consists of a rooted binary tree

G on k leaves, as well as some additional information, which corresponds to a function f : [n]→ R

without many growing suffixes. Each internal node v in G corresponds to a recursive application of

58

the above insights, i.e., v has k0 leaves in its subtree, a parameter cv ∈ [k0− 1] encoding the gap of

sufficiently many k0-tuples, and a collection of disjoint intervals of the form [`− k · 2d∗ , `+ k · 2d∗]
where ` cuts (12 . . . k0)-patterns with slack at cv and satisfies (3.2); the left child of v has c leaves

and contains the (12 . . . c)-patterns in TL and intervals [`− k · 2d∗ , `]; the right child of v has k0− c
leaves and contains the (12 . . . (k0 − c))-patterns in TR and intervals [`, `+ k · 2d∗] (see Figure 3.4).

The algorithm for this case is more involved than the previous, and leads to the O((log n)blog2 kc)-

query complexity stated in Theorem 3.1. The algorithm proceeds in r0 = 1 + blog2 kc rounds,

maintaining a set A ⊆ [n], initially empty:

• Round 1 : For each i ∈ [n], include i in A independently with probability Θ(1/(εn)).

• Round r, 2 ≤ r ≤ r0: For each i ∈ A from the previous round, and each j = 1, . . . , O(log n),

consider the interval Bi,j = [i − 2j , i + 2j]. For each i′ ∈ Bi,j , include i′ in A independently

with probability Θ(1/(ε2j)).

At the end of all rounds, the algorithm queries f at all indices in A, and outputs a (12 . . . k)-pattern

from A, if one exists.

Recall the case considered in the sketch of the algorithm of [109], when the function f has all

(12 . . . k)-patterns (i1, . . . , ik) in T satisfying dist-prof(i1, . . . , ik) = (d1, . . . , dk−1) with d1 ≥ d2 ≥
. . . ≥ dk−1. In this case, the k-tree descriptor G consists of a rooted binary tree of depth k. The

root has a left child which is a leaf (corresponding to 1-tuples of first indices of some tuples in T ,

stored in TL) and a right child (corresponding to suffixes of length (k−1) of some tuples in T , stored

in TR) is an internal node. The root node corresponds to one application of the structural result,

and the right child corresponds to a (k− 1)-tree descriptor for the tuples in TR. Loosely speaking,

as d2 ≥ . . . ≥ dk−1 the same reasoning repeats k − 1 times, and leads to a path of length k − 1

down the right children of the tree, the right child of the (k− 1)-th internal node corresponding to

a 1-tuple (i.e., a leaf).4

To gain some intuition, we analyze how the algorithm behaves on these instances. Suppose that

in round 1, the algorithm samples an element i ∈ [n] which is the k-th index of a 1-tuple stored in

the right-most leaf of G. In particular, this index belongs to the set TR of the (k − 1)-th internal

node, as a second index of a cut (12)-pattern in the (k−1)-th recursive call of the structural result.

Similarly, i also belongs to that set TR of the (k−2)-th internal node, as a part the third index of a

cut (123)-pattern in the (k− 2)-th recursive call. We may continue with all these inclusions to the

root, i.e., i is the k-th element of some (12 . . . k)-pattern in T , which is cut in the first call to the

structural result. Round 2 of the algorithm will consider the k−1 intervals Bi,d′k−1
, Bi,d′k−2

, . . . , Bi,d′1 ,

where d′j = dj + Θ(log k), since it iterates through all O(log n) intervals of geometrically increasing

4This is somewhat inaccurate, as in each step, after forming TL and TR, we apply the greedy algorithm again and

obtain new sets T ′L and T ′R, which may violate the assumption d1 ≥ d2 ≥ . . . ≥ dk. We ignore this detail at the

moment to simplify the explanation.

59

lengths.5 One can check that for each j ∈ [k− 1], the interval Bi,d′j contains [`j − k · 2dj , `j], where

`j is some index which cut the (k − j + 1)-tuple (ij , . . . , ik) with slack in the j-th recursive call of

the structural result. Recall that the set TL of 1-tuples has density Ω(ε) inside [`j − k · 2dj , `j] and

may be combined with any (k− j)-tuple from TR. Following this argument, in the second round of

the algorithm, A will include some index of TL (for each j ∈ [k− 1]), and these indices combine to

form a (12 . . . k)-pattern – that is, with high probability, after two rounds, the algorithm succeeds

in finding a monotone subsequence of length k.

Generalizing the above intuition for all possible distance profiles necessitates the use of 1 +

blog2 kc rounds, and requires extra care. At a high level, consider an arbitrary k-tree descriptor G

for Ω(εn) many (12 . . . k)-patterns in f . Denote the root u, and consider the unique leaf w of G

where the root-to-w path (u1, . . . , uh) with u1 = u and uh = w, satisfies that at each internal node

ul, the next node ul+1 is the child with larger number of leaves in its subtree.6 We call such a leaf

a primary index of G. The crucial property of the primary index is that the root-to-leaf path of

w, (u1, u2, . . . uh), is such that the siblings of the nodes on this path7 have strictly fewer than k/2

leaves in their subtrees.

The relevant event in the first round of the algorithm is that of sampling an index i ∈ [n] which

belongs to a 1-tuple of the primary index w of G. This occurs with probability at least 1−1/(100k),

since we sample each element of [n] with probability Θ(1/(εn)) while there are at least Ω(εn) many

(12 . . . k)-patterns. Now, roughly speaking, letting (u1, . . . , uh) be the root-to-w path in G, and

(u′2, . . . , u
′
h) be the sibling nodes, the subtrees of G rooted at u′2, . . . , u

′
h will be tree descriptors for

the function f restricted to Bi,j ’s and within these interval, the density of tuples is at least Ω(ε). As

a result, the second round of the algorithm, recursively handles each subtree rooted at u′2, . . . , u
′
h

with one fewer round. Since the subtrees have strictly fewer than k/2 leaves, blog2 kc − 1 rounds

are enough for an inductive argument. Moreover, since the total number of nodes is at most 2k

and each recursive call succeeds with probability at least 1− 1/(100k), by a union bound we may

assume that all recursive calls succeed.

Unrolling the recursion, the query complexity Θ((log n)blog2 kc) can be explained with a simple

combinatorial game. We start with a rooted binary tree G on k leaves. In one round, whenever

G is not simply a leaf, we pick the leaf w which is the primary index of G, and replace G with

a collection of subtrees obtained by cutting out the root-to-w path in G. These rounds “pay” a

factor of Θ(log n), since the algorithm must find intervals on which the collection of subtrees form

tree descriptors of f (restricted to these intervals). In the subsequent rounds, we recurse on each

subtree simultaneously, picking the leaf of the primary index in each, and so on. After blog2 kcmany

5Note that the intervals Bi,d′j and Bi,d′j+1
may be the same, for instance when dj = dj+1.

6Ties are broken by picking the left child.
7For example, if (u1, . . . , uh) is the root-to-w path where u1 is the root and uh = w, the sibling nodes along the

path are given by u′2, u
′
3, . . . , u

′
h, where u′l is the sibling of ul. Namely, if the l-th node on the root-to-w path is a left

child of the (l − 1)th node, then u′l is the right child of the (l − 1)-th node. Analogously, if the l-th node is a right

child of the (l − 1)-th node, then u′l is the left child of the (l − 1)-th node.

60

rounds, the trees are merely leaves, and the algorithm does not need to pay the factor Θ(log n) to

find good intervals, as it may simply sample from these intervals.

The execution of the above high-level plan is done in Section 3.4.3, where Lemma 3.21 is the

main inductive lemma containing the analysis of the main algorithm (shown in Figure 3.8 and

Figure 3.9).

Organization and notation We start by introducing the notation that we shall use throughout

this chapter below. In Section 3.3 we prove our main structural result, and formally define the

notions that underlie it: namely, Theorem 3.11, along with the definitions of growing suffixes and

representation by tree descriptors (Definitions 3.6 and 3.10). Finally, Section 3.4 leverages this

dichotomy to describe and analyze our testing algorithm, thus establishing the upper bound of

Theorem 3.1 (see Theorem 3.19 for a formal statement).

We write a . b if there exists a universal positive constant C > 0 such that a ≤ Cb, and a � b if

we have both a . b and b . a. We frequently denote I as a collection of disjoint intervals, I1, . . . , Is,

and then write S(I) for the set of all sub-intervals which lie within some interval in I. For two

collections of disjoint intervals I0 and I1, we say that I1 is a refinement of I0 if every interval in I1

is contained within an interval in I0. (We remark that it is not the case that intervals in I1 must

form a partition of intervals in I0.) For a particular set A ⊆ [n] and an interval I ⊆ [n], we define

the density of A in I as the ratio |A ∩ I|/|I|. Given a set S, we write x ∼ S to indicate that x is

a random variable given by a sample drawn uniformly at random from S, and P(S) for the power

set of S. Given a sequence f of length n, we shall interchangeably use the notions (12 . . . k)-copy

(or (1, 2, . . . , k)-copy), (12 . . . k)-pattern, and length-k increasing subsequence, to refer to a tuple of

elements x1 < . . . < xk ∈ [n] such that f(x1) < . . . < f(xk).

3.3 Structural Result

3.3.1 Rematching Procedure

Let f : [n] → R be a function which is ε-far from (12 . . . k)-free. Let T be a set of k-tuples

representing monotone subsequences of length k within f , i.e.,

T ⊆
{

(i1, . . . , ik) ∈ [n]k : i1 < · · · < ik and f(i1) < · · · < f(ik)
}
,

and for such T let E(T) be the set of indices of subsequences in T , so

E(T) =
⋃

(i1,...,ik)∈T

{i1, . . . , ik}.

Observation 3.2. If f : [n] → R is ε-far from (12 . . . k)-free, then there exists a set T ⊆ [n]k of

disjoint length-k increasing subsequences of f such that |T | ≥ εn/k.

61

To see why the observation holds, take T to be a maximal disjoint set of such k-tuples. Then

we can obtain a (12 . . . k)-free sequence from f by changing only the entries of E(T) (e.g. for every

i ∈ E(T) define f(i) = f(j) where j is the largest [n] \E(T) which is smaller than i. If there is no

j ∈ [n] \ E(T) where j < i, let f(i) = max`∈[n] f(`)). Since f is ε-far from being (12 . . . k)-free, we

have |E(T)| ≥ εn, thus |T | ≥ εn/k.

In this section, we show that from a function f : [n]→ R which is ε-far from (12 . . . k)-free and

a set T0 of disjoint, length-k monotone subsequences of f , a greedy rematching algorithm finds a

set T of disjoint, length-k monotone subsequences of f where E(T) ⊆ E(T0) with some additional

structure, which will later be exploited in the structural lemma and the algorithm. The greedy

rematching algorithm, GreedyDisjointTuples, is specified in Figure 3.1; for convenience, in view

of its later use in the algorithm, we phrase it in terms of an arbitrary parameter k0, not necessarily

the (fixed) parameter k itself.

Lemma 3.3. Let k0 ∈ N, f : [n]→ R, and let T0 ⊆ [n]k0 be a set of disjoint monotone subsequences

of f of length k0. Then there exists a set T ⊆ [n]k0 of disjoint k0-tuples with E(T) ⊆ E(T0) such

that the following holds.

1. The set T holds disjoint monotone subsequences of length k0.

2. The size of T satisfies |T | ≥ |T0|/k0.

3. For any two (i1, . . . , ik0), (j1, . . . , jk0) ∈ T and any ` ∈ [k0 − 1], if i1 < j1, i` < j` and

i`+1 > j`+1 then f(i`+1) > f(j`+1).

Proof of Lemma 3.3. We show that the subroutine GreedyDisjointTuples(f, k0, T0), described in

Figure 3.1, finds a set T with E(T) ⊆ E(T0) satisfying properties 1, 2, and 3. Property 1 is clear from

the description of GreedyDisjointTuples(f, k0, T0). For 2, suppose |T | < |T0|/k0, then, there exists

a tuple (i1, . . . , ik0) ∈ T0 with {i1, . . . , ik0} ∩ E(T) = ∅. Since GreedyDisjointTuples(f, k0, T0)

increases the size of T throughout the execution, {i1, . . . , ik0}∩T = ∅ at every point in the execution

of the algorithm. This is a contradiction; when i = i1, a monotone subsequence disjoint from T

would have been found, and i1 included in T . Finally, for 3, consider the iteration when i = i1,

and note that at this moment, T ∩ {i1, . . . , ik0 , j1, . . . , jk0} = ∅. Suppose that i` < j`, j`+1 < i`+1;

if f(j`+1) ≥ f(i`+1), then (i1, . . . , i`, j`+1, . . . , jk0) is an increasing subsequence in E(T0) \ E(T),

which means that j`+1 would have been preferred over i`+1, a contradiction.

Definition 3.4 (c-gap). Let (i1, . . . , ik0) be a monotone subsequence of f and let c ∈ [k0 − 1]. We

say that (i1, . . . , ik0) is a c-gap subsequence if c is the smallest integer such that ic+1− ic ≥ ib+1− ib
for all b ∈ [k0 − 1].

Note that for a set T of disjoint length-k0 monotone subsequences of f , we may partition

the k0-tuples of T into (T1, . . . , Tk0−1) where for each c ∈ [k0 − 1], Tc holds the c-gap monotone

62

Subroutine GreedyDisjointTuples (f, k0, T0)

Input: A function f : [n] → R, integer k0 ∈ N, and a set T0 of disjoint monotone sub-

sequences of f of length k0.

Output: a set T ⊆ [n]k0 of disjoint monotone subsequences of f of length k0.

1. Let T = ∅ and i be the minimum element in E(T0). Repeat the following.

i. Let i1 ← i. If there exists j2, . . . , jk0 ∈ E(T0) \ E(T) such that (i1, j2, . . . , jk0)

is an increasing subsequence of f , pick i2, . . . , ik0 ∈ E(T0) \ E(T) recursively as

follows: for ` = 2, . . . , k0, let i` be the smallest element in E(T0) \E(T) for which

there exist j`+1, . . . , jk0 ∈ E(T0) \ E(T) such that (i1, . . . , i`, j`+1, . . . , jk0) is an

increasing subsequence of f .

ii. If (i1, . . . , ik0) is a monotone subsequence found by (i), set T ← T ∪{(i1, . . . , ik0)}.

iii. Let i be the next element of E(T0) \ E(T), if such an element exists; otherwise,

proceed to 2.

2. Output T .

Figure 3.1: Description of the GreedyDisjointTuples subroutine.

subsequences of T . As these sets form a partition of T , the following lemma is immediate from

Lemma 3.3.

Lemma 3.5. Let f : [n] → R, and let T0 be a set of disjoint length-k0 monotone subsequences of

f . Then there exist c ∈ [k0 − 1] and a family T ⊆ [n]k0 of disjoint monotone subsequences of f ,

with E(T) ⊆ E(T0) such that the following holds.

1. The subsequences in T are all c-gap subsequences.

2. |T | ≥ |T0|/k2
0.

3. For any two (i1, . . . , ik0), (j1, . . . , jk0) ∈ T and any ` ∈ [k0 − 1], if i1 < j1, i` < j` and

i`+1 > j`+1 then f(i`+1) > f(j`+1).

3.3.2 Growing Suffixes and Splittable Intervals

We now proceed to set up notation and prepare for the main structural theorem for sequences

f : [n] → R which are ε-far from (12 . . . k)-free. In order to simplify the presentation of the sub-

sequent discussion, consider fixed k ∈ N and ε ∈ (0, 1), as well as a fixed sequence f : [n]→ R which

is ε-far from (12 . . . k)-free. By Observation 3.2 and Lemma 3.5, there exists an integer c ∈ [k − 1]

63

and a set T of disjoint monotone subsequences of f which have a c-gap, satisfying |T | ≥ εn/ poly(k)

and property 3 from Lemma 3.5. For the rest of the subsection, we consider a fixed setting of such

c ∈ [k − 1] and set T .

We show (in Theorem 3.8) that one of the following two possibilities holds. Either there is a

large set of what we call growing suffixes (see Definition 3.6 for a formal definition), or there are

disjoint intervals which we call splittable (see Definition 3.7 for a formal definition). Intuitively, a

growing suffix will be given by the suffix (a, n] and will have the property that by dividing (a, n] into

Θ(log2(n−a)) segments of geometrically increasing lengths, there are many monotone subsequences

(i1, . . . , ik) of f lying inside (a, n] where each it belongs to a different segment. In the other case,

an interval [a, b] is called splittable if it can be divided into three sub-intervals of roughly equal

size, which we refer to as the left, middle, and right intervals, with the following property: the left

interval contains a large set TL of (12 . . . c)-patterns, the right interval contains a large set TR of

(12 . . . (k−c))-patterns, and combining any (12 . . . c)-pattern in TL with any (12 . . . (k−c))-pattern

in TR yields a (12 . . . k)-pattern.

For each index a ∈ [n], let ηa = dlog2(n− a)e. Let S1(a), . . . , Sηa(a) ⊆ [n] be disjoint intervals

given by St(a) = [a+2t−1, a+2t)∩[n]. The collection of intervals S(a) = (St(a) : t ∈ [ηa]) partitions

the suffix (a, n] into intervals of geometrically increasing lengths (except possibly the last interval,

which may be shorter), and we refer to the collection S(a) as the growing suffix at a.

Definition 3.6. Let α, β ∈ [0, 1]. We say that an index a ∈ [n] starts an (α, β)-growing suffix if,

when considering the collection of intervals S(a) = {St(a) : t ∈ [ηa]}, for each t ∈ [ηa] there is a

subset Dt(a) ⊆ St(a) of indices such that the following properties hold.

1. We have |Dt(a)|/|St(a)| ≤ α for all t ∈ [ηa], and
∑ηa

t=1 |Dt(a)|/|St(a)| ≥ β.

2. For every t, t′ ∈ [ηa] where t < t′, if b ∈ Dt(a) and b′ ∈ Dt′(a), then f(b) < f(b′).

Intuitively, our parameter regime will correspond to the case when α is much smaller than β,

specifically, α ≤ β/poly(k), for a sufficiently large-degree polynomial in k. If a ∈ [n] starts an

(α, β)-growing suffix with these parameters, then the ηa segments, S1(a), . . . , Sηa(a), contain many

monotone subsequences of length k which are algorithmically easy to find (given access to the start

a). Indeed, by (2), it suffices to find a k-tuple (i1, . . . , ik) such that i1 ∈ Dt1 , . . . , ik ∈ Dtk , for some

t1, . . . , tk ∈ [ηa] with t1 < . . . < tk (see Figure 3.2). By (1), the sum of densities is at least β, yet

each density is less than α ≤ β/poly(k). In other words, the densities of D1(a), . . . , Dηa(a) within

S1(a), . . . , Sηa(a), respectively, must be spread out, which implies, intuitively, that there are many

ways to pick suitable i1, . . . , ik.

Definition 3.7. Let α, β ∈ (0, 1] and c ∈ [k0 − 1]. Let I ⊆ [n] be an interval, let T ⊆ Ik0 be a set

of disjoint, length-k0 monotone subsequences of f lying in I, and define

T (L) = {(i1, . . . , ic) ∈ Ic : (i1, . . . , ic) is a prefix of a k0-tuple in T}, and

T (R) = {(j1, . . . , jk0−c) ∈ Ik0−c : (j1, . . . , jk0−c) is a suffix of a k0-tuple in T}.

64

a

Figure 3.2: Growing Suffixes. Depiction of an (α, β)-growing suffix at index a ∈ [n] (see

Definition 3.6). The labeled segments St(a) are shown, as well as the subsets Dt(a). Notice

that for all j, all the elements in Dt(a) lie below those in Dt+1(a). In Section 3.4.2, we show

that if an algorithm knows that a starts an (α, β)-growing suffix, for α ≤ β/poly(k), then

sampling poly(k)/β many random indices from each St(a) finds a monotone pattern with

probability at least 0.9.

We say that the pair (I, T) is (c, α, β)-splittable if |T |/|I| ≥ β; f(ic) < f(j1) for every (i1, . . . , ic) ∈
T (L) and (j1, . . . , jk0−c) ∈ T (R); and there is a partition of I into three adjacent intervals L,M,R ⊆
I (that appear in this order, from left to right) of size at least α|I|, satisfying T (L) ⊆ Lc and

T (R) ⊆ Rk0−c.
A collection of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts) is called a (c, α, β)-splittable

collection of T if each (Ij , Tj) is (c, α, β)-splittable and the sets (Tj : j ∈ [s]) partition T .

We now state the main theorem of this section, whose proof will be given in Section 3.3.5.

Theorem 3.8. Let k, k0 ∈ N be positive integers satisfying 1 ≤ k0 ≤ k, and let δ ∈ (0, 1) and

let C > 0. Let f : [n] → R be a function and let T0 ⊆ [n]k0 be a set of δn disjoint monotone

subsequences of f of length k0. Then there exists an α ≥ Ω(δ/k5) such that at least one of the

following conditions holds.

1. Either there exists a set H ⊆ [n], of indices that start an (α,Ckα)-growing suffix, satisfying

α|H| ≥ δn/poly(k, log(1/δ)); or

2. There exists an integer c with 1 ≤ c < k0, a set T , with E(T) ⊆ E(T0), of disjoint length-k0

monotone subsequences, and a (c, 1/(6k), α)-splittable collection of T , of disjoint interval-tuple

pairs (I1, T1), . . . , (Is, Ts), such that

α
s∑

h=1

|Ih| ≥
|T0|

poly(k, log(1/δ))
.

65

I

L RM

T (L)

T (R)

Figure 3.3: Splittable Intervals. Depiction of a (c, α, β)-splittable interval, as defined in

Definition 3.7. The interval I is divided into three adjacent intervals, L,M , and R, and the

disjoint monotone sequences are divided so that T (L) contains the indices (i1, . . . , ic) and

T (R) contains the indices (ic+1, . . . , ik). Furthermore, we have that every (i1, . . . , ic) ∈ T (L)

and (jc+1, . . . , jk) ∈ T (R) have f(ic) < f(jc+1), so that any monotone pattern of length c in

E(T (L)) may be combined with any monotone pattern of length k − c in E(T (R)) to obtain

a monotone pattern of length k within I.

We remark that the above theorem is stated with respect to the two parameters, k0 and k,

for ease of applicability. In particular, in the next section, we will apply Theorem 3.8 multiple

times, and it will be convenient to have k be fixed and k0 be a varying parameter. In that sense,

even though the monotone subsequences in question have length k0, the relevant parameters that

Theorem 3.8 lower bounds only depend on k.

Consider the following scenario: f : [n]→ R is a sequence which is ε-far from (12 . . . k)-free, so

by Observation 3.2, there exists a set T0 of disjoint, length-k monotone subsequences of f of size at

least εn/k. Suppose that upon applying Theorem 3.8 with k0 = k and δ = ε/k, (2) holds. Then,

there exists a (c, 1/(6k), α)-splittable collection of a large subset of disjoint, length-k monotone

subsequences T into disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts). For each h ∈ [s], the pair

(Ih, Th) is (c, 1/(6k), α)-splittable, so let Ih = Lh ∪Mh ∪Rh be the left, middle, and right intervals

of Ih; furthermore, let T
(L)
h be the (12 . . . c)-patterns in Lh which appear as prefixes of Th, and T

(R)
h

be the (12 . . . (k − c))-patterns in Rh which appear as suffixes of Th in Rh. Thus, the restricted

function f|Lh : Lh → R contains |Th| disjoint (12 . . . c)-patterns, and f|Rh : Rh → R contains |Th|
disjoint (12 . . . (k − c))-patterns. This naturally leads to a recursive application of Theorem 3.8 to

the function f|Lh with k0 = c, and to the function f|Rh with k0 = k − c, for all h ∈ [s].

3.3.3 Tree Descriptors

We now introduce the notion of tree descriptors, which will summarize information about a function

f after applying Theorem 3.8 recursively. Then, we state the main structural result for functions

that are ε-far from (12 . . . k)-free. The goal is to say that every function which is ε-far from

66

(12 . . . k)-free either has many growing suffixes, or there exists a tree descriptor which describes

the behavior of many disjoint, length-k monotone subsequences in the function. The following two

definitions make up the notion of a tree descriptor representing a function. Figure 3.4 shows an

example of Definitions 3.9 and 3.10.

Definition 3.9. Let k0 ∈ N and δ ∈ (0, 1). A (k0, δ)-weighted-tree is a pair (G, %), where

• G = (V,E,w) is a rooted binary tree with edges labeled by a function w : E → {0, 1}. Every

non-leaf node has two outgoing edges, e0, e1 with w(e0) = 0 and w(e1) = 1. The set of leaves

V` ⊆ V satisfies |V`| = k0, and ≤G is the total order defined on the leaves by the values of w

on a root-to-leaf path.8

• % : V → [dlog(1/δ)e] is a function that assigns a positive integer to each node of G.

In the next definition, we show how we use weighted trees to represent a function f and a set

of disjoint, length-k0 monotone subsequences.

Definition 3.10. Let k, k0 ∈ N be such that 1 ≤ k0 ≤ k, let α ∈ (0, 1), let I ⊆ N be an interval,

and let f : I → R be a function. Let T ⊆ Ik0 be a set of disjoint monotone subsequences of f . A

triple (G, %, I) is called a (k, k0, δ)-tree descriptor9 of (f, T, I), if (G, %) is a (k0, δ)-weighted tree, I

is a function I : V → P(I) (where V = V (G)), and the following recursive definition holds.

1. If k0 = 1 (so T ⊆ I),

• The graph G = (V,E,w) is the rooted tree with one node, r, and no edges.

• The function % : V → [dlog(1/δ)e] (simply mapping one node) satisfies 2−%(r) ≤ |T |/|I| ≤
2−%(r)+1.

• The map I : V → S(I) is given by I(r) = {{t} : t ∈ T}.

2. If k0 > 1,

• The graph G = (V,E,w) is a rooted binary tree with k0 leaves. We refer to the root by r,

the left child of the root (namely, the child incident with the edge given 0 by w) by vleft,

and the right child of the root (the child incident with the edge given 1) by vright. Let c

be the number of leaves in the subtree of vleft, so vright has k0 − c leaves in its subtree.

• Write I(r) = {I1, . . . , Is}. Then I1, . . . , Is are disjoint sub-intervals of I, and, setting

Ti = (Ii)
k0∩T , the pairs (I1, T1), . . . , (Is, Ts) form a (c, 1/(6k), 2−%(r))-splittable collection

of T , and

2−%(r)
s∑

h=1

|Ih| ≥
|T |

poly(k, log(1/δ))k
.

8Specifically, for l1, l2 ∈ V` at depths d1 and d2, with root to leaf paths (r, u(1), . . . , u(d1−1), l1)

and (r, v(1), . . . , v(d2−1), l2), then l1 ≤G l2 if and only if (w(r, u(1)), w(u(1), u(2)), . . . , w(u(d1−1), l1)) ≤
(w(r, v(1)), w(v(1), v(2)), . . . , w(v(d2−1), l2)) in the natural partial order on {0, 1}∗.

9We shall sometimes refer to this as a k0-tree descriptor, in particular when k, δ are not crucial to the discussion.

67

• For each h ∈ [s] there exists a partition (Lh,Mh, Rh) of Ih that satisfies Definition 3.7,

such that the sets T
(L)
h , of prefixes of length c of subsequences in Th, and T

(R)
h , of suffixes

of length k0 − c of subsequences in Th, satisfy T
(L)
h ⊆ (Lh)c and T

(R)
h ⊆ (Rh)k0−c.

Moreover, the following holds.

The tuple (Gleft, %left, Ih, left) is a (k, c, δ)-tree descriptor of f , T
(L)
h , and Lh, where Gleft

is the subtree rooted at vleft, %left is the restriction of % to the subtree Gleft, and Ih, left is

defined by Ih, left(v) := {J ∈ I(v) : J ⊆ Lh} for all v ∈ Gleft.

Analogously, the tuple (Gright, %right, Ih, right) is a (k, k0 − c, δ)-tree descriptor of f , T
(R)
h ,

and Rh, where Gright, %right, Ih, right are defined analogously.

We remark that it is not the case that for every function f : I → R defined on an interval

I, and for every T ⊆ Ik0 which is a set of disjoint, length-k0 monotone subsequences of f , there

must exist a k0-tree descriptor which represents (f, T, I). The goal will be to apply Theorem 3.8

recursively whenever we are in (2), and to find a sufficiently large set T of disjoint length-k monotone

subsequences, as well as a k-tree descriptor which represents (f, T, I).

3.3.4 The Structural Dichotomy Theorem

We are now in a position to state the main structural theorem of far-from-(12 . . . k)-free sequences,

which guarantees that every far-from-(12 . . . k)-free sequence either has many growing suffixes, or

can be represented by a tree descriptor. The algorithm for finding a (12 . . . k)-pattern will proceed

by considering the two cases independently. The first case, when a sequence has many growing

suffixes, is easy for algorithms; we will give a straight-forward sampling algorithm making roughly

Ok(log n/ε) queries. The second case, when a sequence is represented by a tree descriptor is the

“hard” case for the algorithm.

Theorem 3.11 (Main structural result). Let k ∈ N, ε > 0, and let f : [n]→ R be a function which

is ε-far from (12 . . . k)-free. Then one of the following holds, where C > 0 is a large constant.

• There exists a parameter α ≥ ε/ poly(k, log(1/ε))k, and a set H ⊆ [n] of indices which start

an (α,Ckα)-growing suffix, with

α|H| ≥ εn

poly(k, log(1/ε))k
,

• or there exists a set T ⊆ [n]k of disjoint monotone subsequences of f satisfying

|T | ≥ εn

poly(k, log(1/ε))k2

and a (k, k, β)-tree descriptor (G, %, I) representing (f, T, [n]) where β ≥ ε/ poly(k, log(1/ε))k
2
.

Proof. We shall prove the following claim, by induction, for all k0 ∈ [k]. Here C > 0 is a large

constant, and C ′ > 0 is a large enough constant such that α ≥ δ/(C ′k5) in the statement of

Theorem 3.8, applied with the constant C.

68

1 2 3 4

r

v0 v1

i1 j2 l3 h4

Figure 3.4: Tree Descriptors. Depiction of a tree descriptor (G, %, I) representing (f, T, I),

as described in Definitions 3.9 and 3.10. The graph G displayed above is a rooted tree with

four leaves, which are ordered and labeled left-to-right. The root node r, filled in black,

has its corresponding intervals from I(r) shown below the sequence as three black intervals.

Each of the black intervals in I(r) is a (2, α, β)-splittable interval, for α ≈ 1/3 and β ≥ 1/6.

Then, the root has the left child v0, filled in red, and the right child v1, filled in blue. The red

intervals are those belonging to I(v0), and the blue intervals are those belonging to I(v1). Each

black interval in I(r) has a left part, which contains intervals in I(v0), and a right part, which

contains intervals in I(v1). The red and blue intervals in I(v0) and I(v1) are also (1, α, β)-

splittable, and the left part of the red intervals contains indices which will form the 1 in the

monotone pattern of length 4, and the right part of the red intervals contains indices which

will form the 2. Likewise, the left part of blue intervals will contain the indices corresponding

to 3, and the right part of the blue intervals will contain indices corresponding to 4. The

regions where the indices from T lie are shown above the sequence, where the indices 1–4 of

some monotone pattern in T lie in regions which are progressively darker. In order to see how

a monotone subsequence may be sampled given that (G, `, I) is a tree descriptor for (f, T, I)

with sufficiently large T , consider indices i1 and j2 that belong to some subsequences from

T , and lie in different shaded regions of the same red interval, within a black interval; and

furthermore, l3 and h4 belong to some subsequence from T , and lie in different shaded regions

of the same blue interval, within the same black interval as i1 and j2; then, the subsequence

(i1, j2, l3, h4) is a monotone subsequence even though (i1, j2, l3, h4) /∈ T .

69

Claim. Let K = C ′k5 and let P (·, ·) be the function from the statement of Theorem 3.8; so

P (x, y) = poly(x, log y), and we may assume that P is increasing in both variables. Let

A(·, ·) and B(·, ·) be increasing functions, such that

A(k0, 1/δ) ≥ 12kdlog(Kk0/δ)e · P (k, 1/δ) ·A(k0 − 1,K/δ)

A(1, 1/δ) = 1/δ

B(k0, 1/δ) ≥ 2 · P (k,K/δ) · (2kdlog(KB(k0 − 1,K/δ)/δ)e)2k0 ·B(k0 − 1,K/δ)

B(1, 1/δ) = 1/δ

(3.4)

Note that there exists such A(·, ·) and B(·, ·) with A(k, 1/δ) = (poly(k, log(1/δ)))k and

B(k, 1/δ) = (poly(k, log(1/δ)))k
2
.

Let I ⊆ N be an interval, let g be a sequence g : I → R, let T0 ⊆ Ik0 be a set of disjoint

length-k0 monotone subsequences, and define δ := |T0|/|I|. Then

1. Either there exists α ≥ δ/Kk0 , which is an integer power of 1/2, along with a set H ⊆ I
of (α,Ckα)-growing suffix start points such that

α|H| ≥ δ|I|
A(k0, 1/δ)

,

2. Or there exists a set T ⊆ Ik0 of disjoint k0-tuples satisfying E(T) ⊆ E(T0) and

|T | ≥ |T0|
B(k0, 1/δ)

and a (k, k0, α)-tree descriptor (G, %, I) for (g, T, I), where α ≥ δ/B(k0, 1/δ).

Note that since f is ε-far from (12 . . . k)-free, there is a set T0 ⊆ [n]k of at least εn/k disjoint

length-k monotone subsequences. By applying the above claim for k0 = k, T0, [n] and f , the

theorem follows. Thus, it remains to prove the claim; we proceed by induction.

if k0 = 1: Note that here T0 is a subset of I. We define the (k, 1, δ)-tree descriptor (G, %, I) which

represents f, T = T0, I in the natural way:

• G = (V,E) is a rooted tree with one node: V = {r} and E = ∅.

• % : V → N is given by %(r) = dlog(1/δ)e, so 2−%(r) ≤ |I ∩ T |/|I| ≤ 2−%(r)+1.

• I : V → S(I) is given by I(r) = {{t} : t ∈ T}.

if 2 ≤ k0 ≤ k: By Theorem 3.8, there exists α ≥ δ/K such that one of (1) and (2), from the

statement of the theorem, holds.

• If (1) holds, there is a set H ⊆ I of (α,Ckα)-growing suffix start points with

α|H| ≥ δ|I|
P (k, 1/δ)

;

70

note that we may assume that α is an integer power of 1/2.10

• Otherwise, (2) holds, and we are given an integer c ∈ [k0−1], a set T of disjoint length-k0

monotone subsequences, with E(T) ⊆ E(T0), and a (c, 1/(6k), α)-splittable collection of

T into disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts), such that

α
s∑

h=1

|Ih| ≥
|T0|

P (k, 1/δ)
=

δ|I|
P (k, 1/δ)

.

Recall that by definition of splittability, |Th|/|Ih| ≥ α for every h ∈ [s].

If (1) holds, we are done; so we assume that (2) holds.

For each h ∈ [s], since (Ih, Th) is a (c, 1/(6k), α)-splittable pair, there exists a partition

(Lh,Mh, Rh) that satisfies the conditions stated in Definition 3.7. Let T
(L)
h be the collection

of prefixes of length c of subsequences in Th, and let T
(R)
h be the collection of suffixes of length

k0 − c of subsequences in Th.

We apply the induction hypothesis to each of the pairs (Lh, T
(L)
h) and (Rh, T

(R)
h). We consider

two cases for each h ∈ [s].

1. (1) holds for either (Lh, T
(L)
h) or (Rh, T

(R)
h). This means that there exists βh, which is

an integer power of 1/2, and which satisfies βh ≥ α/Kmax{c,k0−c} ≥ α/Kk0−1 ≥ δ/Kk0 ,

and a set Hh ⊆ Ih of start points of (βh, Ckβh)-growing subsequences, such that (using

|Rh|, |Lh| ≥ |Ih|/(6k))

βh|Hh| ≥
α|Ih|

6k ·A(k0 − 1, 1/α)

2. Otherwise, (2) holds for both (Lh, T
(L)
h) and (Rh, T

(R)
h). Setting β = α/B(k0 − 1, 1/α),

this means that there exists a (k, c, β)-tree descriptor (G
(L)
h , %

(L)
h , I

(L)
h), for (g,Lh, Lh)

where Lh ⊆ (Lh)c is a set of length-cmonotone subsequences, such that E(Lh) ⊆ E(T
(L)
h)

and

|Lh| ≥
|T (L)
h |

B(k0 − 1, 1/α)
, (3.5)

and, similarly, there exists a (k, k0−c, β)-tree descriptor (G
(R)
h , %

(R)
h , I

(R)
h) for (g,Rh, Lh),

where Rh ⊆ (Rh)k0−c is a set of length-(k0 − c) monotone subsequences, such that

E(Rh) ⊆ E(T
(R)
h) and

|Rh| ≥
|T (R)
h |

B(k0 − 1, 1/α)
. (3.6)

For convenience, we shall assume that |Lh| = |Rh|, by possibly removing some elements

of the largest of the two (and reflecting this in the corresponding tree descriptor).

10to be precise and to ensure that we can take α to be an integer power of 2, it might be better to apply Theorem 3.8

with constant 2C, to allow for some slack; this does not change the argument.

71

Suppose first that ∑
h : first case holds for h

|Ih| ≥
1

2
·

s∑
h=1

|Ih|.

Since each βh is an integer power of 1/2, there are at most dlog(Kk0/δ)e possible values for

βh. Hence, there exists some β (with β ≥ δ/Kk0) such that the collection S, of indices h ∈ [s]

for which the first case holds for h and βh = β, satisfies

∑
h∈S
|Ih| ≥

1

2dlog(Kk0/δ)e
·

s∑
h=1

|Ih|.

Let H =
⋃
h∈S Hh. Then H is a set of start points of (β,Ckβ)-growing suffixes, with

β|H| ≥ α

6k ·A(k0 − 1, 1/α)
·
∑
h∈S
|Ih| ≥

α

12kdlog(Kk0/δ)e ·A(k0 − 1, 1/α)
·

s∑
h=1

|Ih|

≥ δ|I|
12kdlog(Kk0/δ)e · P (k, 1/δ) ·A(k0 − 1, 1/α)

≥ δ|I|
A(k0, 1/δ)

,

where the last inequality follows from (3.4). This proves the claim in this case.

Next, we may assume that

∑
h : second case holds for h

|Ih| ≥
1

2
·

s∑
h=1

|Ih|.

Note that the number of quadruples (G
(L)
h , %

(L)
h , G

(R)
h , %

(R)
h) (whose elements are as above) is

at most (2c)2c(2(k0− c))2(k0−c)(dlog(1/β)e)2k0 ≤ (2kdlog(1/β)e)2k0 , since the number of trees

on l vertices is at most ll, and we have at most dlog(1/β)e possible weights to assign to each

of the vertices. It follows that there exists such a quadruple (G∗L, %
∗
L, G

∗
R, %

∗
R) such that if S

is the set of indices h that were assigned this quadruple, then

α ·
∑
h∈S
|Ih| ≥

α

(2kdlog(1/β)e)2k0
·

∑
second case holds for h

|Ih|

≥ α

2 · (2kdlog(1/β)e)2k0
·

s∑
h=1

|Ih| ≥
|T0|

2 · P (k, 1/δ) · (2kdlog(1/β)e)2k0
.

(3.7)

We form a set Th of monotone length-k0 subsequences by matching elements from Lh with

elements from Rh for each h ∈ S; that they can be matched follows from the assumption that

|Lh| = |Rh|, and that these form monotone subsequences follows from the assumptions on

Lh,Rh. Set T := ∪h∈STh. Note that (Ih, Th) is (k0, c, β)-splittable by (3.5) and (3.6) (using

β = α/B(k0− 1, 1/α)). Let (G, %) be the (k, k0, β)-weighted-tree obtained by taking a root r,

with weight %(r) = dlog(1/β)e, adding the tree (G∗L, %
∗) as a subtree to its left (i.e., the root

72

of this tree is joined to r by an edge with value 0) and adding the tree (G∗R, %
∗) as a subtree

to its right. Now, we form a (G, %, I)-tree descriptor by setting

I(v) =

{Ih : h ∈ S} v = r⋃
h∈S I

(L)
h (v) v ∈ G∗L⋃

h∈S I
(R)
h (v) v ∈ G∗R.

We claim that (G, %, I) is a (k, k0, β)-tree descriptor for (g, T , I). Indeed, ((Ih, Th))h∈S is a

(c, 1/(6k), 2−%(r))-splittable collection of T , and, by (3.7) and because |T0| ≥ |T |

2−%(r)
∑
h∈S
|Ih| ≥

α

2
·
∑
h∈S
|Ih| ≥

|T |
4 · P (k, 1/δ) · (2kdlog(1/β)e)2k0

=
|T |

poly(k, log(1/δ))k
.

The remaining requirements in the recursive definition of a tree descriptor (see Definition 3.10)

follow as (G∗L, %
∗, I

(L)
h) is a (k, c, β)-tree descriptor for (g,Lh, Lh) and (G∗L, %

∗, I
(R)
h) is a (k, k0−

c, β)-tree descriptor for (g,Rh, Rh) for every h ∈ S. Since β = α/B(k0−1, 1/α) ≥ δ/B(k0, 1/δ),

it follows that (G, %, I) is a (k, k0, δ/B(k0, 1/δ))-tree descriptor for (g, T , I).

It remains to lower-bound the size of T . Using (3.6) and (3.7), we have

|T | =
∑
h∈S
|Rh| ≥

1

B(k0 − 1, 1/α)
·
∑
h∈S
|Th| ≥

α

B(k0 − 1, 1/α)
·
∑
h∈S
|Ih|

≥ |T0|
2 · P (k, 1/δ) · (2kdlog(1/β)e)2k0 ·B(k0 − 1, 1/α)

≥ |T0|
B(k0, 1/δ)

.

This completes the proof of the inductive claim in this case.

3.3.5 Proof of Structural Dichotomy Theorem

We now prove Theorem 3.8. For the rest of this section, let k, k0 ∈ N, with 1 ≤ k0 ≤ k, be fixed,

and let f : [n] → R be a fixed function. Let T0 be a set of δn disjoint monotone subsequences of

f of length k0. We apply Lemma 3.5 to the set T0; this specifies an integer c ∈ [k0 − 1] and a

subset T of at least δn/k2 disjoint monotone subsequences of length k0 satisfying the conclusion of

Lemma 3.5.

Definition 3.12. Let (i1, . . . , ik0) ∈ [n]k0 be a monotone subsequence with a c-gap. We say that

(i1, . . . , ik0) is at scale t if 2t ≤ ic+1 − ic ≤ 2t+1, where t ∈ {0, . . . , blog nc}.

Definition 3.13. Let (i1, . . . , ik0) ∈ [n]k0 be a monotone subsequence with a c-gap. For γ ∈ (0, 1),

we say that ` ∈ [n] γ-cuts (i1, . . . , ik0) at c with slack if

ic + γ(ic+1 − ic) ≤ ` ≤ ic+1 − γ(ic+1 − ic). (3.8)

73

We hereafter consider the parameter setting of γ := 1/3. For ` ∈ [n], t ∈ {0, . . . , blog nc}, and

any subset U ⊂ T of disjoint (12 . . . k0)-patterns in f let

At(`, U) = {(i1, . . . , ik0) ∈ U : (i1, . . . , ik0) is at scale t and is γ-cut at c with slack by `}. (3.9)

We note that for each (i1, . . . , ik0) ∈ At(`, U), the index ic+1 is in [`, `+ 2t+1], and since At(`, U) is

made of disjoint monotone sequences, |At(`, U)| ≤ 2t+1.

Lemma 3.14. For every ` ∈ [n], t ∈ {0, . . . , blog nc}, and U ⊂ T ,

• Every (i1, . . . , ik0) ∈ At(`, U) satisfies

`− (k − 1)2t+1 ≤ i1, . . . , ic ≤ `− γ2t `+ γ2t ≤ ic+1, . . . , ik0 ≤ `+ (k − 1)2t+1.

• Let t1 ≥ t2 + 1 + log(1/γ) + log(c+ 1), (i1, . . . , ik0) ∈ At1(`, U) and (j1, . . . , jk0) ∈ At2(`, U).

Then f(jc+1) < f(ic+1).

Proof. Fix any ` ∈ [n], t ∈ {0, . . . , blog nc} and U ⊂ T . To establish the first bullet, consider any

(i1, . . . , ik0) ∈ At(`, U). By definition of a c-gap sequence, we have

i1 ≥ ic+1 − c(ic+1 − ic) ≥ `− (k − 1)2t+1,

using ic+1 − ic ≤ 2t+1 and ic+1 ≥ `. By (3.8), we have ic ≤ `− γ2t (using ic+1 − ic ≥ 2t). The first

inequality follows as i1 < · · · < ic. The inequality for ic+1, . . . , ik0 follows similarly.

For the second bullet, let (i1, . . . , ik0) ∈ At1(`, U) and (j1, . . . , jk0) ∈ At2(`, U) and suppose that

2t1 ≥ 2t2+1 · (c + 1)/γ. We have ic ≤ ` − γ2t1 and jc ≥ ` − 2t2+1 (using (3.8) and (3.9)), from

which it follows that jc > ic. Similarly, i1 < ic ≤ `− γ2t1 and j1 ≥ `− (c− 1)2t2+1, implying that

j1 > i1, and ic+1 ≥ ` + γ2t1 and jc+1 ≤ ` + 2t2+1, which implies that ic+1 > jc+1. The inequality

f(jc+1) < f(ic+1) follows from the assumption that T satisfies (3) from Lemma 3.5.

The proof of Theorem 3.8 follows by considering a random ` ∼ [n] and the collection of sets

A1(`, T), . . . , Ablognc(`, T). By looking at how the sizes of the sets A1(`, T), . . . , Alogn−1(`, T) vary,

we will be able to say that ` is the start of a growing suffix, or identify a splittable interval. Towards

this goal, we first establish a simple lemma; here v(`, U) is defined to be
∑blognc

t=0 |At(`, U)|/2t.

Lemma 3.15. Let U ⊂ T be any subset and ` ∼ [n] be sampled uniformly at random. Then

E
`∼[n]

v(`, U) ≥ |U |
3n

.

Proof. Fix a sequence i = (i1, . . . , ik0) ∈ U , and let t(i) ∈ {0, . . . , blog nc} be its scale. Then, the

probability (over a uniformly random ` in [n]) that i belongs to At(i)(`, U) is lower bounded as

Pr
`∼[n]

[i ∈ At(i)(`, U)] ≥ (1− 2γ)2t(i)

n
=

2t(i)

3n
.

74

Therefore,
∑logn−1

t=0

∑
i∈U : t(i)=t Pr`∼[n][i ∈ At(`, U)]/2t ≥ |U |/(3n), or, equivalently, since Pr`∼[n][i ∈

At(`, U)] = 0 for t 6= t(i),

E
`∼[n]

[
logn−1∑
t=0

|At(`, U)|
2t

]
= E

`∼[n]

[
logn−1∑
t=0

∑
i∈U

1{i ∈ At(`, U)}
2t

]
≥ |U |

3n
,

establishing the lemma.

We next establish an auxiliary lemma that we will use in order to find growing suffixes.

Lemma 3.16. Let ` ∈ [n] and U ⊂ T be such that every t ∈ {0, . . . , blog nc} satisfies |At(`, U)|/2t ≤
β. Then, if `′ ∈ [n] is any index satisfying

max{ic : (i1, . . . , ik0) ∈ At(`, U), t ∈ {0, . . . , blog nc} ≤ `′ ≤ `, (3.10)

then `′ is the start of an (4β, v(`, U)/(12 log k))-growing suffix.

Proof. Let ∆ = 1 + log(1/γ) + log(c+ 1), and notice that 3 ≤ ∆ ≤ 3 log k. Then, there exists a set

T ⊆ {0, . . . , blog nc} such that

1. All distinct t, t′ ∈ T satisfy |t− t′| ≥ ∆; and,

2.
∑

t∈T
|At(`,U)|

2t ≥ 1
∆+1

∑logn−1
t=0

|At(`,U)|
2t = v(`,U)

∆+1 .

(Such a set exists by an averaging argument.) Now, consider the sets

Dt(`) =

{ic+1 : (i1, . . . , ik0) ∈ At(`, U)} if t ∈ T

∅ if t ∈ {0, . . . , blog nc} \ T .

Considering any `′ ∈ [n] satisfying (3.10), we have the following for all t ∈ {0, . . . , blog nc} with

Dt(`) 6= ∅: ` − 2t+1 ≤ `′ ≤ `; minDt(`) ≥ ` + 2t/3; and maxDt(`) ≤ `′ + 2t+1. Therefore,

Dt(`) ⊂ St−1(`′) ∪ St(`′) ∪ St+1(`′). (Recall that St(a) = [a + 2t−1, a + 2t).) For each t ∈ T ,

let n(t) ∈ {t − 1, t, t + 1} satisfying |Dt(`) ∩ Sn(t)(`
′)| ≥ |Dt(`)|/3, and notice that all n(t) ∈

{0, . . . , blog nc} are distinct since ∆ ≥ 3.

The first condition in Definition 3.6 holds as the densities of Dt(`)∩Sn(t)(`
′) in the corresponding

intervals Sn(t)(`
′) are upper bounded by |Dt(`)|/|Sn(t)(`

′)| ≤ |At(`, U)|/2t−2 ≤ 4β, and the sum of

these densities satisfies∑
t∈T

|Dt(`) ∩ Sn(t)(`
′)|

|Sn(t)(`′)|
≥
∑
t∈T

|Dt(`)|
3 · 2t

=
∑
t∈T

|At(`, U)|
3 · 2t

≥ v(`, U)

3(∆ + 1)
,

which is at least v(`, U)/(12 log k). The second condition in Definition 3.6 holds, because for any

choice of b ∈ Dt(`), b
′ ∈ Dt′(`) with t < t′, we have t′ ≥ t + ∆ (by the choice of T), and hence

f(b) < f(b′) by the second item of Lemma 3.14.

75

Lemma 3.17. For every η > 0, there exists a subset U ⊂ T such that every (i1, . . . , ik0) ∈ U has

ic as the start of an (1, η)-growing suffix, and every ` ∈ [n] satisfies v(`, T \ U) ≤ 12η log(k).

Proof. Define sets Uj , elements `j , and k0-tuples (ij,1, . . . , ij,k0) recursively as follows. Set U0 := ∅,
and given a set Uj−1, if v(`, T \ Uj−1) ≤ 12η log k for every ` ∈ [n], stop; otherwise, let `j ∈ [n] be

such that v(`j , T \ Uj) > 12η log k and define Uj = Uj−1 ∪ {(ij,1, . . . , ij,k0)}, where

ij,c = max{ic : (i1, . . . , ik0) ∈ T \ Uj and (i1, . . . , ik0) is γ-cut by `j}.

Let j∗ be the maximum j for which Uj was defined, and set U := Uj∗ . Every k0-tuple in U is

of the form (ij,1, . . . , ij,k0) for some j ≤ j∗. By Lemma 3.16, applied with ` = `j , U = T \ Uj−1,

ij,c, it follows that ij,c is the start of an (1, η)-growing suffix, for every j for which Uj was defined.

Lemma 3.17 follows.

We let C > 0 be a large enough constant. Let U ⊂ T be the set obtained from Lemma 3.17 with

η = Ck, and suppose that |U | ≥ |T |/2. Then, we may let α = 1 and H = {ic : (i1, . . . , ik0) ∈ U}.
Notice that every index in H is the start of an (α,Ckα)-growing suffix, and since |H| ≥ |T |/2,

we obtain the first item in Theorem 3.8. Suppose then, that |U | < |T |/2, and consider the set

V = T \ U . By definition of V , we now have v(`, V) ≤ 12Ck log k for every ` ∈ [n]. Let b0 be

the largest integer which satisfies 2b0 ≤ 12Ck log k and b1 be the smallest integer which satisfies

2−b1 ≤ δ/(12k2), so 2b0 . 2b1 � k2/δ. For −b0 ≤ j ≤ b1, consider the pairwise-disjoint sets

Bj =
{
` ∈ [n] : 2−j ≤ v(`, V) ≤ 2−j+1

}
, (3.11)

and note that by Lemma 3.15, since |V | ≥ |T |/2 ≥ δn/2k2,

1

n

b1∑
j=−b0

|Bj | · 2−j+1 ≥ 1

n

∑
`∈[n]

v(`, V) ≥ δ

6k2
.

Thus, denoting

µ :=
δ

6k2(b1 + b0 + 1)
� δ

k2 log(k/δ)
,

there is an integer −b0 ≤ j∗ ≤ b1 that satisfies

|Bj∗ | · 2−j
∗ ≥ µn. (3.12)

Lemma 3.18. There exists a deterministic algorithm, GreedyDisjointIntervals(f,B, j), which

takes three inputs: a function f : [n] → R, a set B ⊆ [n] of integers, and an integer j ∈ [−b0, b1],

and outputs a collection I of interval-tuple pairs or a subset H ⊆ B. An execution of the algorithm

GreedyDisjointIntervals(f,Bj∗ , j
∗) where µ, Bj∗ and j∗ are defined in (3.12), satisfies one of

the following two conditions, where C > 0 is a large constant.

• The algorithm returns a set H ⊆ B of indices that start a (4·2−j∗/(Ck log k), 2−j
∗
/(12 log k))-

growing suffix, and |H| ≥ 2j
∗−1µn; or

76

• The algorithm returns a (c, 1/(6k), 2−j
∗
/(8Ck2 log k))-splittable collection (I1, T1), . . . , (Is, Ts),

where
∑s

h=1 |Ih| ≥ 2j
∗−2µn.

Subroutine GreedyDisjointIntervals(f,B, j)

Input: A function f : [n]→ R, a set B ⊆ [n] and an integer j, such that every ` ∈ B satisfies

2−j ≤ v(`, V) ≤ 2−j+1.

Output: a set of disjoint intervals-tuple pairs (I1, T1), . . . , (Is, Ts) or a subset H ⊆ B.

1. Let I be a collection of interval-tuple pairs, which is initially empty.

2. Consider the map q : B → {0, . . . , blog nc} ∪ {⊥} defined by

q(`) =

{
⊥ ∀t ∈ {0, . . . , blog nc}, |At(`,V)|

2t < 2−j

Ck log k

max
{
t : |At(`,V)|

2t ≥ 2−j

Ck log k

}
otherwise

.

3. Let H = {` ∈ B : q(`) = ⊥}, and return H if |H| ≥ |B|/2.

4. Otherwise, let D ← B \H and repeat the following until D = ∅:

• Pick any ` ∈ D where q(`) = max`′∈D q(`
′), and let t = q(`).

• Let I ← [`− k2t+1, `+ k2t+1] ∩ [n] and T ′ ← At(`, V).

• Obtain T ′′ from T ′ as follows: find a value ν such that at least |T ′|/2 of tuples

(i1, . . . , ik0) ∈ T ′ satisfy f(ic) ≤ ν, and at least |T ′|/2 of tuples (i1, . . . , ik0) ∈ T ′

satisfy f(ic+1) > ν (ν could be taken to be the median of the multiset {f(ic) :

(i1, . . . , ik0) ∈ T ′}). Recombine these prefixes and suffixes (matching them in one-

to-one correspondence) to obtain a set of disjoint k0-tuples T ′′ of size |T ′′| ≥ |T ′|/2.

• Append (I, T ′′) to I, and let D ← D \ [`− 2 · k2t+1, `+ 2 · k2t+1].

5. return I.

Figure 3.5: Description of the GreedyDisjointIntervals subroutine.

Proof. It is clear that the algorithm always terminates, and outputs either a collection I of interval-

tuple pairs or a subset H ⊆ B. Suppose that the input of the algorithm, (f,Bj∗ , j
∗), satisfies (3.12),

and consider the two possible types of outputs.

If the algorithm returns a set H ⊆ Bj∗ (in step 3), then we have |H| ≥ |B|2 ≥
1
2 ·2

j∗µn (the second

inequality by (3.12)). (To see why the elements of H start (4 · 2−j∗/(Ck log k), 2−j
∗
/(12 log k))-

growing suffixes (Definition 3.6), notice that we may apply Lemma 3.16 with `′ = ` and β =

77

2−j
∗
/(Ck log k).)

If, instead, the algorithm returns a collection I = ((Ih, Th) : h ∈ [s]) in step 5, we have that, by

construction, each Th is obtained from a set T ′h = At(`, V) for some ` with q(`) 6= ⊥. Consequently,

for all h ∈ [s] we have

|Th|
|Ih|
≥
|T ′h|
2|Ih|

≥
|Aq(`)(`, V)|
4k · 2q(`)+1

≥ 1

8k
· 2−j

∗

Ck log k
. (3.13)

(from the definition of q(`)). To argue that
∑s

h=1 |Ih| is large, observe that, since we did not output

the set H, we must have had |D| > |Bj∗ |/2. Since, when adding (Ih, Th) (corresponding to some

`h) to I we remove at most 4k2q(`)+1 = 2|Ih| elements from D, in order to obtain an empty set D

and reach step 5 we must have
∑s

h=1 |Ih| ≥ |Bj∗ |/4, which is at least 2j
∗
µn/4 by (3.12). Moreover,

the sets Ih are disjoint: this is because of our choice of maximal q(`) in step 4, which ensures

that after removing [` − 2k2q(`)+1, ` + 2k2q(`)+1] in step 4 there cannot remain any `′ ∈ D with

[`′ − k2q(`
′)+1, `′ + k2q(`

′)+1] ∩ Ih 6= ∅.

Thus, it remains to prove that I is a (c, 1/(6k), 2−j
∗
/(8Ck2 log k))-splittable collection. To do

so, consider any (Ih, Th) ∈ I. The first condition in Definition 3.7 of splittable pairs, namely that

|Th|/|Ih| ≥ 2−j
∗
/(8Ck2 log k) holds due to (3.13). Recalling step 4, we have Ih = [`−k2t+1, `+k2t+1]

for some `, where t = q(`), and Th obtained from T ′h = At(`, V). Set

Lh := [`− k2t+1, `− γ2t], Mh := (`− γ2t, `+ γ2t), Rh := [`+ γ2t, `+ k2t+1].

This is a partition of Ih into three adjacent intervals whose size is at least |Ih|/(6k) (recall that

γ = 1/3). Moreover, for every (i1, . . . , ik0) ∈ T ′h, the c-prefix (i1, . . . , ic) is in (Lh)c while the

(k0 − c)-suffix (ic+1, . . . , ik0) is in (Rh)k0−c, by the first item of Lemma 3.14. Since Th is obtained

from a subset of these very prefixes and suffices, the conclusion holds for Th as well. Moreover,

our construction of Th from T ′h guarantees that the last requirement in Definition 3.7 holds: for

every prefix (i1, . . . , ic) of a tuple in Th and suffix (j1, . . . , jk0−c) of a tuple in Th, we have f(ic) <

f(j1). This shows that (Ih, Th) is (c, 1/(6k), 2−j
∗
/(8Ck2 log k))-splittable, and overall that I is a

(c, 1/(6k), 2−j
∗
/(8Ck2 log k))-splittable collection as claimed.

Theorem 3.8 follows by executing GreedyDisjointIntervals(f,Bj∗ , j
∗). If the algorithm out-

puts a set H ⊆ Bj∗ , set α = 4·2−j∗/(Ck log k), so we have identified a subset H of (α,C ′αk)-growing

suffixes (where C ′ = C/48) satisfying α|H| ≥ δn/poly(k, log(1/δ)) = |T0|/poly(k, log(1/δ)) (using

the definition of µ before (3.12)). Otherwise, set α = 2−j
∗
/(8Ck2 log k), and the algorithm out-

puts a (c, 1/(6k), α)-splittable collection {(I1, T1), . . . , (Is, Ts)} of the set T ′ := ∪h∈[s]Th. Clearly,

E(T ′) ⊆ E(T), and moreover, α
∑s

h=1 |Ih| ≥ δn/poly(k, log(1/δ)) = |T0|/ poly(k, log(1/δ)). In

fact, 2−j
∗

= Ω(δ/k2) and so α ≥ Ω(δ/(k4 log k)).

78

3.4 The Algorithm

3.4.1 High-level Plan

We now present the non-adaptive algorithm for finding monotone subsequences of length k.

Theorem 3.19. Consider any fixed value of k ∈ N. There exists a non-adaptive and randomized

algorithm, Samplerk(f, ε), which takes two inputs: query access to a function f : [n] → R and a

parameter ε > 0. If f is ε-far from (12 . . . k)-free, then Samplerk(f, ε) finds a (12 . . . k)-pattern

with probability at least 9/10. The query complexity of Samplerk(f, ε) is at most

1

ε

(
log n

ε

)blog2 kc
· poly(log(1/ε)) .

The particular dependence on k and log(1/ε) obtained from Theorem 3.19 is on the order of

(k log(1/ε))O(k2). The algorithm is divided into two cases, corresponding to the two outcomes

from an application of Theorem 3.11. Suppose f : [n] → R is a function which is ε-far from being

(12 . . . k)-free. By Theorem 3.11 one of the following holds, where C > 0 is a large constant.

Case 1: there exist α ≥ ε/polylog(1/ε) and a set H ⊆ [n] of (α,Ckα)-growing suffixes where

α|H| ≥ εn/polylog(1/ε), or

Case 2: there exist a set T ⊆ [n]k of disjoint, length-k monotone sequences, that satisfies |T | ≥
εn/(polylog(1/ε)), and a k-tree descriptor (G, %, I) which represents (f, T, [n]).

Theorem 3.19 follows from analyzing the two cases independently, and designing an algorithm for

each.

Lemma 3.20 (Case 1). Consider any fixed value of k ∈ N, and let C > 0 be a large enough

constant. There exists a non-adaptive and randomized algorithm, Sample-Suffixk(f, ε) which

takes two inputs: query access to a function f : [n]→ R and a parameter ε > 0. Suppose there exist

α ∈ (0, 1) and a set H ⊆ [n] of (α,Ckα)-growing suffixes satisfying α|H| ≥ εn/polylog(1/ε),11 then

Sample-Suffixk(f, ε) finds a length-k monotone subsequence of f with probability at least 9/10.

The query complexity of Sample-Suffixk(f, ε) is at most

log n

ε
· polylog(1/ε).

Lemma 3.20 above, which corresponds to the first case of Theorem 3.11, is proved in Sec-

tion 3.4.2.

11Here we think of k as fixed, so polylog(1/ε) is allowed to depend on k. In this lemma, the expression stands for

(k log(1/ε))k.

79

Lemma 3.21 (Case 2). Consider any fixed value of k ∈ N. There exists a non-adaptive, ran-

domized algorithm, Sample-Splittablek(f, ε) which takes two inputs: query access to a sequence

f : [n] → R and a parameter ε > 0. Suppose there exists a set T ⊆ [n]k of disjoint, length-k

monotone subsequences of f where |T | ≥ εn/polylog(1/ε),12 as well as a (k, k, α)-tree descriptor

(G, %, I) that represents (f, T, [n]), where α ≥ ε/polylog(1/ε), then Sample-Splittablek(f, ε) finds

a length-k monotone subsequence of f with probability at least 9/10. The query complexity of

Sample-Splittablek(f, ε) is at most

1

ε

(
log n

ε

)blog2 kc
· polylog(1/ε).

Proof of Theorem 3.19 assuming Lemmas 3.20 and 3.21. The algorithm Samplerk(f, ε) executes

both Sample-Suffixk(f, ε) and Sample-Splittablek(f, ε); if either algorithm finds a length-k

monotone subsequence of f , output such a subsequence. We note that by Theorem 3.11, either

case 1, or case 2 holds. If case 1 holds, then by Lemma 3.20, Sample-Suffix(f, ε) outputs a length-

k monotone subsequence with probability at least 9/10, and if case 2 holds, then by Lemma 3.21,

Sample-Splittablek(f, ε) outputs a length-k monotone subsequence with probability at least 9/10.

Thus, regardless of which case holds, a length-k monotone subsequence will be found with prob-

ability at least 9/10. The query complexity then follows from the maximum of the two query

complexities.

3.4.2 Proof of Lemma 3.20: An Algorithm for Growing Suffixes

We now prove Lemma 3.20. Let C > 0 be a large constant, and let k ∈ N be fixed. Let ε > 0 and

f : [n]→ R be a function which is ε-far from (12 . . . k)-free. Furthermore, as per the assumption of

case 1 of the algorithm, we assume that there exists a parameter α ∈ (0, 1) as well as a set H ⊆ [n]

of (α,Ckα)-growing suffixes, where α|H| ≥ εn/polylog(1/ε).

The algorithm, which underlies the result of Lemma 3.20, proceeds by sampling uniformly at

random an index a ∼ [n], and running a sub-routine which we call Growing-Suffix, with a as

input. The sub-routine is designed so that if a is the start of an (α,Ckα)-growing suffix then the

algorithm will find a length-k monotone subsequence of f with probability at least 99/100. The

sub-routine, Growing-Suffix, is presented in Figure 3.6.

Lemma 3.22. Let f : [n]→ R be a function, let α, α0, β ∈ (0, 1) be parameters satisfying β ≥ Ckα
and α0 ≤ α, and suppose that a ∈ [n] starts a (α, β)-growing suffix in f . Then the procedure

Growing-Suffix(f, α0, a) finds a (12 . . . k)-copy in f with probability at least 99/100.

Proof. Recall, from Definition 3.6, that if a ∈ [n] is the start of a (α, β)-growing suffix of f then

there exist a collection of sets, D1(a), . . . , Dηa(a) and parameters δ1(a), . . . , δηa(a) ∈ (0, α], where

12in this case the polylog(1/ε) term stands for (k log(1/ε))O(k2)

80

Subroutine Growing-Suffix (f, α0, a)

Input: Query access to a function f : [n]→ R, a parameter α0 ∈ (0, 1), and an index a ∈ [n].

Output: a subset of k indices i1 < · · · < ik where f(i1) < · · · < f(ik), or fail.

1. Let ηa = dlog(n−a)e and consider the sets Sj(a) = (a+ `j−1, a+ `j]∩ [n] for all j ∈ [ηa]

and `j = 2j .

2. For each j ∈ [ηa], let Aj ⊆ Sj(a) be obtained by sampling uniformly at random T :=

1/α0 times from Sj(a).

3. For each j ∈ [ηa] and each b ∈ Aj , query f(b) .

4. If there exist indices i1, . . . , ik ∈ A1 ∪ · · · ∪ Aηi satisfying i1 < · · · < ik and f(i1) <

· · · < f(ik), return such indices i1, . . . , ik. Otherwise, return fail.

Figure 3.6: Description of the Growing-Suffix subroutine.

every j ∈ [ηa] has

Dj(a) ⊆ Sj(a), |Dj(a)| = δj(a) · |Sj(a)|, and

ηa∑
j=1

δj(a) ≥ β.

Further, if, for some j1, . . . , jk ∈ [ηi], we have j1 < · · · < jk and for all ` ∈ [k], Aj` ∩Dj`(a) 6= ∅,
then the union Dj1(a) ∪ . . . ∪ Djk(a) contains a length-k monotone subsequence. In view of this,

for each j ∈ [ηa], consider the indicator random variable

Ej := ind{Aj ∩Dj(a) 6= ∅},

and observe that by the foregoing discussion Growing-Suffix(f, α0, a) samples a length-k monotone

subsequence of f whenever
∑ηa

j=1 Ej ≥ k. We note that the Ej ’s are independent, and that

Pr[Ej = 1] = 1− (1− δj(a))T ≥ min

{
T · δj(a)

10
,

1

10

}
.

Let J ⊆ [ηa] be the set of indices satisfying T · δj(a) ≥ 1 (recall that T = 1/α0). Then, if |J | ≥ Ck
we have

E

 ηa∑
j=1

Ej

 ≥ Ck

10
,

since every variable j ∈ J contributes at least 1/10. On the other hand, if |J | ≤ Ck/2, then, since

δj(a) ≤ α for every j, we have
∑

j∈[ηa]\J δj(a) ≥ β − |J | · α ≥ β/2 (using β ≥ Ckα) so that

E

 ηa∑
j=1

Ej

 ≥ E

 ∑
j∈[ηa]\J

Ej

 ≥ T

10
· β

2
≥ Ck

20
.

81

In either case, E[
∑

j∈[ηa] Ej] ≥ Ck/20, and since the events Ei are independent, via a Chernoff

bound we obtain that
∑

j Ej is larger than k with probability at least 99/100.

Subroutine Sample-Suffixk (f, ε)

Input: Query access to a function f : [n]→ R, and a parameter ε ∈ (0, 1).

Output: a subset of k indices i1 < · · · < ik where f(i1) < · · · < f(ik), or fail.

1. Repeat the following for all j = 1, . . . , O(log(1/ε)), letting αj = 2−j :

• For tj = αj · polylog(1/ε)/ε iterations, sample a ∼ [n] uniformly at random and

run Growing-Suffix(f, αj ,a), and if it returns a length-k monotone subsequence

of f , return that subsequence.

2. If the algorithm has not already output a monotone subsequence, return fail.

Figure 3.7: Description of the Sample-Suffix subroutine.

With this in hand, we can now establish Lemma 3.20.

Proof of Lemma 3.20. First, note that the query complexity of Sample-Suffixk(f, ε) is

O(log(1/ε))∑
j=1

tj ·O(log n/αj) =
log n · polylog(1/ε)

ε
.

Consider the iteration of j where αj ≤ α ≤ 2αj (note that since α ≥ ε/polylog(1/ε), there exists

such j). Then, since |H| ≥ ε/(α · polylog(1/ε)), we have that tj ≥ Cn/|H| (for a sufficiently large

constant C). Thus, with probability at least 99/100, some iteration satisfies a ∈ H. When this

occurs, Growing-Suffix(f, αj ,a) will output a length-k monotone subsequence with probability

at least 99/100, by Lemma 3.22, and thus by a union bound we obtain the desired result.

3.4.3 Proof of Lemma 3.21: An Algorithm for Splittable Intervals

We now prove Lemma 3.21. We consider a fixed setting of k ∈ N and ε > 0, and let f : [n]→ R be

any sequence which is ε-far from being (12 . . . k)-free. Furthermore, as per case 2 of the algorithm,

we assume that there exists a set T ⊆ [n]k of disjoint length-k monotone subsequences of f where

|T | ≥ εn

polylog(1/ε)
,

and (G, %, I) is a (k, k, α)-tree descriptor which represents (f, T, [n]), where α ≥ ε/polylog(1/ε).

In what follows, we describe a sub-routine, Sample-Splittablek(f, ε) in terms of two parameters

82

ρ, q ∈ R. The parameter ρ > 0 is set to be sufficiently large and independent of n, satisfying

ρ ≥ ε

polylog(1/ε)
. (3.14)

One property which we will want to satisfy is that if we take a random subset of [n] by including

each element independently with probability 1/(ρn), we will include an element belonging to E(T)

with probability at least 1− 1/(Ck), for a large constant C > 0. The parameter q will be an upper

bound on the query complexity of the algorithm, which we set to a high enough value satisfying:

q = O

(
1

ρ

(
log n

ρ

)blog2 kc
)
≤ 1

ε
·
(

log n

ε

)blog2 kc
· polylog(1/ε).

Subroutine Sample-Splittablek (f, ε)

Input: Query access to a sequence f : [n]→ R, and a parameter ε ∈ (0, 1).

Output: a subset of k indices i1 < · · · < ik where f(i1) < · · · < f(ik), or fail.

1. Let r = blog2 kc and run Sample-Helper(r, [n], ρ), to obtain a set A ⊆ [n].

2. If |A| > q, return fail; otherwise, for each a ∈ A, query f(a). If there exists a monotone

sequence of f of length k, then return that subsequence. If not, return fail.

Figure 3.8: Description of the Sample-Splittable subroutine.

The descriptions of the main algorithm Sample-Splittablek and the sub-routine Sample-Helper,

are given in Figure 3.8 and Figure 3.9. Note that, for any r ∈ N, if we let Dr be the distribution of

|A|, where A is the output of a call to Sample-Helper(r, [n], ρ). Then, we have that D0 = Bin(n, ρ),

and for r > 0, Dr is stochastically dominated by the random variable

y0∑
i=1

O(logn)∑
j=1

x
(i,j)
r−1 ,

where y0 ∼ Bin(n, 1/(ρn)) and x
(i,j)
r−1 ∼ Dr−1 for all i ∈ N and j ∈ [O(log n)] are all mutually

independent. As a result, for r ≥ 1,

E [|A|] ≤ 1

ρ
· log n · E

x∼Dr−1

[x],

and since Ex∼D0 [x] = 1/ρ, we have:

E [|A|] ≤ 1

ρ

(
log n

ρ

)r
.

83

Subroutine Sample-Helper (r, I, ρ)

Input: An integer r ∈ N, an interval I ⊆ [n], and a parameter ρ ∈ (0, 1).

Output: a subset of A ⊆ I.

1. Let A0 = ∅. For every index a ∈ I, let A0 ← A0 ∪ {a} with probability 1/(ρ|I|).

2. If r = 0, return A0.

3. If r > 0, proceed with the following:

• For every index a ∈ A0, consider the O(log n) intervals given by Ba,j = [a −
`j , a+ `j], for j = 1, . . . , O(log n) and `j = 2j , and let Ra,j ← Sample-Helper(r−
1, Ba,j , ρ).

• Let A be the set

A←
⋃

a∈A0, j=O(logn)

Ra,j .

• return the set (A0 ∪A) ∩ I.

Figure 3.9: Description of the Sample-Helper subroutine.

We may then apply Markov’s inequality to conclude that |A| ≤ q with probability at least 99/100.

As a result, we focus on proving that the probability that the set A contains a monotone subsequence

of f of length k is at least 99/100. This would imply the desired result by taking a union bound.

In addition to the above, we define another algorithm, Sample-Helper∗, in Figure 3.10, which

will be a helper sub-routine. We emphasize that Sample-Helper∗ is not executed in the algorithm

itself, but will be useful in order to analyze Sample-Helper.

84

Subroutine Sample-Helper∗ (r, I, ρ, I)

Input: An integer r ∈ N, an interval I ⊆ [n], a parameter ρ ∈ (0, 1), and a collection of

disjoint intervals I of [n].

Output: two subsets A,A0 ⊆ I.

1. Let A0 = ∅. For every index a ∈ I which lies inside an interval in I, let A0 ← A0∪{a}
with probability 1/(ρ|I|).

2. If r = 0, return A0.

3. If r > 0, proceed with the following:

• For every index a ∈ A0, consider the O(log n) intervals given by Ba,j =

[a − `j , a + `j], for j = 1, . . . O(log n), and `j = 2j , and let (Ra,j ,Ra,j,0) ←
Sample-Helper∗(r − 1, Ba,j , ρ, I).

• Let A to be the set

A←
⋃

a∈A0, j=O(logn)

Ra,j .

• return the set (A ∩ I,A0 ∩ I).

Figure 3.10: Description of the Sample-Helper∗ subroutine.

Before proceeding, we require a “coupling lemma.” Its main purpose is to prove the intuitive

fact that if I0, I1 are collections of disjoint intervals, and the latter is a refinement of the former

(namely, each intervals in I1 is contained in an interval of I0), then Sample-Helper∗(r, [n], ρ, I0) is

more likely to find a length-k monotone subsequence than Sample-Helper∗(r, [n], ρ, I1) does.

Lemma 3.23. Let r ∈ N be an integer, f : [n]→ R a function, ρ ∈ (0, 1) a parameter, and I0 and

I1 collections of disjoint intervals in [n], such that each interval in I1 lies inside an interval from I0.

Denote by (A(i),A
(i)
0) the random pair of sets given by the output of Sample-Helper∗(r, [n], ρ, Ii),

for i = 0, 1. Lastly, let E : P([n]) × P([n]) → {0, 1} be any monotone function; that is, it satisfies

E(S1, S2) ≤ E(S′1, S
′
2) for any S1 ⊆ S′1 ⊆ [n] and S2 ⊆ S′2 ⊆ [n]. Then,

Pr[E(A(0),A
(0)
0) = 1] ≥ Pr[E(A(1),A

(1)
0) = 1].

Proof. Consider an execution of Sample-Helper∗(r, [n], ρ, I0) which outputs a pair (A(0),A
(0)
0). Let

A(1) and A(1) be the subsets of A(0) and A(0), respectively, obtained by running a parallel execution

of Sample-Helper∗(r, [n], ρ, I1), which follows the execution of Sample-Helper∗(r, [n], ρ, I0), but

whenever an element which is not in an interval of I1 is considered, it is simply ignored (i.e., it

is not included in A(0) or in A
(0)
0 and no recursive calls based on such elements are made). It is

85

easy to see that this coupling yields a pair (A(1),A
(1)
0) with the same distribution as that given by

running Sample-Helper∗(r, [n], ρ, I1). As E(·, ·) is increasing, if E(A(0),A
(0)
0) holds then so does

E(A(1),A
(1)
0). The lemma follows.

The following corollary is a direct consequence of Lemma 3.23. Specifically, we use the facts

that Sample-Splittablek(f, ε) calls Sample-Helper(blog2 kc, [n], ρ), which is equivalent to calling

Sample-Helper(blog2 kc, [n], ρ, {[n]}), and that finding a (12 . . . k)-pattern in I is a monotone event.

Corollary 3.24. Let I be any collection of disjoint intervals in [n]. Suppose (A,A0) is the random

pair of sets given by the output of Sample-Helper∗(blog2 kc, n, ρ, I), then,

Pr[Sample-Splittablek(f, ε) finds a (12 . . . k)-pattern of f] ≥

Pr[A contains a (12 . . . k)-pattern in f|I].

Definition 3.25. Let k0 ∈ N be a positive integer, and let (G, %) be a k0-tree descriptor (for this

definition we do not care about the third component of the descriptor, I). We say that p ∈ [k0] is

the primary index of (G, %) if the leaf with rank p under ≤G is the unique leaf whose root-to-leaf

path (u1, . . . , ud) satisfies the following: for each d′ ∈ [d − 1], denoting the left and right children

of ud′ by vl and vr, respectively, ud′+1 is vl if the number of leaves in the subtree rooted at vl is at

least the number of leaves in the subtree rooted at vr, and otherwise, ud′+1 is vr.

With Corollary 3.24 in hand, we note that Lemma 3.21 follows from the next lemma.

Lemma 3.26. Let k, k0, n ∈ N satisfy 1 ≤ k0 ≤ k, let C be a large enough constant, and let

α, ρ ∈ (0, 1) be such that ρ ≥ Cα and α ≥ ρ/polylog(1/ρ). Let f : [n] → R be a function, let I be

a collection of disjoint intervals in [n], for each I ∈ I let TI ⊆ Ik0 be a set of disjoint, length-k0

monotone subsequence of f , and suppose that∑
I∈I
|TI | ≥ αn/4.

Suppose that (G, %) is a (k, k0, α)-weighted-tree such that for every I ∈ I there exists a func-

tion II : V (G) → S(I), such that (G, %, II) is a tree descriptor that represents (f, TI , I). Given

any r ∈ N satisfying blog2 k0c ≤ r, let (A,A0) be the pair of sets output by the sub-routine

Sample-Helper∗(r, [n], ρ, I). With probability at least 1−k0/(100k), there exist indices i1, . . . , ik0 ∈
[n] with the following properties.

1. (i1, . . . , ik0) is a length-k0 monotone subsequence of f .

2. There is an interval I ∈ I such that i1, . . . , ik0 ∈ I ∩ E(TI).

3. i1, . . . , ik0 ∈ A and ip ∈ A0, where p is the primary index of (G, %).

86

Proof. The proof proceeds by induction on k0. Consider the base case, when k0 = 1. In this

case, blog2 k0c = 0, so for any r ≥ 0, Sample-Helper∗(r, [n], ρ, I) runs step 1. As a result,

Sample-Helper∗(r, [n], ρ, I) samples each element inside an interval of I independently with prob-

ability 1/(ρn). In order to satisfy the requirements of the lemma in this case, we need A0 to

contain an element of ∪I∈ITI . By the assumption on the size of this union, and because each of the

elements of the union lives inside some interval from I, such an element will exist with sufficiently

high probability via a Chernoff bound.

For the inductive step, assume that Lemma 3.26 is fulfilled whenever k0 < K, for K ∈ N
satisfying 1 < K ≤ k, and we will prove, assuming this inductive hypothesis, that Lemma 3.26

holds for k0 = K. So consider a setting k0 = K. Let I, (G, %) and II be as in the statement of the

lemma. Denote the root of (G, %) by vroot, and its left and right children by vleft and vright. Let c

be the number of leaves in the subtree (Gleft, %left) rooted at vleft, so k0 − c is the number of leaves

in the subtree (Gright, %right) rooted at vright. We shall assume that c ≥ k0− c; the other case follows

by an analogous argument.

For each I ∈ I, the collection of pairs (J, TI,J), where J ∈ II(vroot) and TJ = TI ∩ Jk0 is the

restriction of TI to J , is a (c, 1/(6k), α)-splittable collection of I. Let J be the collection of all such

intervals J (note that they are pairwise disjoint and that J is a refinement of I). Let (LJ ,MJ , RJ)

be the partition of J into left, middle and right intervals, respectively, and let T
(L)
J and T

(R)
J be

sets of c-prefixes and (k0 − c)-suffixes of k0-tuples from TI,J , as given by Definition 3.7. Set

L = {LJ : J ∈ J }, R = {RJ : J ∈ J }, T (L) =
⋃
J∈J

T
(L)
J , T (R) =

⋃
J∈J

T
(R)
J .

Note that (Gleft, %left, IJ,left) is a (k, c, α)-tree descriptor for (f, TJ , J), with appropriate IJ,left. Sim-

ilarly, (Gright, %right, IJ,right) is a (k, k0 − c, α)-tree descriptor for (f, TJ , J), with appropriate IJ,right.

We consider an execution of Sample-Helper∗(r, [n], ρ, I) which outputs a random pair of sets

(A,A0). Let A(L) and A
(L)
0 be the subsets of A and A0, respectively, obtained by running a parallel

execution of Sample-Helper∗(r, [n], ρ,L), where, as in the proof of Lemma 3.23, we follow the

execution of Sample-Helper∗(r, [n], ρ, I), but whenever an element which is not in L is considered,

we ignore it. As stated above, this coupling yields a pair (A(L),A
(L)
0) with the distribution given

by running Sample-Helper∗(r, [n], ρ,L).

For a ∈ A
(L)
0 , and any j ∈ [O(log n)], let (A(a,j),A

(a,j)
0) be the output of the recursive call

(inside the execution of Sample-Helper∗(r, [n], ρ, I)) of Sample-Helper∗(r − 1, Ba,j , ρ,R).

We define the collection:

S =

(S0, S) :

S0 ⊆ S ⊆ E(T (L))

there exist i1, . . . , ic ∈ S forming a (12 . . . c)-pattern such that ip ∈ S0

there exist J ∈ J such that i1, . . . , ic ∈ LJ

 .

For each (S0, S) ∈ S, we let a(S0, S) ∈ E(T (L)) be some ip ∈ S such that there exist c− 1 indices

i1, . . . , ip−1, ip+1, ic, such that (i1, . . . , ic) forms a (12 . . . c)-pattern in S, and i1, . . . , ip ∈ LJ for

87

some J ∈ J . Let seg(S0, S) be this interval J , and let len(S0, S) ∈ [O(log n)] be the smallest j for

which RJ ⊆ Ba,j , where a = a(S0, S).

Let EL be the event that (
A(L) ∩ E(T (L)),A

(L)
0 ∩ E(T (L))

)
∈ S,

and let EL(S0, S) be the event that

A(L) ∩ E(T (L)) = S0 A
(L)
0 ∩ E(T (L)) = S,

so EL = ∪(S0,S)∈SEL(S0, S), and the events EL(S0, S) are pairwise disjoint.

By the induction hypothesis, applied with the family {LJ : J ∈ J } and the corresponding sets

T
(L)
J (using

∑
J∈J |T

(L)
J | =

∑
J∈J |TJ | ≥ αn/4), we have

Pr[EL] ≥ 1− c/(100k).

Let ER(a, j) be the event that a ∈ A0, and in the recursive run of Sample-Helper∗(r−1, Ba,j , ρ,R)

inside Sample-Helper∗(r, [n], ρ, I), there exist indices i′1, . . . , i
′
k0−c such that

• (i′1, . . . , i
′
k0−c) form a length (k0 − c)-monotone subsequence.

• i′1, . . . , i
′
k0−c ∈ E(T

(R)
J), where J is the interval in J with i ∈ J .

• i′1, . . . , i
′
k0−c ∈ A(a,j) and i′q ∈ A

(a,j)
0 , where q is the primary index of (Gright, %right).

Let FR(a, j) be the event that in a run of Sample-Helper∗(r−1, Ba,j , ρ,R), there exist i′1, . . . , i
′
k0−c

as above. Fix some (S0, S) ∈ S, and let a = a(S0, S), J = seg(S0, S) and j = len(S0, S). We claim

that

Pr[ER(a, j) | EL(S0, S)] = Pr[FR(a, j)].

Indeed, by conditioning on EL(S0, S) we know that a ∈ A0, so there will be a recursive run of

Sample-Helper∗(r− 1, Ba,j , ρ,R), and moreover the event EL(S0, S) will have no influence on the

outcomes of this run.

Note that |T (R)
J | ≥ α|RJ | ≥ α|Ba,J |/4. By the induction hypothesis, applied with the interval

Ba,J in place of [n], the family {RJ} and the corresponding set T
(R)
J , and the tree (Gright, %right),

we find that Pr[FR(a, j)] ≥ 1− (k0− c)/(100k). We note that if both EL(S0, S) and ER(a, j) hold,

then there are indices i1, . . . , ic, i
′
1, . . . , i

′
k0−c such that

• (i1, . . . , ic) is a length-c monotone subsequence in E(T
(L)
J), and (i′1, . . . , i

′
k0−c) is a length-

c monotone subsequence in E(T
(R)
J). In particular, (i1, . . . , ic, i

′
1, . . . , i

′
k0−c) is a length-k0

monotone subsequence that lies in E(Tj).

• i1, . . . , ic, i
′
1, . . . , i

′
k0−c ∈ A and ip ∈ A0 (recall that p is the primary index of both G and

Gleft).

88

I.e. if these two events hold, then the requirements ot the lemma are satisfied. It follows that the

requirements ot the lemma are satisfied with at least the following probability, using the fact that

the events EL(S0, S) are disjoint.∑
(S0,S)∈S

Pr[ER(a(S0, S), len(S0, S)) and EL(S0, S)]

=
∑

(S0,S)∈S

Pr[ER(a(S0, S), len(S0, S)) | EL(S0, S)]×Pr[EL(S0, S)]

≥
∑

(S0,S)∈S

Pr[FR(a(S0, S), len(S0, S))]×Pr[EL(S0, S)]

≥
(

1− k0 − c
100k

)
·
∑

(S0,S)∈S

Pr[EL(S0, S)]

≥
(

1− k0 − c
100k

)
·Pr[EL]

≥
(

1− k0 − c
100k

)
·
(

1− c

100k

)
≥ 1− k0

100k
.

This completes the proof of Lemma 3.26.

89

90

Chapter 4

Monotone Patterns:

An Adaptive O(log n) Algorithm

The results in this chapter appear in [27].

4.1 Introduction

In this chapter we continue the investigation of testing for monotone patterns, as presented in the

previous chapter. The main result is an adaptive algorithm with optimal dependence in n for solving

the above problem. In contrast, the result presented before were for non-adaptive algorithms.

Theorem 4.1. Fix k ∈ N. For any ε > 0, there exists an algorithm that, given query access to a

function f : [n] → R which is ε-far from (12 . . . k)-free, outputs a length-k monotone subsequence

of f with probability at least 9/10, with query complexity and running time of Ok,ε(log n).

For the precise bound on the query complexity and running time, see Lemma 4.8. Note that the

algorithm underlying Theorem 4.1 solves the testing problem with one-sided error, since a length-k

monotone subsequence is evidence for not being (12 . . . k)-free. The algorithm improves upon the

non-adaptive query complexity Ok,ε((log n)blog2 kc) discussed in the previous chapter, and in partic-

ular, breaks the non-adaptive lower bound [22]. Hence, Theorem 4.1 implies a natural separation

between the power of adaptive and non-adaptive algorithms for finding monotone subsequences.

Theorem 4.1 is optimal, even among two-sided error algorithms. In the case k = 2, correspond-

ing to monotonicity testing, there is a Ω(log n/ε) lower bound (as long as, say, ε > n−0.99) for both

non-adaptive and adaptive algorithms [46, 63, 66], even with two-sided error. A simple reduction

suggested in [109] shows that the same lower bound (up to a multiplicative factor depending on

k) holds for any fixed k ≥ 2. Thus, an appealing consequence of Theorem 4.1 is that the natural

generalization of monotonicity testing, which considers forbidden monotone patterns of fixed length

longer than 2, does not affect the dependence on n in the query complexity by more than a constant

91

factor. Interestingly, Fischer [66] shows that for any adaptive algorithm for monotonicity testing on

f : [n]→ R there is a non-adaptive algorithm which is at least as good in terms of query complexity

(even if we only restrict ourselves to one-sided error algorithms). That is, adaptivity does not help

at all for k = 2. In contrast, the separation between our O(log n) adaptive upper bound and the

Ω
(
(log n)blog2 kc

)
non-adaptive lower bound of [22] implies that this is no longer true for k ≥ 4.

Harnessing adaptivity to improve algorithmic performance is a notoriously difficult problem in

many branches of property testing, typically requiring a good structural understanding of the task

at hand. In the context of testing for forbidden order patterns, non-adaptive algorithms are quite

weak: see the next chapter for an extensive discussion. Prior to these results, the only case for which

adaptive algorithms were known to outperform their non-adaptive counterparts was for patterns of

length 3 in [109]. It is generally believed that there should be some separation between adaptive and

non-adaptive testing algorithms for pattern detection; in fact, a conjecture of [109] suggests that

for non-monotone patterns, the adaptive query complexity for testing π-freeness is polylogarithmic

in n for any fixed-length π, an exponential improvement over non-adaptive algorithms. While this

conjecture is still wide open, the result here is the first to show any kind of separation between

adaptive and non-adaptive algorithms for patterns of length more than 3.

As an immediate consequence, Theorem 4.1 gives an optimal testing algorithm for the longest

increasing subsequence (LIS) problem in a certain regime. The classical LIS problem asks to

determine, given a sequence f : [n]→ R, the maximum k for which f contains a length-k increasing

subsequence. It is very closely related to other fundamental algorithmic problems in sequences,

such as computing the edit distance, Ulam distance, or distance from monotonicity (for example,

the latter equals n minus the LIS length), and was thoroughly investigated from the perspective of

sublinear-time algorithms [2, 113, 123, 126] and streaming algorithms [62, 76, 87, 107, 125, 130].

In the property testing regime, the corresponding decision task is to distinguish between the case

where f has LIS length at most k (where k is given as part of the input) and the case that f is

ε-far from having such a LIS length. Theorem 4.1 in combination with the aforementioned lower

bounds (which readily carry over to this setting) yield a tight bound on the query complexity of

testing whether the LIS length is a constant.

Corollary 4.2. Fix 2 ≤ k ∈ N and ε > 0. The query complexity of testing whether f : [n] → R

has LIS length at most k is Θ(log n).

4.1.1 Techniques

We now describe the intuition behind the proof of Theorem 4.1. There are two main technical com-

ponents: 1) a strengthening of the structural result from the previous chapter, regarding splittable

intervals and growing suffixes; and 2) new (adaptive) algorithmic components which lead to the

O(log n)-query algorithm.

92

Robustifying the structural decomposition. As mentioned above, there is an Ok,ε(log n)-

query non-adaptive algorithm for the growing suffixes case. Thus, in order to obtain an adaptive

algorithm with such query complexity, it suffices to develop such an algorithm under the splittable

intervals assumption. The splittable intervals condition, however, does not seem strong enough for

our purposes. Recall that in the splittable intervals case, the algorithm in the previous chapter

“guessed” the width w and lost a factor of O(log n) in the query complexity; the resulting analysis

bounded the number of times the algorithm needed to guess by blog2 kc. In order to avoid the

O(log n)-factor loss more than once, one seemingly has to “identify”, in some way, the correct width,

and it is not clear how to do so effectively from the current structural theorem. In order to bypass

this issue, we substantially strengthen the structural theorem. The stronger statement asserts that

any f : [n] → R that is ε-far from (12 . . . k)-free satisfies either the growing suffixes condition,

defined previously, or a robust version of the splittable intervals condition, defined shortly. Even

though the algorithm will not be able to identify the correct width, the robust splittable intervals

condition enables exploiting guesses for the width that are too large.

• Robust splittable intervals: there exist c ∈ [k − 1] and a collection of pairwise-disjoint

intervals I1, . . . , Is ⊂ [n] satisfying the same properties as in the “splittable intervals” setting

described above (with slightly different dependence on ε and k in the Θk,ε(·) term). Addi-

tionally, any interval J ⊂ [n] which contains an interval Ij is itself far from (12 . . . k)-free, i.e.

it contains a collection of Ωk,ε(|J |) disjoint (12 . . . k)-copies.

The advantage of this robust condition is that fully containing a splittable interval suffices to

conclude that the subsequence is Ωk,ε(1)-far from (12 . . . k)-free (see Figure 4.1). As hinted above,

a guess for the width which is too large results in an interval fully containing a splittable interval,

and a lower bound on the fraction of length-k monotone subsequences inside the interval considered

follows. We refer to this case as the “overshooting” case. We note that our proof of the “robust

structural theorem” combines the basic structural theorem from the previous chapter, used as a

black box, with additional combinatorial ideas.

Towards an algorithm. At a high level, the non-adaptive algorithms for this problem proceed

in a recursive manner where each step tries to find the relevant width considered (which is one

of Ω(log n) options). Since their algorithms are non-adaptive, they consider all Ω(log n) options

in recursive steps, and hence, suffer a logarithmic factor with each step. Since our algorithm is

adaptive, we want to choose one of the widths to recurse on. The algorithm ensures that the width

considered is large enough. When the width chosen is not too much larger, our recursive step

proceeds similarly to the non-adaptive algorithms; we call this the fitting case. However, the width

considered may be too large; we call this case overshooting. In order to deal with overshooting, we

utilize the robust structural theorem in a somewhat surprising manner to detect a (12 . . . k)-copy.

We now expand on the above idea. As mentioned above, we may assume that f satisfies the

93

R

[n]

Ij

Lj

Rj

J

Figure 4.1: Robust Splittable Intervals. A sequence f : [n]→ R is displayed with a robust

splittable interval Ij . Specifically, we have c ∈ [k− 1], Lj and Rj are two intervals such that

Lj contains Ωk,ε(|Ij |) many length-c monotone patterns and Rj contains Ωk,ε(|Ij |) length-

(k−c) monotone subsequences. Furthermore, a subsequence in Lj may be combined with one

in Rj to obtain a length-k monotone subsequence in Ij . The fact that Ij is a robust splittable

interval is exemplified by the fact that any interval J such that Ij ⊂ J contains Ωk,ε(|J |)
disjoint monotone subsequences of length k. We note that this holds even if |J | � |Ij |, so

that most of the length-k monotone subsequences in J are not in Ij .

robust splittable condition. Sample, for Ok,ε(1) repetitions, an index x ∈ [n] uniformly at random,

and for each t ∈ [log n], a random index yt ∈ [x + 2t−1,x + 2t]. Consider the following event:

The index x is a (sufficiently well-behaved)1 first element in some (12 . . . k)-pattern

falling in some robust splittable interval Ij , and for t∗ ∈ [log n] satisfying |Ij | ≤ 2t
∗ ≤

2|Ij |, yt∗ is a (well-behaved) (c+ 1)-th element in some (12 . . . k)-pattern falling in Ij .

We claim that, with high probability, the above event occurs for at least one choice of x, and

that when this event does occur, the algorithm can be applied recursively without incurring a

multiplicative logarithmic factor. Indeed, suppose that the above holds for some x.2 We set y to

be yt, where t is the largest such that f(x) < f(yt) holds, and notice in particular that t ≥ t∗.

This means that x < y and f(x) < f(y).

The fitting component The fitting case occurs when t (achieving the maximum above) is

roughly the same as t∗. To handle this case, we recurse by finding a (12 . . . c)-patterns in Lj , and

(12 . . . (k − c))-pattern in Rj . At a high level, if one takes Θk,ε(1) independent uniform samples z

1Recall that, in the non-adaptive algorithm, we hoped to hit a “1-entry” x whose value f(x) is no higher than

some suitable median value; the “well-behaved” requirements are of similar flavor, and do not incur more than a

constant overhead on the query complexity.
2More precisely, our algorithm runs this procedure for any of our choices of x, without “knowing” which of them

satisfies the above event. Since the total number of choices is Ok,ε(1), this incurs only a constant overhead.

94

x

y1

y2

y3

yt∗

y5

z[x− 2t
∗
,z] [z,yt∗ + 2t

∗
]

R

[n]

Figure 4.2: The fitting case. A sequence f : [n]→ R which falls in the splittable intervals

case, and the event that we refer to as the “fitting case” is presented. Specifically, the

algorithm proceeds by first sampling x ∼ [n] which falls in a robust splittable interval, and

corresponds to the first index of some length-k monotone subsequence. The algorithm then

considers sampling one yt uniformly from the interval for [x + 2t−1,x + 2t]. The algorithm

looks for the largest t ≤ log2 n for which f(x) < f(yt). The relevant event for the fitting

case is that for the appropriate width containing Rj , corresponding to t∗, yt∗ ∈ Rj and

corresponds to the (c+ 1)-th index in a length-k monotone subsequence contained in Ij . In

the fitting case, t is not too much larger than t∗; in particular, the figure shows a case when

t = t∗. The algorithm then samples z ∼ [x,yt] which we show falls in Mj with constant

probability, and the the algorithm recurses to search for a (12 . . . c)-pattern on the interval

[x− 2t
∗
.z] and a (12 . . . (k − c))-pattern on the interval [z,yt + 2t].

from [x,y], then one of them is likely to fall in the middle part Mj of Ij , so that Lj ⊂ [x−2t, z] and

Rj ⊂ [z,y + 2t], allowing us to proceed recursively. This is conceptually similar to the algorithms

of [109] and [22], except that the recursion occurs only on one width, namely t, and it therefore

does not lose multiplicative logarithmic factors as in the previous approaches.

The overshooting component. The other case, of overshooting, occurs when t is significantly

larger than t∗. We expand on the main ideas here in more detail. The strong guarantee given by the

robust splittable intervals condition adds a “for all” element into the structural characterization,

which is able to treat the problem posed by overshooting. When t is significantly larger than log |Ij |,
there exist k − 2 intervals J1, . . . , Jk−2 ⊂ [x,y] satisfying the following conditions:

• J1 lies immediately after the interval Ij (recall that Ij is the interval containing x).

• Ji+1 lies immediately after Ji, for any i ∈ [k − 3].

• |J1| = |Ij | · αk,ε and |Ji+1| = |Ji| · αk,ε for any i ∈ [k − 3], for some large enough αk,ε > 1.

95

The surprising consequence of the robust splittable intervals condition is that even though the

intervals J1, . . . , Jk−2 are disjoint from Ij , for every i ∈ [k − 2], the interval Ji contains Ωk,ε(|Ji|)
disjoint length-k monotone subsequences. At a high level, the argument proceeds by considering, for

any i ∈ [k − 2], set J ′i to be the shortest interval containing both Ij and Ji. The robust splittable

intervals condition asserts that (since each J ′i contains the splittable interval Ij) the number of

disjoint (12 . . . k)-copies in J ′i is proportional to |J ′i |. Provided that αk,ε is large enough, this means

that Ji = J ′i \J ′i−1 also contains a collection Ti of Ωk,ε(|Ji|) disjoint (12 . . . k)-copies. We now define

two sets Ai and Bi as follows. Let Ai be the collection of prefixes (a1, . . . , ai+1) of k-tuples from Ti
with f(ai+1) < f(y), and let Bi be the collection of suffixes (ai+1, . . . , ak) of k-tuples from Ti with

f(ai+1) ≥ f(y). As |Ti| = |Ai|+ |Bi|, one of Ai and Bi is large (i.e. has size at least Ωk,ε(|Ji|)).
This seemingly innocent combinatorial idea can be exploited non-trivially to find a (12 . . . k)-

copy. Specifically, the algorithm to handle overshooting aims to (recursively) find shorter increasing

subsequences in J1, . . . , Jk−2, with the hope of combining them together into a (12 . . . k)-copy.

Concretely, for any i ∈ [k−2], we make two recursive calls of our algorithm on Ji: one for a (k− i)-
increasing subsequence in Ji whose values are at least f(y),3 and a second for an (i+ 1)-increasing

subsequence in Ji, with values smaller than f(y). By induction, the first recursive call succeeds

with good probability if |Ai| is large, while the second call succeeds with good probability if |Bi| is
large. Since for any i either |Ai| or |Bi| must be large, at least one of the following must hold.

• B1 is large. In this case we are likely to find a length-(k − 1) monotone pattern in J1 with

values at least f(y) > f(x), which combines with x to form a length-k monotone pattern.

• Ak−2 is large. Here we are likely to find a length-(k − 1) monotone pattern in Jk−2 whose

values lie below f(y), which combines with y to form a length-k monotone pattern.

• There exists i ∈ [k − 3] where both Ai and Bi+1 are large. Here we will find, with good

probability, a length-(i + 1) monotone pattern in Ji with values below f(y), and a length-

(k − i − 1) monotone pattern in Ji+1 with values above f(y); together these two patterns

combine to form a (12 . . . k)-pattern.

In all cases, a k-increasing subsequence is found with good probability. See Figure 4.3 for an

example.

Query complexity. Finally, for the query complexity, our algorithm (which runs both the “fit-

ting” component and the “overshooting” component, to address both cases) makes Ok,ε(log n)

queries in total. This holds as each call makes Ok,ε(log n) queries in itself and Ok,ε(1) additional

calls recursively, where the recursion depth is bounded by k.

3Technically speaking, our algorithm can be configured to only look for increasing subsequences whose values lie

in some range; we use this to make sure that shorter increasing subsequences obtained from the recursive calls of the

algorithm can eventually be concatenated into a valid length-k one.

96

R

[n]

x

y

J1 J2 J3

z1

z2

z3

z4

z5

v1

v2

v3

v4

v5

A1

B1

A2

B2

A3

B3

Figure 4.3: The overshooting case. A sequence f : [n] → R which falls in the splittable

intervals case for k = 5. We consider the “overshooting case”. Specifically, we consider a

case when the algorithm samples x ∼ [n] which falls in a splittable interval, but when we

sample yt ∼ [x+ 2t−1,x+ 2t] for all t ∈ [log2 n], the largest t ∈ [log2 n] where f(yt) > f(x)

falls very far from the splittable interval. In the figure, we omit the points y1, . . . ,yt and let y

be the largest point where f(x) < f(y). The “overshooting case” considers the point where

at least k − 2 geometrically increasing intervals fit between x and y; these are displayed as

J1, J2, and J3; by virtue of the splittable interval being robust, each Ji contains Ωk,ε(|Ji|)
disjoint length-k monotone subsequences. Ai contains those length-k monotone subsequences

where the (i + 1)-th index is above f(y) and Bi contains those whose (i + 1)-th index is

below f(y). As an example, (z1, z2, z3, z4, z4) ∈ B4 and (v1, v2, v3, v4, v5) ∈ A4. The crucial

properties are: (i) for all i ∈ [k − 2] any (12 . . . i)-pattern in Ai and any (12 . . . (k − i))-

pattern in Bi+1 may be combined into a (12 . . . k)-pattern, (ii) any (12 . . . (k− 1))-pattern in

B1 may be combined with x since f(y) > f(x), and (iii) any (12 . . . (k − 1))-pattern in A4

may be combined with y. The reasoning may proceed as follows: if |B1| is large, we find a

(12 . . . (k − 1))-pattern and combine it with x; so, assume |B1| is small, which implies |A1|
must be large. If |B2| is large, then a (12)-pattern from A1 and a (12 . . . (k−2))-pattern from

B2 may be combined; so assume |B2| is small which implies |A2| is large, Eventually, we

deduce that we may assume |Ak−2| is large, and a (12 . . . (k − 1))-pattern in Ak−2 may be

combined with y.

97

Notation The notation used here generally extends that of Chapter 3. In many cases, we think

of augmenting the image of our input function f : [n] → R restricted to an interval I ⊆ [n]

with a special character ∗ to consider f : I → R ∪ {∗}. The character ∗ can be thought of as

a masking operation: In many cases, we will only be interested in entries x of f so that f(x)

lies in some prescribed (known in advance) range of values R ⊆ R, so that entries outside this

range will be marked by ∗. Whenever the algorithm queries f(x) and observes ∗, it will interpret

this as an incomparable value (with respect to ordering) in R. As a result, ∗-values will never

be part of monotone subsequences. We note that augmenting the image with ∗ is unnecessary

when considering non-adaptive algorithms. We say that for a fixed f : I → R ∪ {∗}, the set T is

a collection of disjoint monotone subsequences of length k if it consists of tuples (i1, . . . , ik) ∈ Ik,
where i1 < · · · < ik and f(i1) < · · · < f(ik) (in particular, f(i1), . . . , f(ik) 6= ∗), and furthermore,

for any two tuples (i1, . . . , ik) and (i′1, . . . , i
′
k), their intersection (as sets) is empty. We also denote

E(T) as the union of indices in k-tuples of T , i.e., E(T) = ∪(i1,...,ik)∈T {i1, . . . , ik}.

4.2 Stronger Structural Dichotomy

In this section, we establish the structural foundations – specifically, the growing suffixes versus

robust splittable intervals dichotomy – lying at the heart of our adaptive algorithm. Recall the

definition of the growing suffix and splittable intervals settings, as given in the previous chapter

(see Definitions 3.6 and 3.7).

The following theorem is a restatement of the growing suffixes versus (non-robust) splittable

intervals dichotomy from the previous chapter. There, the theorem is stated with respect to two

parameters, k, k0; for our purpose it suffices to set k0 = k. Also, here we allow f to take the

value ∗, which is not the case in the previous chapter. Nevertheless, as the proof there takes into

account only the elements of a given family T 0 of disjoint length-k increasing subsequences, which

in particular are non-∗ elements, the same proof would work here.

Theorem 4.3 (Simplified form of Theorem 3.8). Let k, n ∈ N, ε ∈ (0, 1), and C > 0, and let

I ⊆ [n] be an interval. Let f : I → R ∪ {∗} be a function and let T 0 ⊆ Ik be a set of at least ε|I|
disjoint monotone subsequences of f of length k. Then there exist α ∈ (0, 1) and p > 0 satisfying

α ≥ Ω(ε/k5) and p ≤ poly(k log(1/ε)) such that at least one of the following conditions holds.

1. Growing suffixes: There exists a set H ⊆ [n], of indices that start an (α,Ckα)-growing

suffix, satisfying α|H| ≥ (ε/p)n.

2. Splittable intervals (non-robust): There exist an integer c with 1 ≤ c < k, a set T , with

E(T) ⊆ E(T 0), of disjoint length-k monotone subsequences, and a (c, 1/(6k), α)-splittable

collection of T , consisting of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts), such that

α
s∑

h=1

|Ih| ≥ |T 0|/p. (4.1)

98

As argued in Section 4.1.1, the splittable intervals condition does not seem strong enough by

itself to be useful for adaptive algorithms. Therefore, we next aim to establish a stronger structural

dichotomy, asserting that f satisfies either the growing suffixes condition, or a robust version of the

splittable intervals condition. The next lemma will imply that the growing suffixes condition can

be robustified by merely throwing away a subset of “bad” splittable intervals.

Lemma 4.4. Let α ∈ (0, 1) and let I ⊂ N be an interval. Suppose that I1, . . . , Is ⊂ I are disjoint

intervals such that
∑s

h=1 |Ih| ≥ α|I|. Then there exists a set G ⊂ [s] such that∑
h∈G
|Ih| ≥ (α/4)|I|,

and for every interval J ⊂ I that contains an interval Ih with h ∈ G,∑
h∈[s] : Ih⊂J

|Ih| ≥ (α/4)|J |.

Proof. Let B ⊆ [s] be the set of indices h for which there is an interval Jh ⊇ Ih satisfying∑
h∈[s]:Ih⊆J |Ih| < (α/4)|J |. For each h ∈ B fix such a containing interval J(Ih).

Let J be a minimal subset of {J(Ih) : h ∈ B} with the following property: for any h ∈ B

there exists J ∈ J containing Ih. Such a minimal subset clearly exists, since {J(Ih) : h ∈ B} itself

satisfies this property (but is not necessarily minimal). The next claim asserts that no vertex is

covered more than three times by sets in J .

Claim 4.5. Every element x ∈ I is contained in at most three intervals from J .

Proof. The proof follows from the minimality of J . Consider first the case where x ∈ Ih∗ for some

h∗ ∈ B. Let JL = [aL, bL] be an interval from J that contains x, and whose left-most element aL

is furthest to the left among all intervals from J that contain x; pick JR = [aR, bR] symmetrically,

with bR being furthest possible to the right; and let JM = [aM , bM] be an interval from J that

contains Ih. We claim that J does not have any other intervals that contain x. Suppose, to the

contrary, that there exists J = [a, b] ∈ J containing x where J 6= JL, JR, JM ; note that by definition

of JL and JM , aL ≤ a and bR ≥ b.
We claim that J \{J} covers all intervals Ih with h ∈ [B]; it suffices to show that for any h ∈ B

such that Ih ⊂ J , one of the intervals JL, JR, JM covers Ih. Consider h ∈ B such that Ih ⊂ J ,

and write Ih = [c, d]. If h = h∗, then Ih ⊂ JM . If Ih lies to the left of Ih∗ , then d < x ≤ bL, and

c ≥ a ≥ aL, so Ih ⊆ JL. Similarly, if Ih lies to the right of Ih, then Ih ⊆ JR. It follows that, indeed,

intervals from J \ {J} cover all intervals in {Ih : h ∈ B}, contradicting the minimality of J .

Now, if x is not contained in any interval of Ih with h ∈ B, then we can show similarly that

there are at most two intervals from J that contain x, by defining JL and JR as above.

99

Let U be the union of intervals from J . In light of the above claim,

∑
h∈B
|Ih| ≤

∑
J∈J

 ∑
h∈[s]: Ih⊆J

|Ih|

 <
α

4
·
∑
J∈J
|J | ≤ 3α

4
· |U | ≤ 3α

4
· |I|,

where the first inequality holds because each Ih with h ∈ B is covered by an interval in J ; the

second inequality follows from the definition of B, as J consists of sets J(Ih) with h ∈ B; the third

inequality follows from the claim; and the last one holds because U ⊂ I. Finally, let G = [s] \ [B].

By assumption on
∑

h |Ih| and the previous line,∑
h∈G
|Ih| =

∑
h∈[s]

|Ih| −
∑
h∈B
|Ih| ≥ α|I| −

3α

4
· |I| = α

4
· |I|,

and every interval J that contains an interval Ih with h ∈ G satisfies
∑

h∈[s] : Ih⊂J |Ih| ≥ (α/4)|J |,
as required.

The robust version of the structural dichotomy is stated below; the proof follows easily from

the basic structural dichotomy in combination with the last lemma.

Theorem 4.6 (Robust structural theorem). Let k, n ∈ N, ε ∈ (0, 1), and C > 0, and let I ⊆ [n]

be an interval. Let f : I → R ∪ {∗} be an array and let T 0 ⊆ Ik be a set of at least ε|I| disjoint

length-k monotone subsequences of f . Then there exist α ∈ (0, 1) and p > 0 with α ≥ Ω(ε/k5) and

p ≤ poly(k log(1/ε)) such that at least one of the following holds.

1. Growing suffixes: There exists a set H ⊆ [n], of indices that start an (α,Ckα)-growing

suffix, satisfying α|H| ≥ (ε/p)n.

2. Robust splittable intervals: There exist an integer c with 1 ≤ c < k, a set T , with

E(T) ⊆ E(T 0), of disjoint length-k monotone subsequences, and a (c, 1/(6k), α)-splittable

collection of T , consisting of disjoint interval-tuple pairs (I1, T1), . . . , (Is, Ts), such that

α
s∑

h=1

|Ih| ≥ (ε/p)|I|, (4.2)

Moreover, if J ⊂ I is an interval where J ⊃ Ih for some h ∈ [s], then J contains at least

(ε/p)|J | disjoint (12 . . . k)-patterns from T 0.

Proof. Apply Theorem 4.3. Let α∗ ∈ (0, 1) and p∗ be parameters such that α∗ ≥ Ω(ε/k5) and

p∗ ≤ poly(k log(1/ε)), as guaranteed by the theorem. Set α = α∗ and p = 4p∗. If Condition 1 holds

in the application of Theorem 4.3, then the analogous growing suffix condition in Theorem 4.6

clearly holds. So suppose that Condition 2 in Theorem 4.3 holds, and let c and (I1, T1), . . . , (Is, Ts)

be as guaranteed there. In particular, we have
∑s

h=1 |Ih| ≥ (1/p∗α∗)|T 0|. By Lemma 4.4, there is

a subset G ⊂ [s] such that
∑

h∈G |Ih| ≥ (1/4p∗α∗)|T 0| ≥ (ε/4p∗α∗)|I| = (ε/pα)|I|; and, for every

100

interval J in I that contains an interval Ih with h ∈ [G],
∑

h∈[s] : Ih⊂J |Ih| ≥ (ε/4p∗α∗)|J |. Since

each Ih contains at least α∗|Ih| disjoint length-k increasing subsequences, it follows that J contains

at least (ε/4p∗)|J | = (ε/p)|J | length-k increasing subsequences. Taking T to be the union of Th

over h ∈ G, along with the pairs (Ih, Th) with h ∈ G, we obtain the required robust splittable

intervals.

4.3 The Algorithm

Our aim in this section is to prove the existence of a randomized algorithm, Find-Monotonek(f, ε, δ),

that receives as input a function f : I → R∪{∗} (where I ⊂ N is an interval), and parameters ε, δ ∈
(0, 1), and satisfies the following: if f contains ε|I| disjoint (12 . . . k)-patterns, then the algorithm

outputs such a pattern with probability at least 1 − δ; and the running time of the algorithm

is Ok,ε(log n). To this end, we describe such an algorithm in Figure 4.6 below. This algorithm

uses three subroutines: Sample-Suffix, Find-Within-Interval, and Find-Good-Split, the first

of which is given in the previous chapter, and the latter two are described below, in Figures 4.4

and 4.5. The majority of the section is devoted to the proof that Find-Monotone indeed outputs

a (12 . . . k)-pattern with high probability as claimed. Specifically, we shall prove the following

theorem.

Theorem 4.7. Let k ∈ N. The randomized algorithm Find-Monotonek(f, ε, δ), described in Fig-

ure 4.6, satisfies the following. Given a function f : I → R ∪ {∗} and parameters ε, δ ∈ (0, 1), if f

contains at least ε|I| disjoint (12 . . . k)-patterns, then Find-Monotonek(f, ε, δ) outputs a (12 . . . k)-

pattern of f with probability at least 1− δ.

Our proof proceeds by induction on k. It relies on a slightly modified version of Lemmas 3.20,

along with two new claims, Lemmas 4.10, 4.11. The proofs of the latter two assume that The-

orem 4.7 holds for smaller k. We first state and prove these lemmas, and then we prove The-

orem 4.7.

To complete the picture, we need to upper-bound the query complexity and running time of

Find-Monotone. We do this in the following lemma, whose proof we delay to the end of the section.

Lemma 4.8. Let f : I → R∪{∗}, where I is an interval of length at most n. The query complexity

and running time of Find-Monotonek(f, ε, δ) are at most(
kk · (log(1/ε))k · 1

ε
· log(1/δ)

)O(k)

· log n.

The Sample-Suffix Sub-Routine

We restate Lemma 3.20 which gives the Sample-Suffixk subroutine, with a few adaptations to fit

our needs.

101

Lemma 4.9 (Restatement of Lemma 3.20). Consider any fixed value k ∈ N, and let C > 0 be a

large enough constant. There exists a non-adaptive and randomized algorithm Sample-Suffixk(f, ε, δ)

which takes three inputs: query access to a function f : I → R∪ {∗}, where I ⊂ N is an interval, a

parameter ε ∈ (0, 1), and an error probability bound δ ∈ (0, 1). Suppose there exists α ∈ (0, 1), and a

set H ⊆ I of (α,Ckα)-growing suffixes of f satisfying α|H| ≥ ε|I|. Then, Sample-Suffixk(f, ε, δ)

finds a length-k monotone subsequence of f with probability at least 1− δ. The query complexity of

Sample-Suffixk(f, ε, δ) is at most

log(1/δ) · polylog(1/ε) · 1

ε
· log n.

There are two differences between this statement and Lemma 3.20. First, here we have error

probability δ, whereas in Lemma 3.20 the error probability is 1/10. In order to achieve error

probability δ, we perform O(log(1/δ)) independent repetitions of Sample-Suffixk, as described in

the previous chapter. These are reflected in the query complexity. The second difference is that

we consider functions f : I → R ∪ {∗}. Inspecting the proof of Lemma 3.20, one can see that

Sample-Suffixk is guaranteed to output, with high probability, (12 . . . k)-patterns whose indices

are specified in Definition 3.6. Since the algorithm is non-adaptive, enforcing that indices not

partaking in growing suffices not be used (by making them ∗) does not affect that analysis.

Handling Overshooting: The Find-Within-Interval Sub-Routine

In this section, we describe the Find-Within-Interval subroutine, addressing the overshooting

case as explained in Section 4.1.1.

As the algorithm may appear un-intuitive, let us remind the reader of the setup in which this

subroutine is relevant (see also Section 4.1.1). By Theorem 4.6, either the growing suffixes condition

or the splittable intervals condition hold. The former case is handled by Lemma 4.9, so we assume

that the latter holds. Now assume that we sampled an element x which is the first element of

a length-c increasing subsequence from a set Li as described in Definition 3.7. We then sample,

uniformly at random, elements y from [x,x+2t]. The splittable intervals condition implies that we

will find, with high probability, an element y which is the last element of a length-(k−c) increasing

subsequence from Ri. In particular, f(y) > f(x). However, even if we did indeed sample such y,

we may have sampled many other values of y′ with f(y′) > f(x), and we do not know of a way

of determining which of these values is the “correct” one. Instead, we take y0 to be the largest

sampled y′ such that f(y′) > f(x). The case where y0 is close to y is taken care of by Lemma 4.10,

so we assume that y0 is much larger than y.

We now have elements x and y0, and all that we know is that they contain a large portion of an

interval Ii from the splittable intervals condition. It is not hard to see (this is shown in the proof of

Theorem 4.7) that [x,y0] can be partitioned into k−2 intervals J1, . . . , Jk−2, each of which contains

many disjoint length-k increasing subsequences. To continue, out only hope is use the induction

hypothesis to find shorter increasing subsequences in the intervals. For example, if there are many

102

Subroutine Find-Within-Intervalk(f, ε, δ, x, y,J).

Input: Query access to a function f : I → R ∪ {∗}, parameters ε, δ ∈ (0, 1), two inputs

x, y ∈ I where x < y and f(x) < f(y), and J = (J1, . . . , Jk−2) which is a collection of disjoint

intervals appearing in order inside [x, y].

Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.

1. For every κ ∈ [k − 2], let fκ, f
′
κ : Jκ → R ∪ {∗} be given by:

fκ(i) =

{
f(i) f(i) < f(y)

∗ o.w.
and f ′κ(i) =

{
f(i) f(i) ≥ f(y)

∗ o.w.
. (4.3)

2. Call Find-Monotoneκ+1(fκ, ε/2, δ/(2k)) for every κ ∈ [k − 2].

3. Call Find-Monotonek−κ(f ′κ, ε/2, δ/(2k)) for every κ ∈ [k − 2].

4. Consider the set of all indices that are output in Lines 2 and 3, together with x and y.

If there is a length-k increasing subsequence among these indices, output it. Otherwise,

output fail.

Figure 4.4: Description of the Find-Within-Interval subroutine.

103

disjoint length-(k− 1) increasing subsequences in J1 that lie above x, then one such subsequence is

likely to be detected by a recursive call to the main algorithm, and together with x it will form a

length-k increasing subsequence. If there are few such length-(k−1) subsequences, this means that

there are many disjoint length-2 increasing subsequences in J1 that lie below x (because for every

length-k increasing subsequence, either its (k − 1)-suffix lies above x, or its 2-prefix lies above x).

We can then use a recursive call to detect such a sequence, and hope to complete it to a length-k

subsequence using a length-(k − 2) subsequence from J2 that lies above x. Continuing with this

logic, it follows that with high probability we can find an increasing subsequence of length k using

x and J1, Ji and Ji+1 for some i, or Jk−2 and y0.

Lemma 4.10. Consider the randomized algorithm, Find-Within-Intervalk(f, ε, δ, x, y,J), de-

scribed in Figure 4.4, which takes six inputs:

• Query access to a function f : I → R ∪ {∗},

• Two parameters ε, δ ∈ (0, 1),

• Two points x, y ∈ I where x < y and f(x) < f(y), and

• A collection J = (J1, . . . , Jk−2) of k−2 disjoint intervals that appear in order (i.e., Jκ comes

before Jκ+1) within the interval [x, y],

and outputs either a length-k increasing subsequence of f , or fail.

Suppose that for every κ ∈ [k − 2], the function f |Jκ : Jκ → R ∪ {∗}, contains ε|Jκ| dis-

joint (12 . . . k)-patterns. Then, assuming that Theorem 4.7 holds for every k′ with 1 ≤ k′ < k,

Find-Within-Intervalk(f, ε, δ, x, y,J) outputs a length-k monotone subsequence of f with prob-

ability at least 1− δ.

Proof. For each κ ∈ [k− 2], let Cκ be a collection of at least ε|Jκ| disjoint (12 . . . k)-patterns in Jκ.

We form the following two collections, of suffixes and prefixes of (12 . . . k)-patterns in Cκ.

Aκ = {(i1, . . . , iκ+1) : (i1, . . . , iκ+1) is a prefix of a k-tuple from Ck, and f(iκ+1) < f(y)}

Bκ = {(iκ+1, . . . , ik) : (iκ+1, . . . , ik) is a suffix of a k-tuple from Ck, and f(iκ+1) ≥ f(y)}

Note that for each (12 . . . k)-pattern in Cκ, either its (κ + 1)-prefix is in Aκ, or its (k − κ)-suffix

is in Bκ. Thus, at least one of Aκ and Bκ has size at least (ε/2)|Jκ|. Say that Jκ is of type-1 if

|Aκ| ≥ (ε/2)|Jκ|, and otherwise say that Jκ is of type-2 (in which case |Bκ| ≥ (ε/2)|Jκ|).
Now, if Jκ is of type-1, then Line 2, called with κ, will find a (12 . . . (κ + 1))-pattern with

probability at least 1−δ/(2k), by Theorem 4.7 for κ+1 < k (namely, the inductive hypothesis) and

the lower bound on |Aκ|. On the other hand, if Jκ is of type-2, Line 3 will output a (12 . . . (k−κ))-

pattern with probability at least 1− δ/(2k), due to the inductive hypothesis and the lower bound

on |Bκ|. Thus, by a union bound, with probability at least 1−δ, Line 2 outputs a pattern whenever

Jκ is of type-1, and Line 3 outputs a pattern whenever Jκ is of type-2.

104

Subroutine Find-Good-Splitk(f, ε, δ, c, ξ).

Input: Query access to a function f : I → R ∪ {∗}, parameters ε, δ ∈ (0, 1), and c ∈ [k − 1].

We let c1 > 1 be a large enough (absolute) constant.

Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.

1. Repeat the following procedure t = c1k/(εξ
2) · log(1/δ) times:

(a) Sample w, z ∼ I, and consider the functions fz,w : I ∩ (−∞, z) → R ∪ {∗} and

f ′z,w : I ∩ [z,∞)→ R ∪ {∗} given by

fz,w(i) =

{
f(i) f(i) < f(w)

∗ o.w.
and f ′z,w(i) =

{
f(i) f(i) ≥ f(w)

∗ o.w.
.

(4.4)

(b) Run Find-Monotonec(fz,w, εξ/3, δ/3) and Find-Monotonek−c(f
′
z,w, εξ/3, δ/3).

2. If both runs of Line 1b are successful for some iteration and some w, z and c, then we

output the combination of their outputs which forms a length-k increasing subsequence

of f ; otherwise, output fail.

Figure 4.5: Description of the Find-Good-Split subroutine.

Notice that if J1 is of type-2, the (12 . . . (k − 1))-pattern returned in Line 3 can be combined

with x to form a (12 . . . k)-pattern. Hence, we may assume that J1 is of type-1. Furthermore,

if Jk−2 is of type-1, the (12 . . . (k − 1))-pattern found in Line 2 can be combined with y to form

a (12 . . . k)-pattern, and hence, we may assume that Jk−2 is of type-2. Thus, there exists some

κ ∈ [k−3] where Jκ is of type-1 and Jκ+1 is of type-2. Since Jκ comes before Jκ+1, and since non-∗
elements in fκ lie below the non-∗ elements of f ′k+1, we can combine the (12 . . . (κ+ 1))-pattern in

fκ with the (12 . . . (k − κ− 1))-pattern in f ′κ+1.

Handling the Fitting Case: The Find-Good-Split Sub-Routine

In this section, we describe the Find-Good-Split subroutine, which corresponds to the fitting case

from Section 4.1.1.

Lemma 4.11. Consider the randomized algorithm Find-Good-Splitk(f, ε, δ, c, ξ), described in Fig-

ure 4.5, which takes as input five parameters:

• Query access to a function f : I → R ∪ {∗},

• Two parameters ε, δ ∈ (0, 1),

105

• An integer c ∈ [k − 1], and

• A parameter ξ ∈ (0, 1],

and outputs either a length-k increasing subsequence or fail.

Suppose that there exists an interval-tuple pair (I ′, T) which is (c, 1/(6k), ε)-splittable and |I ′|/|I| ≥
ξ. Then, the algorithms Find-Good-Splitk(f, ε, δ, c, ξ) finds a (12 . . . k)-pattern of f with probab-

ility 1− δ.

Proof. Let (I ′, T) be (c, 1/(6k), ε)-splittable, and let L,M,R be the contiguous intervals splitting

I ′ as in Definition 3.7. Furthermore, let T (L) and T (R) be as in Definition 3.7. Writing

m1 = rank
({
f(ic) : (i1, . . . , ic) ∈ T (L)

}
, |T |/3

)
,

m2 = rank
({
f(ic) : (i1, . . . , ic) ∈ T (L)

}
, 2|T |/3

)
,

as the (|T |/3)-largest and (2|T |/3)-largest elements in
{
f(ic) : (i1, . . . , ic) ∈ T (L)

}
(taking multi-

plicity into account). Let T
(L)
l be the (12 . . . c)-patterns in T (L) where the c-th index is at most

m1, and T
(R)
h be the (k − c)-patterns in T (R) whose (c + 1)-th index is larger than m2. Notice

that |T (L)
l |, |T

(R)
h | ≥ |T |/3, and that any (12 . . . c)-pattern from T

(L)
l can be combined with any

(12 . . . (k − c))-pattern from T
(R)
h to form a (12 . . . k)-pattern. Furthermore, there exists at least

|T |/3 indices in I ′ whose function value lies in [m1,m2].

Consider the event, defined over the randomness of w, z ∼ I that: z ∈ M ; and w satisfies

f(w) ∈ [m1,m2]. This event occurs at some iteration of Line 1, with probability at least 1 − δ/3;

this is because there are |M | ≥ |I ′|/(6k) ≥ (ξ/(6k))|I| valid indices for z, and there are at least

|T |/3 ≥ (ε/3)|I ′| ≥ (εξ/3)|I| indices for w, so the probability that the pair (z,w) satisfies the

requirements is at least εξ2/(18k). We obtain the desired bound by the setting of t, since c1 is set

to a large enough constant.

Notice that when this event occurs, the (12 . . . c)-patterns in T
(L)
l all lie in fz,w, and the

(12 . . . (k − c))-patterns in T
(R)
h all lie in f ′z,w. In particular, fz,w contains at least |T |/3 ≥

(ε/3)|I ′| ≥ (εξ/3)|I| disjoint (12 . . . c)-patterns, and f ′z,w similarly contains at least (εξ/3)|I| dis-

joint (12 . . . (k − c))-patterns. Thus, by the inductive hypothesis, Line 1b finds a (12 . . . c)-pattern

in fz,w and a (12 . . . (k − c))-pattern in f ′z,w with probability at least 1 − 2δ/3, and these can be

combined to give a (12 . . . k)-pattern of f .

The Main Algorithm

Consider the description of the main algorithm in Figure 4.6. We prove Theorem 4.7 by induction

on k. The proof uses Lemma 4.9, Lemma 4.10, and Lemma 4.11.

Proof of Theorem 4.7.

106

Subroutine Find-Monotonek(f, ε, δ).

Input: Query access to a function f : I → R∪{∗}, parameters ε, δ ∈ (0, 1). We let c1, c2, c3 >

0 be large enough constants, and let p = P (k log(1/ε)), where P : R→ R is a polynomial of

large enough (constant) degree.

Output: a sequence i1 < . . . < ik with f(i1) < . . . < f(ik), or fail.

1. Run Sample-Suffixk(f, ε/p, δ).

2. Repeat the following for c1 log(1/δ) · p · k5/ε2 many iterations:

(a) Sample x ∼ I uniformly at random. If f(x) = ∗, proceed to the next iteration.

Otherwise, if k = 1 output x and proceed to Step 3, and if k ≥ 2 proceed to the

next step.

(b) For each t ∈ [log n], sample yt ∼ [x + 2t/(12k),x + 2t] uniformly at random. If

there exists at least one t where f(yt) > f(x), set

y = max {yt : t ∈ [log n] and f(yt) > f(x)} , (4.5)

let t∗ ∈ [log n] be the index for which yt∗ = y, and continue to the next line.

Otherwise, i.e. if f(yt) 6> f(x) for every t, continue to the next iteration.

(c) If k = 2, output (x,y) and proceed to Step 3. If k > 2, continue to the next line.

(d) Here k ≥ 3. Set ` = 4p/ε and perform the following.

i. Consider the collection J of k − 2 intervals J1, . . . , Jk−2 appearing in order

within [x,y], given by setting, for every i ∈ [k − 2],

Ji =

[
x +

2t
∗

12k
· `−(k−1−i),x +

2t
∗

12k
· `−(k−2−i)

)
, (4.6)

and run Find-Within-Intervalk(f, ε/2p, δ/2,x,y,J).

ii. For each t′ ∈ [t∗ − 3k log `, t∗] do the following.

Consider the interval Jt′ = [x − 2t
′
,x + 2t

′
], and the restricted function

gt′ : Jt′ → R ∪ {∗} given by gt′ = f |Jt′ . For every c0 ∈ [k − 1], run

Find-Good-Splitk(gt′ , ε/(c2k
5), δ/2, c0, 1/4).

3. If a length-k monotone subsequence of f is found, output it. Otherwise, output fail.

Figure 4.6: Description of the Find-Monotonek subroutine.

107

Base Case: k = 1.

Recall that f has at least ε|I| non-∗ values. Thus, with probability at least 1− δ, a non-∗ value

is observed after sampling x ∼ I at least (1/ε) · log(1/δ) times. It follows that with probability at

least 1−δ, Line 2a of our main algorithm, given in Figure 4.6, samples x 6= ∗ in one of its iterations.

Inductive Step: proof of Theorem 4.7 for k ≥ 2, under the assumption that it holds for every k′

with 1 ≤ k′ < k.

Let p = P (k log(1/ε)) (recall that P (·) is a polynomial of sufficiently large (constant) degree).

Apply Theorem 4.6 to f .

Suppose, first, that (1) of Theorem 4.6 holds. So, there exists a set H ⊂ [n] of indices that

start an (α,Ckα)-growing suffix, with α|H| ≥ (ε/p)n, for some α ∈ (0, 1). By Lemma 4.9, the

call for Sample-Suffixk(f, ε/p, δ) in Line 1 outputs a length-k monotone subsequence of f with

probability at least 1− δ. Now suppose that (2) of Theorem 4.6 holds, and let (I1, T1), . . . , (Is, Ts)

be a (c, 1/(6k), α)-splittable collection for some α ≥ Ω(ε/k5) and c ∈ [k − 1], satisfying (4.2) and,

moreover, that any J ⊂ I with J ⊃ Ih for some h ∈ [s] contains (ε/p)|J | disjoint (12 . . . k)-patterns.

Let Event be the event that, for a particular iteration of Lines 2a and 2b, x is the 1-entry of some

k-tuple from Th, for some h ∈ [s], and yt is the (c + 1)-entry of some (possibly other) k-tuple in

Th, where t is such that |Ih| ≤ 2t < 2|Ih|.

Claim 4.12. Pr[Event] ≥ εα/(2p).

Proof. For each h ∈ [s], let Ah and Bh be the collections of 1- and (c+ 1)-entries of patterns in Th.

Then
s∑

h=1

|Ah| =
s∑

h=1

|Th| ≥ α
s∑

h=1

|Ih| ≥
ε

p
· |I|.

The first inequality follows from the assumption that (Ih, Th) is (c, 1/(6k), α)-splittable, and the

second inequality follows from the assumption that (4.2) holds.

As a result, the probability over the draw of x ∼ I in Line 2a that x ∈ Ah is at least ε/p. Fix

such an x, and consider t ∈ [log n] for which |Ih| ≤ 2t < 2|Ih|. Notice that Bh ⊂ [x+ 2t/(12k),x+

2t] since 2t−1 ≤ |Ih| < 2t, and that the distance between any index of Ah and Bh is at least

|Ih|/(6k) ≥ 2t/(12k) since (Ih, Th) is (c, 1/(6k), α)-splittable. Therefore, the probability over the

draw of yt ∼ [x + 2t/(12k),x + 2t] that yt ∈ Bh is at least |Bh|/2t ≥ |Th|/(2|Ih|) ≥ α/2.

By the previous claim, since we have c1 · log(1/δ) · p · k5/ε2 iterations of Lines 2a and 2b, with

probability at least 1− δ/2, Event holds in some iteration (using the lower bound α ≥ Ω(ε/k5) and

the choice of c1 as a large constant). Consider the first execution of Line 2a and Line 2b where

Event holds (assuming such an execution exists). Let h ∈ [s] and t ∈ [log n] be the corresponding

parameters, i.e., h and t are set so x is the first index of a k-tuple in Th, yt is the (c+ 1)-th index

in another k-tuple in Th, and |Ih| ≤ 2t < 2|Ih|. We consider this iteration of Line 2, and assume

108

that Event holds with these parameters for the rest of the proof. Notice that y, as defined in (4.5),

satisfies y ≥ yt (as f(y) > f(x)) and hence t∗ ≥ t.
Note that if k = 2, the pair (x,y), which is a (12)-pattern in f , is output in Line 2c, so the

proof is complete in this case. From now on, we assume that k ≥ 3. We break up the analysis into

two cases: t∗ ≥ t+3k log ` and t∗ < t+3k log `. Suppose first that t∗ ≥ t+3k log `. We now observe

a few facts about the collection J specified in (4.6). First, notice that J1, . . . , Jk−2 appear in order

from left-to-right, and they lie in [x,y] (as y = yt∗ ∈ [x+2t
∗
/(12k), 2t

∗
]). Second, in the next claim

we show that for every i ∈ [k − 2], the interval Ji contains (ε/2p)|Ji| disjoint (12 . . . k)-patterns.

Claim 4.13. Ji contains (ε/2p)|Ji| disjoint (12 . . . k)-patterns.

Proof. Let J ′i be the interval given by

J ′i = Ih ∪
[
x,x +

2t
∗

12k
· `−(k−2−i)

]
.

Observe that

|J ′i \ Ji| ≤ 2t +
2t
∗

12k
· `−(k−1−i) ≤ 2t

∗

6k
· `−(k−1−i) =

2

`
· 2t

∗

12k
· `−(k−2−i) ≥ 2

`
· |J ′i | =

ε

2p
· |J ′i |,

where for the second inequality we used the bound t∗− t ≥ 3k log ` ≥ log(12) + log k+ (k− 2) log `,

and that ` = 4p/ε.

We have by Theorem 4.6, that J ′i contains at least (ε/p)|J ′i | disjoint (12 . . . k)-patterns in f .

Hence, the number of disjoint (12 . . . k)-patterns in Ji is at least:

ε

p
· |J ′i | − |J ′i \ Ji| ≥

ε

2p
· |J ′i | ≥

ε

2p
· |Ji|,

as required.

By Lemma 4.10, Line 2(d)i outputs a (12 . . . k)-pattern in f with probability at least 1 − δ/2.

By a union bound, we obtain the desired result.

Suppose, on the other hand, that t∗ ≤ t + 3k log `. In this case, as 2t−1 ≤ |Ih| ≤ 2t
∗

(by

choice of t), for one of the values of t′ considered in Line 2(d)ii we have 2t
′−1 ≤ |Ih| < 2t

′
; fix

this t′. The interval Jt′ , defined in Line 2(d)ii, hence satisfies |Ih|/|Jt′ | ≥ 1/4. As a result, and

since Ih ⊂ Jt′ (because t ≤ t∗), the function g : J → R ∪ {∗} contains an interval-tuple pair

(Ih, Th) which is (c, 1/(6k), α)-splittable. By Lemma 4.11, once Line 2(d)ii considers c0 = c, the

sub-routine Find-Good-Splitk(g, ε/(c2k
5), δ/2, c, 1/4) will output a (12 . . . k)-pattern of gt′ (which

is also a (12 . . . k)-pattern of f) with probability at least 1− δ/2. Hence, we obtain the result by a

union bound.

109

Query Complexity and Running Time

It remains to prove Lemma 4.8, estimating the number of queries made by Find-Monotone, as well

as its total running time.

Proof of Lemma 4.8. We first claim that the running time is bounded by an expression of the

form poly(k) times the query complexity of Find-Monotone, where the poly(·) term is of constant

degree. Indeed, the only costly operations (in terms of running time) other than querying that our

algorithm conducts involve:

• Determining whether the value of f at a certain point is ∗ or not; to this end, note that for

any f we need to evaluate along the way, f(x) is marked by ∗ if and only if it does not belong

to some interval in R, whose endpoints are determined by the recursive calls that led to it.

Since the recursive depth is at most k, this means that the complexity of the above operation

is O(k).4

• Given an ordered set of queried elements Q at some point along the algorithm, determining

whether these elements contain a c-increasing subsequence for c ≤ k (this action is taken,

e.g., in the last part of Find-Monotone). This operation can be implemented in time O(c|Q|).
Now, the number of such operations that each queried element participates in is at most k,5

and a simple double counting argument implies that the running time of these operations

altogether is at most O(k2) times the total query complexity.

It remains now to prove the bound on the query complexity. Recall that P : R → R is a

fixed polynomial; write pk,ε = P (k log(1/ε)). We fix n, which upper bounds the length of all

intervals defining input functions. Let Φ(k, ε, δ) be the maximum number of queries made by

Find-Monotonek(f, ε, δ). Let

Φ(1)(k, ε, δ) = query complexity of Sample-Suffixk(f, ε, δ).

Φ(2)(k, ε, δ) =
query complexity of Find-Within-Intervalk(f, ε, δ, x, y,J),

where |J | = k − 2.

Φ(3)(k, ε, δ, ξ) =
query complexity of Find-Good-Splitk(f, ε, δ, c, ξ),

where c ∈ [k − 1].

4In fact, this complexity can be improved to O(1) if, instead of working with functions of the form f : I → R∪{∗},
we would have worked with function f : I → R and received the interval of “non-∗ values” as an input to the recursive

call.
5More precisely, for the purpose of this section, if an element is queried t > 1 times by our algorithm then we

think of it as contributing t to the total query complexity (since our goal is to prove upper bounds here – not lower

bounds – this perspective is clearly valid); and in this case, the number of operations as above in which it participates

is at most k · t.

110

By Lemma 4.9, as well as an inspection of Figure 4.4 and Figure 4.5, we have:

Φ(1)(k, ε, δ) ≤ pk,ε ·
1

ε
· log(1/δ) · log n

Φ(2)(k, ε, δ) ≤ 2k · Φ(k − 1, ε/2, δ/(2k))

Φ(3)(k, ε, δ, ξ) ≤ c1k log(1/δ)

εξ2
· Φ(k − 1, εξ/3, δ/3).

Lastly, inspecting Figure 4.6, we have

Φ(k, ε, δ) ≤ Φ(1)(k, ε/pk,ε, δ)+

c1pk,ε
k5

ε2
log(1/δ)

(
1 + log n+ Φ(2) (k, ε/(2pk,ε), δ/2) + Φ(3)

(
k, ε/(c2k

5), δ/2, 1/4
))

≤ qk,ε ·
1

ε2
· log(1/δ) · log n + qk,ε ·

1

ε3
· (log(1/δ))2 · Φ(k − 1, ε/qk,ε, δ/(3k))

≤
(
kk · (log(1/ε))k · 1

ε
· log(1/δ)

)O(k)

· log n,

where Q : R→ R is a fixed polynomial of large enough (constant) degree and qk,ε = Q(k log(1/ε)).

For the last line we use that Φ(2)(1, ·, ·) = Φ(2)(2, ·, ·) = Φ(3)(1, ·, ·, ·) = Φ(3)(2, ·, ·, ·) = 0, and we

note that the parameter replacing ε never falls below ε/(k log(1/ε))O(k), so the factor of log n at

each iteration is at most
(
kk(log(1/ε))k(1/ε) log(1/δ)

)O(k)
.

111

112

Chapter 5

General Patterns: Stitching, Lower

Bounds, and Hierarchies

The results in this chapter appear in [23].

5.1 Introduction

In this chapter, we continue the discussion from Chapters 3 and 4 on one-sided error testing

for forbidden order patterns in sequences f : [n] → R. Again, the forbidden order pattern is a

permutation π = (π1, . . . , πk) of [k], viewed here as a sequence of length k. Unlike the monotone

case, here we do not pose any restriction on the permutation discussed. We are interested in testing

for π-freeness, i.e., of not containing an order-isomorphic copy of π as a subsequence. Here, two

sequences x = (x1, . . . , xk) and y = (y1, . . . , yk) are order-isomorphic if for any i 6= j, xi < xj holds

if and only if yi < yj . That is, if the relative order of the elements in both sequences is the same.

In other words, f contains π if there exist k integers i1 < · · · < ik ∈ [n] such that f(ia) < f(ib) if

and only if π(a) < π(b). Accordingly, f is π-free if it does not contain the pattern π.

The focus here is on query complexity; all of our tests run in time linear in the number of queries

they make. This is because they work by checking whether the queried subsequence contains the

forbidden pattern. But this in turn can be performed efficiently, building on an algorithm of

Guillemot and Marx [90] which determines whether a given sequence contains a fixed pattern in

time that is linear in the size of the sequence.

Distance function All results are stated here for the Hamming distance function, which is most

standard in property testing, but they also hold for the stronger deletion distance, defined as follows:

distdel(f, g) is the minimal number of value modifications, deletions, and insertions needed to turn

f into g. This follows from the fact that the Hamming distance and the deletion distance of a

sequence f to π-freeness are always equal: Indeed, if S is a set of entries of a function f : [n]→ R

113

whose deletion turns f into a π-free sequence, then it is possible to turn f into a π-free sequence

using |S| value modifications by initializing T = S and iteratively applying the following until T

is empty: Find an x ∈ T with a neighboring entry y /∈ T , set f(x) = f(y), and remove x from T .

This way, if f restricted to [n] \ S is π-free, then so is f after these value modifications.

In particular, this implies that the distance of a sequence f to π-freeness is closely related to

the maximum size of a set C of pairwise-disjoint π-copies in f : On one hand, if f is ε-far from

π-freeness then we cannot delete all π-copies in C with less than εn entry deletions, so |C| ≥ εn/|π|.
On the other hand, if |C| ≥ εn then trivially f is ε-far from π-freeness.

Organization of the results Below we present the results of Newman et al. [109] on the problem

of testing π-freeness. We then provide our results in Section 5.1.2. Our results stated here are in

the non-adaptive case, and seem to yield a relatively good general understanding of this case. All

results in [109] only consider one-sided testing, and we also follow this paradigm. An additional

discussion on a hierarchy of adaptivity in this problem can be found in the full version of the results

presented here [23].

5.1.1 Previous Work

We describe here the previous state of knowledge on testing pattern-freeness in the non-monotone

case; all results here are established in [109], and focus on one-sided tests. First, any pattern of

length k has a non-adaptive one-sided test making O(ε−1/kn1−1/k) queries. This is the sample-

based test, that samples a uniformly random set of elements in the input sequence of the required

size and accepts the input (i.e., indicates that it is π-free) if the queried subsequence is π-free. In

what follows, this test is called the sampler.

The second line of results concerns patterns of length 3. Due to symmetry considerations, it is

enough to consider the pattern π = (1, 3, 2). For this choice of π, it is shown that:

• There is an adaptive one-sided ε-test for π-freeness making (ε−1 log n)O(1) queries.

• Any non-adaptive 1/9-test for π-freeness has query complexity Ω(
√
n) – an exponential separ-

ation from the adaptive case! It is interesting to note that while the lower bound in [109] was

only obtained for one-sided tests, a similar lower bound for two-sided tests may be derived

using similar (yet more technical) ideas.

• There is a non-adaptive one-sided ε-test for π-freeness making
√
n(ε−1 log n)O(1) queries.

Thus, the non-adaptive bounds for π = (1, 3, 2) are tight up to an (ε−1 log n)O(1) factor.

The Ω(
√
n) non-adaptive lower bound from Section 5.1.1 actually applies to any non-monotone

pattern. Moreover, this bound can be strengthened for certain patterns: For any odd k, any

one-sided non-adaptive test for the pattern π = (1, k, k − 1, 2, 3, k − 2, . . . , (k + 1)/2) requires

Ω(n1−2/(k+1)) queries.

114

Discussion on previous results The results in [109] and in the previous two chapters essentially

settle two special cases: The monotone patterns of any length, and the patterns of length 3.

However, the general task of understanding the query complexity of optimal tests for π-freeness –

for any π – both in the adaptive and the non-adaptive case, has remained wide open. The major

open problems that Newman et al. proposed are the following.

Adaptive case Is it true that π-freeness is testable adaptively with query complexity polylogar-

ithmic in n for any pattern π?

Non-adaptive case How does the structure of a pattern π correlate with the query complexity of

an optimal (one-sided) non-adaptive test for π-freeness? In particular, do there exist infinitely

many patterns π for which π-freeness is testable with query complexity that is O(n0.99)?

5.1.2 Our Contributions

In this chapter, we address the non-adaptive case, achieving good (though not yet complete) under-

standing of this case. Along the way, we discover many interesting and surprising phenomena. The

details are presented below. We remark that additional results exploring how partial adaptivity

helps in the problem of testing π-freeness, in particular for the pattern π = (1, 3, 2), appear in [23].

Our first main result is an improved general upper bound that holds for all patterns.

Theorem 5.1. For any pattern π of length k ≥ 3, π-freeness has a one-sided non-adaptive ε-test

whose query complexity is O(ε−
1

k−1n1− 1
k−1).

This bound improves upon all previously known upper bounds for non-monotone patterns, as

the query complexity it suggests is better than both the sample-based upper bound and the upper

bound for patterns of length 3, as appeared Section 5.1.1.

At first glance, an upper bound of O(ε−
1

k−1n1− 1
k−1) seems to only be a slight improvement over

the O(ε−
1
kn1− 1

k) sample-based upper bound. However, quite surprisingly, this upper bound is tight

in both n and ε for any k ≥ 3. In other words, the optimal non-adaptive one-sided test for some

patterns is only slightly more query-efficient than the sampler!

Theorem 5.2. Let π be a pattern of length k ≥ 3, and suppose that |π−1(1)− π−1(k)| = 1. Then

the query complexity of any non-adaptive one-sided ε-test for π-freeness is Ω
(
ε−

1
k−1n1− 1

k−1

)
.

This improves the non-adaptive lower bounds for any pattern of this type, whose length is

at least four. For the non-monotone patterns of length 3, this results determines the correct

dependence in ε.

The combination of Theorem 5.2 with the results in Section 5.1.1 demonstrates a surpris-

ing phenomenon: While the deletion distance between the patterns π1 = (1, 2, . . . , k) and π2 =

(k, 1, 2, . . . , k − 1) is only 2, the query complexity of non-adaptive one-sided testing for π1-freeness

115

differs significantly from that of π2-freeness. For π1-freeness this query complexity is polylogar-

ithmic in n, and so π1 is the easiest to test among patterns of length k, while π2-freeness has a

query complexity of Θ
(
ε−

1
k−1n1− 1

k−1

)
, making π2 one of those patterns that are hardest to test

with non-adaptive one-sided tests. The proofs of Theorems 5.1 and 5.2 appear in Sections 5.2

and 5.3, respectively.

The next lower bound is perhaps even more surprising. It provides (along with Theorem 5.1) an

almost tight bound on the query complexity of an optimal non-adaptive one-sided test for almost

all patterns, implying that this query complexity is usually only marginally better than that of the

most basic sample-based test.

Theorem 5.3. Let π be picked uniformly at random from all patterns of length k. The following

holds with probability 1−o(1) (where the o(1) term tends to zero as k →∞): The query complexity

of any non-adaptive one-sided ε-test for π-freeness is Ω
(
ε−

1
k−3n1− 1

k−3

)
.

Both Theorems 5.2 and 5.3 are actually special cases of a general pattern-dependent lower

bound that we establish. This lower bound applies to any pattern, and depends heavily on the

structure of the pattern. We believe that this lower bound is tight (up to polylogarithmic factors)

for any pattern. Interestingly, it is not clear how to describe the lower bound in a compact closed

form, but given a pattern π of length k, the corresponding bound can be computed in constant

time (that depends only on k). Later, as an important special case of this strong yet hard-to-

digest bound, we provide a slightly weaker pattern-dependent lower bound that has a more natural

combinatorial characterization, and is therefore easier to analyze. See Theorem 5.8 and the resulting

Corollaries 5.9 and 5.10 for more details.

In order to describe our general lower bound, we shall first provide some definitions.

Definition 5.4. Let π = (π1, . . . , πk) be a pattern of length k. A subsequence σ of π is consecutive

if σ = (πi, . . . , πj) for some 1 ≤ i ≤ j ≤ k; in this case we write σ = π[i, j].

A partition Λ = (σ1, . . . , σ`) of the pattern π consists of consecutive subsequences σ1 = π[1, r1], σ2 =

π[r1 + 1, r2], . . . , σ` = π[r`−1 + 1, k], and its size is |Λ| = `.

A signed partition P = (Λ, S) of the pattern π consists of a partition Λ as above, and a sign

vector S = (s1, . . . , s`) ∈ {+,−}`. For any σi of length bigger than one, the corresponding sign si

must satisfy the following. If minσi appears before maxσi in π, then the direction sign of σi is −,

and otherwise, the direction sign is +. The size of P is |Λ| = |S| = `.

Let P be a signed partition as above. Define r0 = 0, and for any 1 ≤ i ≤ `, denote the length

of σi by ki (so
∑`

i=1 ki = k). Consider the sequence fP : [k2] → R defined as follows. For any

1 ≤ j ≤ ki and 0 ≤ m ≤ k − 1, we take fP (rik + mki + j) = m + πri+j/2k for any 0 ≤ i ≤ ` − 1

where si is +, and fP (rik+mki + j) = (k− 1−m) +πri+j/2k for any ≤ i ≤ `− 1 where si is a −.

Note that for any 0 ≤ m ≤ k − 1, the set of all entries x ∈ [k2] satisfying m < fP (x) < m + 1

is a π-copy. We say that such a π-copy is trivial. We say that P is unique if fP does not contain

116

non-trivial π-copies, and denote by U(π) the set of all unique signed partitions of π. Finally, the

unique signed partition number (USPN) of π is u(π) = maxP∈U(π) |P |.

Our lower bound for testing π-freeness is closely related to the USPN of π.

Theorem 5.5. Let π be any pattern. Any non-adaptive one-sided ε-test for π-freeness has query

complexity Ω
(
ε−1/u(π)n1−1/u(π)

)
.

The USPN of a pattern obviously depends only on the pattern (and not on the input sequence

size), so it can be computed in constant time, that depends only on k. Thus, given a pattern π and

parameters n, ε, one can compute the lower bound obtained from Theorem 5.5 in constant time.

The proof of Theorem 5.2 follows from Theorem 5.5 by showing that for any pattern π of length

k which satisfies |π−1(1) − π−1(k)| = 1, it holds that u(π) = k − 1; actually these are the only

patterns of length k whose USPN is k − 1, and no pattern of length k > 1 has USPN that equals

k, as can be derived from results that are discussed later.

We conjecture that the lower bound of Theorem 5.5 is tight up to a multiplicative term that is

polynomial in ε and log n. That is, we conjecture that the USPN, u(π), is the correct parameter

of π that determines how hard it is to non-adaptively test π-freeness using one-sided tests.

Conjecture 5.6. For any pattern π of any fixed length, π-freeness has a non-adaptive one-sided

ε-test making Θ̃ε

(
n1−1/u(π)

)
queries.

A multiplicative term of log n is necessary to make Conjecture 5.6 hold for monotone patterns

π (for which u(π) = 1), since there is a lower bound of Ω(log n) for testing monotonicity [66], that

can be generalized to testing π-freeness for any pattern π of length at least 2. For non-monotone

patterns, an even stronger conjecture can be given, namely that the number of queries required by

a non-adaptive one-sided ε-test is Θε(n
1−1/u(π)) (without the polylogarithmic term in n).

Combinatorial characterizations related to the general lower bound Motivated by The-

orem 5.5, it is desirable to find natural necessary and sufficient combinatorial conditions for unique-

ness of a signed partition of a given pattern π. Our next main result provides a useful sufficient

condition. For the result, we need some more definitions.

Definition 5.7. Let σ = π[x, y] and σ′ = π[x′, y′] of π be disjoint consecutive subsequences of

length at least two, and let x′ ≤ m,M ≤ y′ be the indices satisfying πm = minπ[x′, y′] and πM =

maxπ[x′, y′]. We say that σ′ is shadowed with respect to σ if one of the following holds.

• x′ > y, m < M , and πx′−1 > πM .

• x′ > y, m > M , and πx′−1 < πm.

• y′ < x, m < M , and πy′+1 < πm.

117

• y′ < x, m > M , and πy′+1 > πM .

An entangling of π is a collection E = (σ1, . . . , σt) of pairwise disjoint consecutive subsequences

of π, where σi = π[ai, bi] for any 1 ≤ i ≤ t, satisfying the following.

• For any 2 ≤ j ≤ t, the following holds. Either aj > b1 and mini<j minσi < πaj <

maxi<j maxσi, or bj < a1 and mini<j minσi < πbj < maxi<j maxσi.

• For any 2 ≤ j ≤ t, σj is not shadowed with respect to σ1.

• For any 1 ≤ ` ≤ k, there exists σ ∈ E such that minσ ≤ ` ≤ maxσ.

For the above entangling E of π, define Λ(E) as the partition of π in which σ1, . . . , σt serve as parts,

and any element of π not in
⋃t
i=1 σi has its own part. Denote d(E) = |Λ(E)| = k −

∑
σ∈E(|σ| −

1). Finally, the entangling number of π is d(π) = maxE{d(E)} where E ranges over all valid

entanglings of π.

Theorem 5.8. For any pattern π and entangling E of π, there exists S ∈ {+,−}|E| for which the

signed partition P = (Λ(E), S) is unique. In particular, d(π) ≤ u(π) for any pattern π.

The following is an immediate yet important corollary of Theorems 5.5 and 5.8.

Corollary 5.9. For any pattern π, any non-adaptive one-sided ε-test for π-freeness must make

Ω
(
ε−1/d(π)n1−1/d(π)

)
queries.

A useful simple special case of Corollary 5.9 is the following.

Corollary 5.10. For a pattern π = (π1, . . . , πk), let m(π) = max1≤i≤k−1 |πi+1 − πi|. Then

m(π) ≤ d(π), and in particular, any non-adaptive one-sided ε-test for π-freeness must make

Ω
(
ε−1/m(π)n1−1/m(π)

)
queries.

Note that a pattern π of length k with |π−1(1)−π−1(k)| = 1 satisfies m(π) = k−1, so Theorem

5.2 is actually a special case of Corollary 5.10.

Theorem 5.3 follows from Corollary 5.9 by observing that d(π) ≥ k−3 holds w.h.p. for a random

pattern π of length k; actually, both d(π) and u(π) are concentrated in the values k− 2 and k− 3,

as u(π) = k − 1 holds with probability O(1/k).

There exist patterns π for which d(π) < u(π). In particular, partitions with a unique signed

form are not necessarily entanglings, so the sufficient condition for uniqueness from Theorem 5.8

is not a necessary one. For example, one can verify that π = (4, 1, 2, 5, 6, 3) satisfies d(π) = 3

but u(π) = 4; a unique signed partition of size 4 for π is (Λ, S) where Λ = ((4, 1), 2, 5, (6, 3)) and

S = (+,−,−,+)).

The following necessary condition for being a unique signed partition is easy to prove.

Observation 5.11. Let π be a pattern of length k and let P = (Λ, S) be a unique signed partition

for π. Then Λ satisfies the following conditions.

118

• For any 1 ≤ ` ≤ k there exists σ ∈ Λ of length bigger than one, such that minσ ≤ ` ≤ maxσ.

• Let σ ∈ Λ with |σ| > 1. If maxσ < k then there exists σ′ ∈ Λ satisfying minσ′ < maxσ <

maxσ′, and similarly, if minσ > 1 then there exists σ′ ∈ Λ satisfying minσ′ < minσ <

maxσ′.

The size |Λ| of the largest partition Λ of π satisfying the conditions in Observation 5.11 might

be bigger than the USPN of π. For example, the partition Λ = ((5, 1), 3, 2, 7, 6, (8, 4)) of the pattern

π = (5, 1, 3, 2, 7, 6, 8, 4) satisfies these conditions, but one can verify that it is not a unique signed

partition. By Observation 5.11, none of the other partitions of π of size 6 have a unique signed

form, so u(π) < 6 = |Λ|. In fact, u(π) = 5 in this case, as ((1, 3), (2, 7), (6, 8)) is an entangling.

Permutation-dependent hierarchy in the non-adaptive case

The statement of Conjecture 5.6 suggests that there is a pattern-dependent hierarchical behavior

of the query complexity for one-sided non-adaptive testing of π-freeness as a function of π. The

following result verifies that such an hierarchical structure indeed exists.

Theorem 5.12. For any two positive integers k ≥ 2 and 1 ≤ ` ≤ k − 1, there is a pattern π of

length k with m(π) = `, for which the optimal non-adaptive ε-test makes Θ̃ε

(
n1−1/`

)
queries, where

the Θ̃ε notation hides a term polynomial in log n and ε.

In particular, we conclude that for any positive integer `, there exist infinitely many patterns π

for which the query complexity of one-sided non-adaptive testing of π-freeness is Θ̃ε(n
1−1/`). This

answers and generalizes the open question of Newman et al. [109], who asked whether there exist

infinitely many patterns π that have a non-adaptive one-sided test for π-freeness making at most

O(n0.99) queries (for a fixed ε).

We concluding by commenting that the full version of the work presented here [23] also provides

results showcasing a hierarchy of adaptivity for this problem (specifically when the pattern is

π = (1, 3, 2)), settling an open question by Canonne and Gur [42].

5.1.3 Discussion and Open Problems

The problem of (one-sided) testing for π-freeness demonstrates a wide array of interesting phe-

nomena: An exponential separation between the adaptive and the non-adaptive case, surprising

hardness results and pattern-dependent hierarchical behaviors in the non-adaptive case, and a hier-

archy of adaptivity that is the first of its kind. We believe that these results serve as a strong

motivation to try to achieve a complete understanding of the problem. Below we suggest several

possible directions for future research.

119

The adaptive case Testing π-freeness in the adaptive case is still far from being understood. In

particular, the question whether all patterns are testable adaptively with number of queries that

is polylogarithmic in n is still wide open, even if we allow for two-sided tests. At this point, this

seems to be the most intriguing open question regarding testing π-freeness.

Improving bounds in the non-adaptive case While our understanding of the non-adaptive

case is far better than that of the adaptive case, there are still gaps in it. The main goal here

is to obtain good pattern-dependent upper bounds: Conjecture 5.6 states that our lower bound is

actually tight, and it will be obviously interesting to understand if it holds.

Understanding the USPN Another interesting direction would be to obtain a simple complete

combinatorial characterization of the USPN of any given pattern. Currently we have lower and

upper bounds for the USPN of a pattern (Theorem 5.8 and Observation 5.11, respectively), that

are usually tight for small patterns, and we know that the USPN of a pattern is computable in

constant time.

Two-sided testing All known results so far are for one-sided testing, aside from the two-sided

lower bound in the partially adaptive setting [23]. It is worth to note that the Ωε(n
1/2) lower bound

for one-sided testing of all non-monotone patterns can be (carefully) translated into the same bound

for two-sided tests. However, the proofs of other one-sided non-adaptive lower bounds do not seem

to translate well to the two-sided setting. Therefore, it will be interesting to understand what is

the query complexity of optimal two-sided tests, both in the adaptive and the non-adaptive case.

Specific questions of interest include (but are not limited to) the following: When do the non-

adaptive two-sided lower bounds match the one-sided ones? Can one obtain a general two-sided

upper bound that beats the tight one-sided upper bound of Theorem 5.1 for patterns of size bigger

than three? Does two-sidedness help testing in the adaptive case?

Families of forbidden order patterns It will be interesting to investigate the case where more

than one order pattern is forbidden (note that there are families for which the question does not

make sense; for example, the famous theorem of Erdős-Szekeres [61] implies that any sequence of

length at least k2 − 2k + 2 must contain one of the monotone patterns of length k). As mentioned

in [109], all one-sided upper bounds from the single-pattern case carry over to the multiple-pattern

case, but the lower bounds do not; for example, there exists a family of two non-monotone patterns

of size 3 that has a one-sided non-adaptive test whose query complexity is polylogarithmic in n.

Some specific open questions of interest: Is the upper bound from Theorem 5.1 tight in this case?

How does the non-adaptive family-dependent hierarchy look like?

Forbidden order patterns in multi-dimensional structures How does π-freeness behave in

structures of higher dimensions, such as the hypergrid or the Boolean hypercube? The sample-based

120

upper bound from subsection 5.1.1 still holds in these cases, provided that the input contains many

pairwise-disjoint copies of the forbidden structure π. However, in contrast to the one-dimensional

case, it is then no longer clear whether being far from π-freeness implies that the input indeed has

many pairwise-disjoint π-copies. Interestingly, recent work of Grigorescu, Kumar, and Wimmer [89]

gives strong evidence that testing order pattern freeness on the hypercube is hard.

5.2 Upper Bound

In this section we provide the proof of Theorem 5.1. The test that is used to prove the upper

bound is one-sided, and indicates that the input sequence f : [n] → R has a π-copy only if it

finds one. Thus, the testing problem reduces to the following search problem: Given query access

to un unknown sequence f that is ε-far from π-freeness, the goal is to find a π-copy in f . Here

and henceforth, we omit floor and ceiling signs, as they do not make an essential different in the

arguments. The proof of Theorem 5.1 follows immediately from the next lemma, which provides a

sublinear algorithm to find a π-copy in a sequence f , assuming that f is far enough from π-freeness.

Lemma 5.13. Let π be a pattern of length k ≥ 3, and suppose that f : [n] → R is ε-far from

π-freeness for some ε ≥ ckn−1/9, where ck depends only on k, and n is large enough (as a function

of k). Then there is an algorithm that finds, with probability 2/3, a copy of π in f by querying

O(ε−
1

k−1n1− 1
k−1) entries in f .

Remark 5.14. Lemma 5.13 is stronger than what is needed to obtain a one-sided test, in the sense

that ε is allowed to scale with n; for the proof of Theorem 5.1 a lemma that applies to a constant ε

would have been sufficient. However, the added flexibility of the lemma reflects that the statement

of Theorem 5.1 would still be true should we take ε−1 as a slowly-growing function of n.

Proof. The proof idea is as follows. Given an input sequence f : [n] → R, we partition [n] into

a collection I of n/m intervals of size m each, for a suitable choice of m; we may assume, for

convenience, that m divides n. Suppose that f is ε-far from π-freeness. Then f contains a set A
of εn/k pairwise disjoint π-copies. We consider two cases, where for each of the cases the queries

made are different. Our actual algorithm is a combination of the algorithms for each of the cases.

In the first case, most π-copies in A have at least two entries in the same interval; the algorithm

for this case queries a set of whole intervals, chosen uniformly at random, and a set of single

elements, also chosen uniformly at random. The analysis of this case does not use the fact that

π is a permutation. In the second case, most π-copies in A do not have two entries in the same

interval, and it can be shown that the sampler (which samples entries of f uniformly at random)

suffices for this case. Here we do use the fact that π is a permutation, and the analysis actually

shows that the required number of queries is much smaller (for constant ε) than in the first case.

121

We now give the full details. Pick the interval size to be m = (εn)1−1/(k−1), and write π =

(π1, . . . , πk). The π-copies are represented in A as k-tuples t = (t1, . . . , tk) where ti is the location

of the element corresponding to πi in the copy. Write A = B ∪ C, where B contains all π-copies

from A that have at least two entries in the same interval, and C contains all π-copies that have at

most one entry in each interval. Then either |B| ≥ εn/2k or |C| ≥ εn/2k.

Case 1: |B| ≥ εn/2k Our algorithm for this case is described as follows. We first pick a set Q1 ⊆ I
of intervals, where every I ∈ I is included in Q1 with probability p = cm/εn = c(εn)−1/(k−1),

independently of other intervals. Here c = 100k2 depends (polynomially) on k. Next, we pick a

set Q2 of elements from [n], where each element is added to Q2 with probability p, uniformly and

independently of other elements. Up until now, the algorithm does not make any queries.

An independent sampling trick Variants of the following simple idea are used several times

along the chapter. Let Efound be the event that the subsequence of f induced by Q1 and Q2 contains

a π-copy. Let Ebig be the event that |Q1| > 100c/ε or |Q2| > 100cm/ε. By Markov’s inequality,

Pr(Ebig) ≤ 1/50. If Ebig occurs, then the algorithm stops without making any queries (and hence it

does not find a π-copy in f). If Ebig has not occurred, then the algorithm now queries all elements

induced by Q1 and Q2. Thus, the algorithm finds a π-copy if and only if Efound occurs and Ebig does

not occur. The number of queries made is at most 200cm/ε = O(ε−
1

k−1n1− 1
k−1), as desired. The

probability that the algorithm finds a π-copy is at least Pr(Efound)−Pr(Ebig) ≥ Pr(Efound)−1/50.

Thus, it remains to show that Pr(Efound) ≥ 2/3+1/50 (note that we consider here the unconditional

probability of Efound, and in particular, we do not condition on Ebig not happening).

Analyzing the event Efound For each I ∈ I, let tI denote the number of π-copies from B
that have at least two entries in I, and let t =

∑
I∈I tI , so εn/2k ≤ t ≤ εn. let X be the random

variable that counts the number of π-copies from B that have at least two entries in some I ∈ Q1.

The expectation of X is E[X] = tp ≥ cm/2k = 50km, and the variance of X is bounded by

E[X2] ≤ p
∑
I∈I

t2I ≤ pm2εn/m = cm2

where the second inequality follows from convexity arguments, using the facts that 0 ≤ tI ≤ m for

every I and
∑
tI = t ≤ εn. Thus, the standard deviation of X is bounded by m

√
c = 10km. By

Chebyshev’s inequality, we get that X ≥ m with probability at least 9/10.

Assume now that X ≥ m, that is, there exists a set B′ ⊆ B of m π-copies that have at least

two of their entries in intervals from Q1. For each such copy, the event that all other k − 2 (or

less) entries of it are in Q2 has probability at least pk−2 = ck−2/m, and is independent of the

corresponding events of the other copies in B′. Thus, the probability that none of these events

occurs is bounded by (1− ck−2/m)m ≤ e−ck−2
< 1/100. This finishes the proof.

122

Case 2: |C| ≥ εn/2k We start with some notation. For a copy t = (t1, . . . , tk) ∈ C, we define

Ii(t) as the interval in I containing ti.

Non-extremal π-copies For any interval I ∈ I, let y1 ≤ . . . ≤ ym be the elements of

f(I) = {f(x) : x ∈ I}, and let y−I = ydεm/6ke and y+
I = ybm−εm/6kc. We say that a π-copy

t = (t1, . . . , tk) is top-high if f(tπ−1(k)) > y+
Iπ−1(k)(t)

, and bottom-low if f(tπ−1(1)) < y−Iπ−1(1)(t)
. A

copy that is neither top-high nor bottom-low is said to be non-extremal. In other words, a π-copy is

non-extremal if its highest point is not too high with respect to the interval it lies in, and similarly,

its lowest point is not too low with respect to its interval. Note that the number of top-high π-

copies in C is bounded by εn/6k (as each interval contributes no more than εm/6k such copies),

and similarly for the number of bottom-low π-copies. Thus, there exists a set C′ ⊆ C of εn/6k

non-extremal π-copies.

The main idea is that with sufficiently many queries, the sampler – a sample-based algorithm

to find a π-copy – will be able to capture all entries of a non-extremal π-copy t = (t1, . . . , tk) ∈ C′

besides the lowest entry tπ−1(1) and the highest entry tπ−1(k), which will be replaced by a small

enough entry from Iπ−1(1)(t) and a large enough entry from Iπ−1(k)(t), respectively. Note that this

is a valid π-copy.

Analyzing the sampler Let p = cm/εn = c(εn)−1/(k−1) as above. Let Efound be the event

that a subsequence g of f , constructed by putting each entry of f in it with probability p, contains

a π-copy. Using the sampling trick from the first case, it is enough to show that Pr(Efound) ≥
2/3 + 1/50. Before we continue, we define the events At, Bt, Et for any π-copy t = (t1, . . . , tk) ∈ C′

as follows. At is the event that all entries {tπ−1(j)}k−1
j=2 of t are included in g, so Pr(At) = pk−2 =

ck−2/m. Bt is the event that g contains x ∈ Iπ−1(1)(t) and x′ ∈ Iπ−1(k)(t) such that f(x) ≤
f(tπ−1(1)) and f(x′) ≥ f(tπ−1(k)), so Pr(Bt) ≥ 1− 2(1− p)εm/6k. Finally, Et = At ∩ Bt ⊆ Efound

indicates that g contains a π-copy. Note that any event At is independent of all other events, and

Bt is only dependent on events Bt′ where Iπ−1(1)(t) = Iπ−1(1)(t
′) or Iπ−1(k)(t) = Iπ−1(k)(t

′); there

are at most 2m such events for each Bt.

The analysis of patterns of length 3 differs from that of longer ones.

π of length k > 3. The probability that none of the events At for t ∈ C′ holds is at most

(1 − pk−2)|C
′| ≤ exp

(
−pk−2εn/6k

)
= exp(−ck−2(εn)1/(k−1)/6k) < 1/10. Suppose then that At

holds for some t ∈ C′. The probability that Bt does not occur is bounded by 2(1 − p)εm/6k ≤
2 exp (−pεm/6k) = 2 exp

(
−cm2/6kn

)
= 2 exp(−ε2−2/(k−1)n1−2/(k−1)c/6k) < 1/10 for large enough

n. Thus, Pr(Efound) = Pr(∃t : At ∧Bt) > 8/10 > 2/3 + 1/50 in this case, as desired.

π of length k = 3. Let Xt denote the indicator random variable of Et and let X =
∑

t∈C′ Xt.

For every t ∈ C′, we have Pr(At) = p = c/m and Pr(Bt) ≥ (1 − (1 − p)εm/18)2 ≥ (1 −

123

exp(−pεm/18))2 = (1 − e−cε/18)2 ≥ c2ε2/400, where the last inequality holds when ε ≤ αk−2 for

a small enough α, as e−x ≤ 1 − 9x/10 for small enough x. Thus, E[X] =
∑

t∈C′ Pr(At) Pr(Bt) ≥
εn
18

c
m
c2ε2

400 = c3

7200ε
5/2n1/2. On the other hand,

Var(X) =
∑
t∈C′

Var(Xt) +
∑
t6=t′∈C

Cov(Xt, Xt′) ≤ E[X] + 2m|C′|max
t,t′

Pr(At) Pr(At′) Pr(Bt), (5.1)

where the inequality builds on the following two facts. The first is that Cov(Xt, Xt′) ≤ E(XtXt′) ≤
Pr(At) Pr(At′) Pr(Bt), as the events At, At′ , Bt are mutually independent. The second fact is that,

for any t ∈ C′, Cov(Xt, Xt′) = 0 for all but 2m of the tuples t′, as discussed above.

The second term in (5.1) is bounded by 2c2√εn. Therefore, the standard deviation of X is

bounded by
√

E[X]+
√

2cε1/4n1/4 ≤ E[X]/10, where the bound on ε in the statement of the lemma

is chosen so that the last inequality holds (note that ε1/4n1/4 = ε5/2n1/2 for ε = n−1/9, and thus the

smallest possible value of ε for which this proof works is Θk(n
−1/9)). Using Chebyshev’s inequality,

Pr(Efound) = Pr(X > 0) ≥ 9/10 > 2/3 + 1/50, concluding the proof.

5.3 Lower Bounds

In this section we provide proofs for our lower bounds in the non adaptive case. These are Theor-

ems 5.2, 5.5 and 5.8. We start with the proof of Theorem 5.5. Then, we use it to finish the proof

of Theorem 5.2, which requires us to prove a relatively simple special case of Theorem 5.8. Finally,

we prove Theorem 5.8 in its full generality. We chose to present the proofs in this order for the sake

of readability, as the proof of Theorem 5.8 will be easier to understand after tackling the special

case considered in Theorem 5.2.

Proof of Theorem 5.5. Fix a pattern π of length k, and let P = (Λ, S) be a unique signed partition

of π of size u, where Λ = (σ1, . . . , σu) and S = (s1, . . . , su). Let 0 < ε < ε0(k) and let n > n0(k)

be an integer, where ε0(k) ≤ 1/2k is small enough as a function of k and n0(k) is large enough as

a function of k. We may assume, for convenience, that m = n/k is an integer and that εm is an

integer bigger than k (translating the result to any n and ε comes at a “price” of a multiplicative

constant that depends only on k).

Recall that a one sided ε-test for π-freeness must always accept π-free sequences, and reject

sequences that are ε-far from π-freeness with probability at least 2/3. Thus, any one sided test T

for π-freeness must always accept its input if the subsequence it queries is π-free. This follows from

the fact that for any π-free sequence g : [q] → R, any n > q and any 1 ≤ t1 < . . . < tq ≤ n, there

exists a π-free sequence f : [n]→ R such that f(tj) = g(j) for any j = 1, . . . , q. That is, any π-free

queried subsequence might possibly be contained in a π-free sequence, and hence must be accepted

by any one-sided test. Therefore, any one-sided test for π-freeness can be seen as a non-adaptive

search algorithm for π in f , whose goal is to find a π-copy in an unknown input sequence f that is

guaranteed to be ε-far from π-freeness, with success probability at least 2/3.

124

We use Yao’s principle, constructing a family F of sequences f : [n] → R that are ε-far from

π-freeness, which satisfies the following property for some constant ck > 0. For any 1 ≤ t1 < . . . <

tq ≤ n where q < ckε
−1/un1−1/u, it holds that

Prf∈F (subsequence of f in indices t1, . . . , tq contains a π-copy) < 2/3. (5.2)

Combining (5.2) with a standard Yao-type argument completes the proof, as it implies that any

(possibly probabilistic) search algorithm for π in f , where f is chosen uniformly at random from

F , must make ckε
−1/un1−1/u queries to have success probability 2/3.

Constructing F In the rest of the proof, we present a family F = F(P) for which (5.2) holds.

Let us describe the structure of the sequences f ∈ F before diving into the technical details. A

sequence f ∈ F looks like a blowup of fP , where each blown up part is planted, starting at a

random location, inside a longer interval (making it hard for a non-adaptive test to “guess” where

each part is located inside its interval). More specifically, each part σi of the partition Λ corresponds

to an interval Ii in f whose length is |σi|m. In this interval, there are εn copies of σi ordered in

an increasing manner if si is a +, and a decreasing manner if σi is a −, where each σi-copy is a

consecutive subsequence of f . The value of f on these σi-copies (for each i) is “aligned” with other

intervals, so that f contains a set of εn pairwise disjoint π-copies, without containing any other

π-copy (here we use the fact that P = (Λ, S) is unique). The rest of the elements in each interval

are chosen in a manner that does not create any other π-copy. To make F “random enough,” the

points where the consecutive copies begin in each interval are chosen uniformly at random. This

assures that the probability for each k-tuple of entries in f to induce a π-copy is sufficiently small,

proving (5.2).

We now provide the technical details. For every 1 ≤ i ≤ u, write σi = π[ji−1 + 1, ji], where

j0 = 0 and let δi = ji−ji−1 denote the length of σi. For any 1 ≤ i ≤ u, let Ii = {mji−1+1, . . . ,mji}.
A sequence f : [n] → R is in F if for any 1 ≤ i ≤ u there exists 0 ≤ ni ≤ (1 − kε)δim, such that

the following conditions hold.

• For every 1 ≤ i ≤ u where si is a +, and every 1 ≤ l ≤ δi and 0 ≤ r ≤ εn − 1, we take

f(mji−1 + ni + rδi + l) = r + πji−1+l/2k. We also take f(x) = −1 for any mji−1 + 1 ≤ x ≤
mji−1 + ni, and f(x) = n for any mji−1 + ni + εnδi + 1 ≤ x ≤ mji.

• For every 1 ≤ i ≤ u where si is a −, and every 1 ≤ l ≤ δi and 0 ≤ r ≤ εn − 1, we

take f(mji−1 + ni + rδi + l) = (εn − 1 − r) + πji−1+l/2k. We also take f(x) = n for any

mji−1 + 1 ≤ x ≤ mji−1 + ni, and f(x) = −1 for any mji−1 + ni + εnδi + 1 ≤ x ≤ mji.

Any f ∈ F is ε-far from π-freeness Any such f is ε-far from π-freeness. Indeed, for any

0 ≤ r ≤ εn− 1, the subsequence of f consisting of all k entries x ∈ [n] for which r < f(x) < r + 1

is a π-copy, so there is a set Df of εn pairwise-disjoint π-copies in f .

125

Any f ∈ F does not contain non-trivial π-copies On the other hand, f does not contain

any other (i.e., non-trivial) π-copy. To show this we use the fact that P = (Λ, S) is a unique signed

partition.

Claim 5.15. Let f ∈ F . If f contains a non-trivial π-copy, then it contains a non-trivial copy

without the values −1 and m.

Proof sketch. Recall that k < εm. The proof follows by applying iteratively the following fact, and

its symmetric counterpart. If t = (t1, . . . , tk) is a π-copy in f , and if there exist 0 ≤ r < εn− 1 and

i ∈ [k] such that r − 1 ≤ f(ti) < r, but there is no j ∈ [k] for which r < f(tj) < r + 1, then f also

contains a π-copy created by the following “lifting process,” that replaces all entries with values

between r− 1 (inclusive) and r (exclusive) with entries whose values are bigger than r and smaller

than r + 1.

If r > 0, we replace any ti satisfying r−1 < f(ti) < r with the unique entry t′ satisfying f(t′) =

f(ti) + 1. If r = 0 we replace ti with the closest entry t′ among those satisfying 0 < f(t′) < 1.

Suppose now to the contrary that f contains a non-trivial π-copy in the entries x1 < . . . <

xk ∈ n, without the values −1 and m, and let R = {bf(xi)c : 1 ≤ i ≤ k} ⊆ {0, 1, . . . , εn − 1}, so

2 ≤ |R| ≤ k. We now arbitrarily add elements from {0, 1, . . . , εm − 1} to R to obtain a set R′ of

size exactly k.

Let g be the subsequence of f over the set of entries W (R′) = {w ∈ [n] : bf(w)c ∈ R′}. In

particular x1, . . . , xk ∈W (R′), so g contains a non-trivial π-copy. But this is a contradiction – the

nature of our construction (and in particular, the choice of signs) implies that g is order-isomorphic

to the sequence fP given in Definition 5.4, which does not contain non-trivial π-copies (as P is

unique). Thus, the only π-copies in f are the trivial copies that come from Df .

Analysis: F satisfies desired conditions Finally, we show that the probability for a k-tuple

1 ≤ t1 < . . . < tk ≤ n to induce a π-copy in a sequence f ∈ F chosen uniformly at random is

sufficiently small. We may restrict ourselves to tuples containing exactly δi entries in Ii for any

1 ≤ i ≤ u, as these are the only tuples with positive probability to induce a π-copy. Suppose that

f ∈ F contains a π-copy in entries t1 < . . . < tk. This copy must come from Df , and so there

exists some 0 ≤ r ≤ εn − 1 such that r < f(tl) < r + 1 for any 1 ≤ l ≤ k. The values of r and

tj1 , tj2 , . . . , tju determine n1, . . . , nu uniquely. In other words, f is the only sequence, among all

|F| > (n/2k)u ≥ (2k)−knu sequences from F , that has a π-copy of height between r and r + 1

whose ji-th entry lies in tji , for any 1 ≤ i ≤ u. In total, only at most εn such possible choices

f ∈ F have a π-copy whose ji-th entry lies in tji , for any 1 ≤ i ≤ u. Thus, we have:

Prf∈F (subsequence of f in indices tj1 , . . . , tju is contained in a π-copy) ≤ εn

|F|
<

(2k)kε

nu−1
(5.3)

126

We are now ready to finish the proof of (5.2). Pick ck = (3k)−k/u, and let t = (t1, . . . , tq) with

1 ≤ t1 < . . . < tq ≤ n be a q-tuple, where q < ckε
−1/un1−1/u. t contains

(
q
u

)
≤ qu u-tuples, so by a

union bound, the expected number of u-tuples contained in a π-copy (over a uniform choice f ∈ F)

is less than (2k)kεqun1−u < 2/3. Thus, the probability that the subsequence of f on t contains a

π-copy is less than 2/3, as desired.

Proof of Theorem 5.2. Using Theorem 5.5, it is enough to show that u(π) = k − 1 for any pattern

π of length k satisfying |π−1(1)− π−1(k)| = 1. Let π = (π1, . . . , πk) be a pattern of length k, and

assume, without loss of generality, that π` = 1 and π`+1 = k for some 1 ≤ ` ≤ k − 1. We take

the following signed partition P = (Λ, S) of size k − 1. Λ = (σ1, . . . , σk−1) where σi consists of the

single element πi for any i < `, σ` = (1, k), and σi is the single element πi+1 for any i > `. The

sign vector S = (s1, . . . , sk−1) is defined as follows. s` is a −, and for any i 6= `, si is a + if and

only if πi > πi+1.

We now show that P is unique, implying that u(π) ≥ |P | = k − 1, as needed. Consider

the sequence f = fP , as defined in Definition 5.4. We partition the entries of fP into intervals

I1, . . . , Ik−1, where Ii contains all entries that participate in the σi-part of some π-copy in fP . In

other words, Ii = {(i − 1)k + 1, . . . , ik} for any 1 ≤ i < `, I` = {(` − 1)k + 1, . . . , (` + 1)k} and

Ii = {ik + 1, . . . , (i+ 1)k} for any ` < i ≤ k − 1.

Let q = (q1, . . . , q`) be a π-copy in fP . The following claim sheds light on the structure of q

with respect to the intervals I1, . . . , Ik−1.

Claim 5.16. For any i = 1, . . . , k let ind(i) denote the index of the interval containing qi, that is,

qi ∈ Iind(i). Then ind(i) ≥ i for any i ≤ ` and ind(i) ≤ i− 1 for any i ≥ `+ 1.

Proof. Suppose to the contrary that ind(i) < i for some i ≤ `, and consider the smallest i satisfying

this. Then ind(i− 1) = ind(i) = i− 1, that is, qi−1, qi ∈ Ii−1. This is a contradiction: If πi > πi−1

then si−1 is a −, so the subsequence of f restricted to Ii−1 is decreasing, contradicting the fact

that q is a π-copy, that must satisfy f(qi) > f(qi−1) since πi > πi−1. If πi < πi−1 then si−1 is a

+ and, symmetrically, we have a contradiction. Thus, ind(i) ≥ i for any i ≤ `. The proof that

ind(i) ≤ i− 1 for any i ≥ `+ 1 is symmetric.

As a special case of Claim 5.16, we conclude that q`, q`+1 ∈ I` for any π-copy q = (q1, . . . , qk).

This implies that fP (q`) = r + 1/2k and fP (q`+1) = r + 1/2 for some integer r (since the only

length-2 subsequences of f inside I` that are increasing are (r + 1/2k, r + 1/2), for any integer

0 ≤ r ≤ k−1). Hence, for any i 6= `, `+ 1, qi must be the unique entry satisfying f(qi) = r+πi/2k.

We conclude that fP does not contain non-trivial π-copies, so P is unique.

The proof of Theorem 5.8 is based on ideas that are similar to those of the proof of Theorem 5.2,

and in particular, a generalized form of Claim 5.16 serves as an important tool in the proof.

127

Proof of Theorem 5.8. Let π be a pattern of length k, and let E = {τ1, . . . , τt} be an entangling of

π whose resulting partition Λ = Λ(E) = (σ1, . . . , σd) is of size d = d(π). For any 1 ≤ ` ≤ t, denote

by λ(`) the unique index satisfying τ` = σλ(`). For any 1 ≤ i ≤ d, write σi = π[ji−1 + 1, ji] where

j0 = 0 and jd = k. We choose the sign vector S = (s1, . . . , sd) as follows.

• For any 1 ≤ i ≤ d where σi contains more than one element, si is a + if minσi lies after

maxσi in π, and otherwise si is a −.

• For any i < λ(1) where σi is a single element, si is a + if and only if πji > πji+1.

• For any i > λ(1) where σi is a single element, si is a + if and only if πji < πji−1.

To finish the proof, we shall show that the signed partition P = (Λ, S) is unique, implying that

u(π) ≥ d = d(π). For this, we need to show that f = fP does not contain non-trivial π-copies. As

in the proof of Theorem 5.2, for any 1 ≤ i ≤ d let Ii = {kji−1 + 1, . . . , kji}. Let q = (q1, . . . , qk) be

a π-copy in fP . The following claim is the equivalent of Claim 5.16 for our more general case.

Claim 5.17. For any i = 1, . . . , k let ind(i) denote the index for which qi ∈ Iind(i). Then ind(ji−1 +

1) ≥ i for any i ≤ λ(1) and ind(ji) ≤ i for any i ≥ λ(1).

Proof. We shall prove the claim for i ≤ λ(1), as the proof for i ≥ λ(1) is symmetric. Suppose to

the contrary that there exists i ≤ λ(1) for which ind(ji−1 + 1) < i, and consider the smallest such

i. Then ind(ji−2 + 1) ≥ i− 1, and so ind(j) = i− 1 for any ji−2 + 1 ≤ j ≤ ji−1 + 1.

We show that Ii−1 does not contain a copy of π[ji−2 + 1, ji−1 + 1], leading to a contradiction.

If |σi−1| = 1 then the choice of the sign si−1 is a + if πji−1+1 < πji−1 , and a − otherwise; in the

first case, the entries in Ii−1 are increasing and so it cannot contain π[ji−i, ji−1 + 1], which is a

decreasing sequence, a contradiction. In the other case we also get a contradiction, symmetrically.

Thus, from here onward we may assume that σi−1 contains more than one element.

The choice of the sign si−1 implies that the only σi−1-copies in the subsequence of fP on the

interval Ii−1 are the trivial ones, i.e., those that contain all |σi−1| elements between r and r+ 1 for

some integer 0 ≤ r ≤ k−1. Thus, we may assume that r < fP (qj) < r+1 for any ji−2+1 ≤ j ≤ ji−1.

Without loss of generality, assume that si−1 is a +; this corresponds to the case where maxσi−1

lies before minσi−1 in π. Since E is an entangling, we know that σi−1 is not shadowed with respect

to σλ(1). This means that πji−1+1 < maxσi−1, and so fP (qji−1+1) < r + 1. But this contradicts

the fact that ind(ji−1 + 1) = i − 1: All |σi−1| entries in Ii−1 whose value is between r and r + 1

are assigned to qji−2+1, . . . , qji−1 , and all entries x of Ii−1 that come after these entries satisfy

fP (x) > r + 1. In particular, qji−1+1 ∈ Ii−1 so fP (qji−1+1) > r + 1, a contradiction.

To show that q is a trivial π-copy, we prove the following claim by induction.

Claim 5.18. There exists an integer r = r(q) where 0 ≤ r ≤ k − 1, satisfying the following. For

any 1 ≤ l ≤ t, and any jλ(`)−1 + 1 ≤ j ≤ jλ(`), it holds that qj ∈ Iλ(`), and more specifically,

fP (qj) = r + πj/2k.

128

Proof. The proof is by induction on `. By Claim 5.17, qjλ(1)−1+1, . . . , qjλ(1) ∈ Iλ(1). By our choice of

the sign sλ(1), there must be some integer 0 ≤ r ≤ k − 1, such that for any jλ(1)−1 + 1 ≤ j ≤ jλ(1),

qj is the unique entry of fP satisfying fP (qj) = r + πj/2k. This settles the case ` = 1.

Now let ` > 1, and assume that fP (qj) = r + πj/2k for any jλ(`′)−1 + 1 ≤ j ≤ jλ(`′) where

1 ≤ `′ < `. We need to show that fP (qj) = r + πj/2k for any jλ(`)−1 + 1 ≤ j ≤ jλ(`).

For any j′, j′′ ∈ [k] for which we already know that fP (qj′) = r+ πj′/2k, fP (qj′′) = r+ πj′′/2k,

and πj′ < πj′′ , it must be true that fP (qj) = r + πj/2k for any j satisfying πj′ < πj < πj′′ . To see

this, note that the number of entries of fP with value between fP (qj′) and fP (qj′′) (not including

fP (qj′), fP (qj′′) themselves) is exactly πj′′ − πj′ − 1. Since q is a π-copy, it also contains exactly

πj′′ −πj′ − 1 entries with value between fP (qj′) and fP (qj′′), so these entries of q must be precisely

all entries of fP whose value lies in this range.

Without loss of generality, assume that λ(`) < λ(1) (that is, τl = σλ(`) lies before τ1 = σλ(1) in

π). Since E is an entangling, we know that πj′ < πjλ(`) < πj′′ for some πj′ , πj′′ ∈
⋃
`′<` τ`′ . By the

previous paragraph, fP (qjλ(`)) = r+ πjλ(`)/2k, also implying that ind(jλ(`)) = λ(`). By Claim 5.17,

ind(jλ(`)−1 +1) ≥ λ(`), so we get that ind(j) = λ(`) for any jλ(`)−1 +1 ≤ j ≤ jλ(`). Considering our

choice of the sign sl, it follows that fP (qj) = r + πj/2k must hold for any jλ(`)−1 + 1 ≤ j ≤ jλ(`).

This concludes the inductive proof.

With Claim 5.18 it is easy to finish the proof. Since E is an entangling, there exist 1 ≤ `, `′ ≤ d
such that 1 ∈ τl = σλ(`) and k ∈ τ`′ = σλ(`′), implying that fP (qπ−1(1)) = r+1/2k and fP (qπ−1(k)) =

r + 1/2 for some 0 ≤ r ≤ r + 1. Thus, r < fP (qj) < r + 1 for any 1 ≤ j ≤ k. Since there are

exactly k entries x ∈ [k2] for which r < fP (x) < r + 1, q must be a trivial π-copy. Therefore, P is

unique.

We finish with an (easy) proof of Theorem 5.3 that builds on Corollary 5.9.

Proof of Theorem 5.3. Let π = (π1, . . . , πk) be a pattern of length k chosen uniformly at random.

Without loss of generality assume that πi = 1, πj = k for some i < j. The probability that

πi+1 ≤ k3/4 or πj−1 ≥ k − k3/4 or |i − j| < k3/4 is O(k−1/4). Conditioning on the event that

none of the above happens, the probability that there exists no i + 1 < x < j − 1 for which

πx < k3/4 and πx+1 > k − k3/4 is also bounded by O(k−1/4) (it is actually exponentially smaller

than that). If none of these events happens, then d(π) ≥ k − 3, as there exists some i < x < y for

which ((πx, πx+1), (1, πi+1), (πj−1, k)) is an entangling. Indeed, (1, πi+1) and (πj−1, k) cannot be

shadowed with respect to (πx, πx+1), and the two other conditions of an entanglement hold since

πx < πi+1, πj−1 < πx+1. Thus d(π) ≥ k − 3 with probability at least 1−O(k−1/4), as desired.

As an added bonus, note that Pr(d(π) ≥ k − 2) ≥ 19/24−O(1/k): Suppose that i > 1, j < n,

and j ≥ i + 2 (all of these hold with probability 1 − O(1/k)). Consider the event where either

max{πi−1, πi+1} ≥ πj−1 or min{πj−1, πj+1} ≤ πi+1. This event has probability 19/24, and if it

occurs, one can verify that d(π) ≥ k − 2.

129

130

Part III

Understanding Locality

in Structured Property Testing

131

Chapter 6

Testing Local Properties:

Follow the Boundaries

The results in this chapter appear in [21].

6.1 Introduction

In this chapter we focus on testing of local properties in structured data. The objects we consider

are d-dimensional arrays, where d is a positive integer, viewed as a constant. A d-dimensional

array of width n, or an [n]d-array in short, is a function A : [n]d → Σ from the hypergrid [n]d to

the alphabet Σ, where the alphabet Σ is allowed to be any (arbitrarily large) finite set; we stress

that the size of Σ is usually not required to be bounded as a function of the other parameters. For

example, a string is an [n]1-array, and the commonly used RGB representation of images is basically

an [n]2-array over {0, 1, . . . , 255}3, where the three values corresponding to each pixel represent the

intensity of red, green and blue in it.

We call a property local if it can be characterized by a family of small forbidden consecutive

patterns. Here, a [k]d-array S is a (consecutive) subarray of an [n]d-array A in location (i1, . . . , id) ∈
[n − k + 1]d if A(i1 + j1 − 1, . . . , id + jd − 1) = S(j1, . . . , jd) for any j1, . . . , jd ∈ [k]. Formally, a

property P of [n]d-arrays over an alphabet Σ is k-local (for 2 ≤ k ≤ n) if there exists a family F of

[k]d-arrays over Σ so that the following holds for any [n]d-array A over Σ:

A satisfies P ⇐⇒ None of the (consecutive) subarrays of A is in F .

For P as above, we sometimes write P = P(F) to denote that P is defined by the forbidden family

F . As we shall see soon, many interesting properties of arrays (including a large fraction of the

array properties that were previously investigated in the literature) can be characterized this way.

The main contribution of this chapter is a generic one-sided error non-adaptive framework to

test k-local properties. In some cases, our method either matches or beats the best known upper

133

bounds on the query complexity (although the running time might be far from optimal in general).

We show the optimality of our method by proving a matching lower bound for non-adaptive one-

sided tests, as well as a (weaker) lower bound for two-sided tests.

In order to demonstrate the wide range of properties captured by the above definition, we

now present various examples of properties that are k-local for small k, including some of the

most widely investigated properties in the property testing literature, as well as properties from

areas of computer science that were not systematically studied in the context of property testing.

In what follows, the sum of two tuples x = (x1, . . . , xd), y = (y1, . . . , yd) is defined as the tuple

(x1 + y1, . . . , xd + yd); additionally, ei denotes the i-th unit vector in d dimensions.

Monotonicity Perhaps the most thoroughly investigated property in the testing literature: see

e.g. the entries related to monotonicity testing in the Encyclopedia of Algorithms [43, 116]

and the references within. An [n]d-array A over an ordered alphabet Σ is monotone (non-

decreasing) if A(x) ≤ A(y) for any x = (x1, . . . , xd) and y = (y1, . . . , yd) satisfying xi ≤ yi

for any i. Monotonicity is 2-local: an array A is monotone if and only if there is no pair

x, x+ ei ∈ [n]d so that A(x) > A(x+ ei).

Lipschitz continuity Another well-investigated property with connections to differential privacy

[16, 32, 44, 92], an [n]d-array A is c-Lipschitz continuous if |A(x) − A(y)| ≤ c
∑d

i=1 |yi − xi|
for any x, y ∈ [n]d. This condition holds iff |A(x)−A(x+ ei)| ≤ c for any x, x+ ei ∈ [n]d, and

thus Lipschitz continuity is also 2-local.

Convexity Discrete convexity is an important geometric property with connections to optimiz-

ation and other areas [30, 31, 36, 51, 112, 114]. A one-dimensional array A is convex if

λA(x) + (1 − λ)A(y) ≥ A(λx + (1 − λ)y) for any x, y ∈ [n] and 0 < λ < 1 satisfying

λx+ (1− λ)y ∈ [n]. Convexity is 3-local for the case d = 1: an array A : [n]→ Σ is convex if

and only A[x] − 2A[x + 1] + A[x + 2] ≥ 0 for any x ∈ [n − 2]. In higher dimensions, several

different notions of discrete convexity have been used in the literature – see e.g. the introduct-

ory sections of the book of Murota on discrete convex analysis [105]. Two of the commonly

used definitions, M]-convexity and L]-convexity, are 3-local and 4-local, respectively: see

Theorems 4.1 and 4.2 in [103], where it is shown that both notions can be defined locally

using slight variants of the Hessian matrix consisting of the partial discrete derivatives. An-

other common definition that is a natural variant of the continuous case states that convexity

is equivalent to the positive semi-definiteness of the Hessian matrix; under this definition,

convexity is 3-local. A strictly weaker notion of convexity, called separate convexity [36], is

defined as follows: an [n]d-array A is separately convex if it is convex along each of the axes.

Similarly to one-dimensional convexity, separate convexity is 3-local for any d.

Properties of higher order derivatives More generally, any property of arrays that can be

characterized by “forbidden pointwise behavior” of the first k discrete derivatives [36] is

134

(k + 1)-local. Monotonicity (for k = 1), Lipschitz continuity (k = 1) and convexity (k = 2)

are special cases of such properties.

Submodularity Another important property closely related to convexity [32, 34, 112, 127]. Given

x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ [n]d, define x ∧ y = (min(x1, y1), . . . ,min(xd, yd)) and

x ∨ y = (max(x1, y1), . . . ,max(xd, yd)). An [n]d-array is submodular if A[x ∧ y] + A[x ∨ y] ≤
A[x] + A[y] for any x, y ∈ [n]d. Submodularity is 2-local: one can verify that submodularity

is equivalent to the condition that A(x) +A(x+ ei + ej) ≤ A(x+ ei) +A(x+ ej) for all x.

Pattern matching and computer vision Tasks involving pattern matching under some limit-

ations – such as noise in the image, obstructed view, or rotation of elements in the image –

are at the core of computer vision and its applications. For example, the local property of

not containing a good enough `1-approximation of a given forbidden pattern is of practical

importance in computer vision. Sublinear approaches closely related to property testing are

known to be effective for problems of this type, see e.g. [99].

Computational biology Many problems in computational biology are closely related to one-

dimensional pattern matching. As an example, a defensive mechanism of the human body

against RNA-based viruses involves “cutting” a suspicious RNA fragment, if it finds one of a

(small) family of short forbidden consecutive patterns in it, indicating that this RNA might

belong to a virus. Thus, in order to generate fragments of RNA that are not destroyed by

such defensive mechanisms (which is a basic task in computational biology), understanding

the process of “repairing” a fragment so that it will not contain any of the forbidden patterns

is an interesting problem related to property testing.

6.1.1 Previous Results on Local Properties

One-dimensional arrays A seminal result of Ergün et al. [63] shows that for constant ε,

monotonicity is ε-testable over the line (that is, for one-dimensional arrays) using O(log n) queries

over general alphabets. The non-adaptive one-sided error test proposed in [63] is based, roughly

speaking, on imitating a binary search non-adaptively. It was shown by Fischer [66] that the

above is tight even for two-sided error adaptive tests, proving a matching Ω(log n) lower bound.

Later on, Parnas, Ron and Rubinfeld [112] and Jha and Raskhodnikova [92] showed that the

O(log n) upper bound on the non-adaptive one-sided query complexity also holds for convexity and

Lipschitz continuity, respectively. For general ε, the upper bound in [92] is of the type O(ε−1 log n);

the same work also presents a matching lower bound of Ω(log n) for the one-sided non-adaptive

case, while Ω(log n) lower bounds for two-sided non-adaptive tests of convexity, and more generally,

monotonicity of the `-th derivative, are proved by Blais, Raskhodnikova and Yaroslavtsev [36] using

a communication complexity based approach [35]. Finally, a recent result of Belovs [18] refines the

one-sided non-adaptive query complexity of monotonicity to O(ε−1 log εn).

135

When the alphabet is binary (of size two), general positive results are known regarding the

testability of local properties in one dimension. It follows from the testability of regular languages,

established by Alon et al. [10], that any k-local property is testable in O(c(F)ε−1(log3(ε−1)))

queries, where c(F) depends only on the family F of forbidden consecutive length-k patterns

defining the property. However, c(F) can be exponential in k in general.

Multi-dimensional arrays Chakrabarty and Seshadhri [45] extended some of the above results

to hypergrids, showing that a general class of so-called “bounded derivative” properties (all of which

are 2-local), including monotonicity and Lipschitz continuity as special cases, are all testable over

[n]d-arrays with O(ε−1d log n) queries. Another work by the same authors [46] shows a matching

lower bound of Ω(ε−1d log εn) for monotonicity, that holds even for two-sided adaptive tests, while

the communication complexity approach of [36] gives a (non-adaptive, two-sided) Ω(d log n) lower

bound for convexity, separate convexity and Lipschitz.

Submodularity is testable for d = 2 with O(log2 n) queries [112]; However, no non-trivial upper

bound on the query complexity is known for submodularity in the case d > 2 and convexity in the

case d > 1 under the Hamming distance and over general alphabets (although [30] proves constant-

query testability for 2D convexity over a binary alphabet). Under L1-distance and for any d, it was

shown in [32] that convexity in [n]d-arrays is testable with number of queries depending only on d.

6.1.2 Our Results

In this chapter, we present a generic approach to test all k-local properties of [n]d-arrays. Among

other consequences, a simple special case of our result in the one-dimensional regime shows that

the abundance of properties whose query complexity is Θ(log n) is not a coincidence: in fact, any

O(1)-local property of one-dimensional arrays is testable with O(log n) queries, using a canonical

binary search like querying scheme. In the full version of the results presented here [21], we prove

matching lower bounds in d > 1 dimensions.

Our first main result is an upper bound on the number of queries required to test any k-local

property of [n]d-arrays non-adaptively with one-sided error. The test is canonical in a strong sense:

The queries it makes depend on n, d, k, and (relatively weakly) on ε; they do not depend on P
or the alphabet Σ. In other words, it makes the same type of queries for all k-local properties of

[n]d-arrays over any finite (and not necessarily bounded-size) alphabet.

Theorem 6.1. Let 2 ≤ k ≤ n and d ≥ 1 be integers, and let ε > 0. Any k-local property P
of [n]d-arrays over any finite (and not necessarily bounded size) alphabet has a one-sided error

non-adaptive ε-test whose number of queries is

• O(kε · log εn
k) for d = 1.

• O(cd k
ε1/d
· nd−1) for d > 1.

136

Here, c > 0 is an absolute constant. The test chooses which queries to make based only on the

values of n, d, k, ε, and independently of the property P and the alphabet Σ.

Note that we are interested here in the domain where n is large and d is considered a constant.

Thus, we did not try to optimize the cd term in the second bullet, seeing that it is negligible

compared to nd−1 anyway.

Running time The main drawback of our approach is the running time of the test, which is

high in general. After making all of its queries, our test runs an inference step, where it tries to

evaluate (by enumerating over all relevant possibilities) whether a violation of the property must

occur in view of the queries made, and reject if this is the case.

Without applying any property-specific considerations, the running time of the inference step

is of order |Σ|O(nd). However, for various specific properties of interest, such as monotonicity and

1D-convexity, it is not hard to make the running time of the inference step of the same order of

magnitude as the query complexity. Moreover, in one dimension we can use dynamic programming

to achieve running time that is significantly better than the naive one, but still much higher than

the query complexity in general: O(|Σ|O(k)n). This works for any k-local property in one dimension;

see the last part of Section 6.1.3 for more details.

Proximity oblivious test Interestingly, the behavior of the test depends quite minimally on

ε, and it can be modified very slightly to create a proximity oblivious test (POT) for any k-local

property. The useful notion of a POT, originally defined by Goldreich and Ron [85], refers to a test

that does not receive ε as an input, and whose success probability for an input not satisfying the

property is a function of the Hamming distance of the input from the property.

Theorem 6.2. Fix d > 0. Any k-local property P of [n]d-arrays over any finite (but not necessarily

bounded size) alphabet has a one-sided error non-adaptive proximity oblivious test whose number

of queries is O(k log(n/k)) if d = 1 and O(knd−1) if d > 1. For any input A not satisfying P, the

rejection probability of A is linear (for fixed d) in the Hamming distance of A from P.

One can run O(cd/ε) iterations of the POT to obtain a standard one-sided non-adaptive test.

The query complexity is O(kε−1 log(n/k)) for d = 1 and O(cdkε
−1nd−1) for d > 1, where cd > 0

depends only on d. Thus, the POT-based test is sometimes as good as the test of Theorem 6.1

(specifically, for d = 1 it matches the above bounds for almost the whole range of ε and k). In any

case, the multiplicative overhead of the POT-based test is sublinear in 1/ε across the whole range.

Type of queries In one dimension, many of the previously discussed properties, including, for

example, monotonicity and Lipschitz continuity, are testable in O(log n) queries (see Section 6.1.1

for a more extensive discussion). Previously known tests for monotonicity and Lipschitz continuity

make queries that resemble a binary search in some sense: these tests query pairs of entries of

137

distance 2i for multiple choices of 0 ≤ i ≤ log n. Our test continues the line of works using

querying schemes roughly inspired by binary search. The test queries structures that can be viewed,

intuitively, as L∞-spheres of different sizes in [n]d. For this purpose, an L∞-sphere with radius r

and width ` in [n]d is a set X1 ×X2 × . . .×Xd ⊆ [n]d, where each Xi is a union of intervals of the

form [ai, ai + 1, . . . , ai + `− 2, ai + `− 1]∪ [bi− `+ 2, bi− `+ 3, . . . , bi− 1, bi], and bi−ai ∈ {r, r+ 1}
for any i ∈ [d]. More specifically, our test for k-local properties queries spheres with width k − 1

and radius of order 2i for different values of i. In the simple special case where d = 1 and k = 2,

this is very similar to the querying scheme mentioned in the previous paragraph.

Implications In one dimension, the query complexity of the test matches the best known upper

bounds (and, in some regimes, refines the dependence on ε) for several previously investigated

properties including monotonicity, Lipschitz continuity and convexity. For monotonicity of k-th

order derivatives, which is (k + 1)-local, it proves the first sublinear upper bound on the query

complexity: O(k log n); in comparison, the best known lower bound [36] is Ω(log n).

For pattern matching type properties in 1D arrays (including applications in computational

biology and other areas), our approach gives a property- and alphabet-independent upper bound

of O(k log n) on the query complexity, with essentially optimal dependence on ε as well. Previously

known approaches for testing such properties, like the regular languages testing approach [10], yield

tests whose query complexity is dependent on the family of forbidden patterns considered, whose

size might be exponential in the locality parameter k. Our approach, on the other hand, requires

an O(log n) “overhead”, but its query complexity is independent of the size of the forbidden family

discussed. Instead, the dependence in k is linear.

In multiple dimensions, our approach is far from tight for well-understood properties such

as monotonicity and Lipschitz continuity, whose query complexity is known to be Θ(d log n) (in

comparison, our approach yields an O(nd−1) type bound). However, for testing of other properties

like convexity (for d > 1) and submodularity (for d > 2) in [n]d-arrays, no non-trivial upper bounds

on the query complexity are known over general alphabets, so our upper bound of O(nd−1) is the

first such bound. While we do not believe this bound is tight in general, this might be a first step

towards the development of new tools for efficiently testing such properties.

Sketching for testing The fact that the queries made are completely independent of the property

suggests the following sketching technique allowing for “testing in retrospect”: Given ε and k in

advance, we make all queries of the generic ε-test for k-local properties in “real time”, and store

them for postprocessing. This is suitable, for example, in cases where we have limited access to a

large input for a limited amount of time (e.g. when reading the input requires specialized expensive

machinery), but the postprocessing time is not an issue. Note that for this approach we do not

need to know the property of interest in advance.

138

6.1.3 Proof Ideas and Techniques

Here we present the main ideas of our proofs in an informal way. For simplicity, we stick to the

one-dimensional case, and assume that ε is fixed and k = o(n).

Upper bound for 1D Suppose that P = P(F) is a k-local property of [n]1-arrays A over an

alphabet Σ, defined by the forbidden family F . Let S be a consecutive subarray of A of length at

least 2k − 2. The boundary of S consists of the first k − 1 elements and the last k − 1 elements

of S, and all other elements of S are its interior. We call S unrepairable if one cannot make the

array S satisfy the property P without changing the value of at least one element in its boundary.

Otherwise, S is repairable. Observe the following simple facts.

• It suffices to only query the boundary elements of S in order to determine whether S is

unrepairable. Moreover, if S is unrepairable, then A does not satisfy P.

• If S is repairable, then we can delete all forbidden patterns from S by modifying only entries

in its interior, without creating any new copies of forbidden patterns in A.

We call the process of understanding whether S is unrepairable using only its boundary elements

inference. Note that the inference step does not make any additional queries.

A simple sublinear test A first attempt at a generic test for local properties is the following:

we query Θ(
√
n) intervals in [n], each containing exactly k − 1 consecutive elements, including the

intervals {1, . . . , k − 1} and {n − k + 2, . . . , n}, where the distance between each two neighboring

intervals is Θ(
√
n). A block is a subarray consisting of all elements in a pair of neighboring intervals

and all elements between them. The crucial observation is that at least one of the following must

be true, for any array A that is ε-far from P (recall that ε is fixed).

• At least one of the blocks is unrepairable.

• At least Ω(
√
n) of the blocks do not satisfy P.

Indeed, if the first condition does not hold, then one can make A satisfy P by only changing

elements in the interiors of blocks that do not satisfy P. Seeing that A is ε-far from P and that we

do not need to modify elements in the interiors of blocks that satisfy P, this implies that at least

Ω(
√
n) of the blocks do not satisfy P.

Now we are ready to present the test: We query all O(k
√
n) elements of all intervals, and

additionally, all O(
√
n) elements of O(1) blocks. Querying all elements of all intervals suffices to

determine (with probability 1) whether one of the blocks is unrepairable. If A is ε-far from P
and does not contain unrepairable blocks, querying O(1) full blocks will catch at least one block

not satisfying P with constant probability, as desired. For more details, see Section 6.3 and the

preliminary Section 6.2 that prepares the required infrastructure.

139

The optimal test Improving the query complexity requires us to construct a system of grids

– which are merely subsets of [n] – inspired by the behavior of binary search. In comparison, the

approach of the previous test is essentially to work with a single grid. The first (and coarsest) grid

contains only the first k− 1 elements and the last k− 1 elements of [n]. In other words, it is equal

to {1, . . . , k − 1, n − k + 2, . . . , n}. The second grid refines the first grid – that is, it contains all

elements of the first grid – and additionally, it contains k − 1 consecutive elements whose center is

n/2 (whenever needed, rounding can be done rather arbitrarily). We continue with the construction

of grids recursively: To construct grid number i+ 1, we take grid number i and add k− 1 elements

in the middle of each block of grid i (blocks are defined as before). Note that the length of blocks

is roughly halved with each iteration. We stop the recursive construction when the length of all of

the blocks becomes no bigger than ck, where c ≥ 2 is an absolute constant.

For each block B in grid number i > 1, we define its parent, denoted Par(B), as the unique

block in interval i − 1 containing it. A block B in the system of grid is maximally unrepairable if

it is unrepairable, and all blocks (of all grids in the system) strictly containing it are repairable. It

is not hard to see that different maximally unrepairable blocks have disjoint interiors.

The main observation now is that in order to make A satisfy P, it suffices to only modify entries

in the interiors of parents of maximally unrepairable blocks. If A is ε-far from P, then the total

length of these parents must therefore be Ω(n) (for constant ε). However, since the length of Par(B)

is roughly twice the length of B, we conclude that the total length of all maximally unrepairable

blocks is Ω(n). With this in hand, it can be verified that the following test has constant success

probability. For each grid in the system, we pick one block of the grid uniformly at random, and

query all entries of its boundary. Additionally, for the finest grid (whose block length is O(k)), we

also query all interior elements of the picked block.

For more details, see Section 6.4 (which builds on the infrastructure of Section 6.2).

Running time in 1D We now show that the running time of the inference step for a block

of length m is m|Σ|O(k). Summing over all block lengths, this would imply that the total running

time of the test is n|Σ|O(k). The proof uses dynamic programming. Let S be an array of length m

over Σ, and assume that S(1), S(2), . . . , S(k − 1) and S(m − k + 2), . . . , S(m) are all known. For

each “level” from 1 to m−k+ 1, we keep a Boolean predicate for each of the |Σ|k possible patterns

of length k over Σ. These predicates are calculated as follows.

• In the first level, the predicate of σ = (σ1, . . . , σk) evaluates to TRUE if S(1) = σ1, . . . , S(k−
1) = σk−1, and additionally, σ /∈ F , that is, σ is not a forbidden pattern. Otherwise, the

predicate of σ is set to FALSE.

• For i = 2 to m− k + 1, the predicate of σ = (σ1, . . . , σk) in level i evaluates to TRUE if and

only if σ /∈ F and there exists σ′ = (σ′0, σ1, . . . , σk−1) that evaluates to TRUE in level i− 1.

140

• Finally, the predicates in level m − k + 1 are modified as follows: for all σ = (σ1, . . . , σk) so

that σj 6= S(m− k + j) for some j ≥ 2, we set the predicate of σ to FALSE.

It is not hard to see that S is unrepairable if and only if all predicates at level m−k+1 are FALSE.

The running time is O(m|Σ|cd) for a suitable constant c > 0.

Generalization to higher dimensions The generalization to higher dimensions is relatively

straightforward; the main difference is that the boundary of blocks now is much larger: blocks of

size m× . . .×m have boundary of size O(kdmd−1). Thus, essentially the same proof as above (with

suitable adaptations of the definitions) yields a test with query complexity O(kdnd−1) for constant

ε. For the running time, we can no longer use dynamic programming; using the naive approach

of enumerating over all possible interior elements of a block, we get that the inference time for a

block of size m× . . .×m is |Σ|O(md), making the total running time of the test |Σ|O(nd).

6.1.4 Other Related Work

Hyperfiniteness A graph is hyperfinite if, roughly speaking, it can be decomposed into constant

size connected components by deleting only a small constant fraction of the edges. Newman and

Sohler [110] investigated the problem of testing in hyperfinite graphs, showing that any property

of hyperfinite bounded degree graphs is testable with a constant number of queries. While the

graph with which we (implicitly) work – the hypergrid graph, whose vertices are in [n]d and two

vertices are neighbors if they differ by 1 in one coordinate – is a hyperfinite bounded degree graph

(for constant d), the results of [110] are incomparable to ours. Indeed, in our case the vertices are

inherently ordered, and it does not make sense to allow adding edges between vertices that are

not neighbors (as entries of [n]d), unlike the case in [110], where one may add or remove edges

arbitrarily between any two vertices. Still, the hyperfiniteness of our graph seems to serve as a

major reason that local properties have sublinear tests.

Block tests for image properties The works of Berman, Murzabulatov and Raskhodnikova

[29, 30] and the results in the next chapter, on testing of image properties (that is, on visual

properties of 2D arrays), show that tests based on querying large consecutive blocks are useful

for image property testing. Here, the general queries we make are quite different: we query the

boundaries of blocks of different sizes, so the queries are spherical, in the sense that a block can

be seen as a ball in the L∞-metric on vectors in [n]d, while its boundary can be be seen as the

(width-k) sphere surrounding this ball. This introduces a new type of queries shown to be useful

for image property testing.

141

6.1.5 Discussion and Open Questions

Small alphabets The results here are alphabet independent, and in particular, they work for

alphabets over any size. An intriguing direction of research is to understand whether one can

obtain more efficient general testability results for local properties of multi-dimensional arrays over

smaller alphabets; this line of research has been conducted for specific properties of interest, like

monotonicity and convexity [18, 111]. Note that the one-sided non-adaptive lower bound we prove

here can be adapted to yield a |Σ|Ω(1) lower bound for testing local properties over alphabets Σ of

size smaller than nd. The most interesting special case is that of constant-sized (and in particular,

binary) alphabets. Here, no lower bounds that depend on n are known. For the case d = 1, it is

known that all O(1)-local properties are constant query testable; this follows from a result of Alon et

al. [10], who showed that any regular language is constant-query testable. However, it is not known

whether an analogous statement holds in higher dimensions. That is, for any d > 1, the question

whether all k-local properties of [n]d-arrays over {0, 1} are ε-testable with query complexity that

depends only on d, k, and ε, first raised in [26] (see also [4]), remains an intriguing open question.

We believe that positive results in this front might also shed light on the question of obtaining more

efficient inference for large classes of properties, especially over small alphabets.

Does adaptivity help? This work does not provide any lower bounds for adaptive tests, and it

will be interesting to do so; previously investigated properties likes monotonicity yield an Ω(d log n)

lower bound [36, 46], and we believe that “data flow” type properties, somewhat similar to our lower

bound constructions, can provide instances of 2-local properties that require at least nc queries, for

some constant c ≤ 1, for the adaptive two-sided case.

However, it is not clear whether better lower bounds (even bounds of the type Ω(n1+c)) exist.

It will be very interesting to prove better upper and lower bounds for testing local properties. Our

conjecture is that any 2-local property is testable in n1+o(1)g(d) queries (where g(d) depends only

on d), but proving a statement of this type might be very difficult.

Using the unrepairability framework in other contexts We show that the concept of un-

repairability allows to unify and reprove many property testing results on one-dimensional arrays.

What about multi-dimensional arrays? for example, can one generalize the currently known proofs

for “bounded derivative” properties (including monotonicity and Lipschitz continuity) in d dimen-

sions to a larger class of local properties?

Inference As mentioned in Section 6.1.3, our test queries boundaries of block-like structures,

and later infers whether each block is unrepairable (recall the definition from Section 6.1.3). The

inference takes place without making any additional queries, and is based only on the property P,

the alphabet Σ, and the values of A in the boundary of the block.

142

The running time of the inference step is very large in general (although, as we have seen, in

the 1D case it can be significantly improved using dynamic programming). The naive way to run

the inference is by enumerating over all possible ways to fill the interior of the block, and checking

whether each such possibility is indeed F-free. The running time of this method is of order |Σ|O(nd)

in general for d > 1, and is exponential in n even if |Σ| = 2.

However, for many natural properties, inference can be done much more efficiently. For example,

in monotonicity testing, the inference amounts to checking that no pair of boundary entries violates

the monotonicity.Thus, we believe that understanding inference better – including tasks such as

characterizing properties in which inference can be done efficiently, and understanding the inference

time of specific properties of interest – would be an interesting direction for future research.

Organization Section 6.2 is devoted to the infrastructure needed for the proof, Section 6.3

presents a simple but non-optimal test, and finally, Section 6.4 presents the optimal test and

proves Theorems 6.1 and 6.2. Matching lower bounds are proved in the full paper describing the

results in this chapter [21].

6.2 The Grid Structure

In this section we present the grid-like structure in [n]d that we utilize for our tests.

Definition 6.3 (Interval partition). A subset I ⊆ [n] is an interval if its elements are consecutive,

that is, if I = {x, x+ 1, . . . , x+ y} for some x ∈ [n] and y ≥ 0. For any ` ≥ 0, we denote the set of

the smallest ` elements of I by I[: `] and also define I[`+ 1:] = I \ I[: `]. In the degenerate case

that |I| < `, we define I[: `] to be equal to I.

For 1 ≤ w ≤ n, an (n,w)-interval partition is a partition of [n] into a collection of disjoint

intervals I = (I1, . . . , It) where the number of elements in each interval Ii is either w or w+ 1, and

for any i < j, all elements of Ii are smaller than those in Ij.

Lemma 6.4. For any positive integer n and 0 ≤ i ≤ log n, there exists an (n, bn/2ic)-interval

partition Ii containing exactly 2i intervals, so that the family {I}blognc
i=0 satisfies the following. For

any i > j and interval I ∈ Ii, there exists an interval I ′ ∈ Ij satisfying I ⊆ I ′.

Proof. For any i define ni = bn/2ic; observe that n0 = n and ni+1 = bni/2c for any i. We prove

the lemma by induction on i, starting by defining I0 = ([n]). Given Ii = (Ii1, . . . , I
i
2i

) in which all

intervals are of length ni or ni + 1, we define Ii+1 as follows. Each Iij ∈ Ii, is decomposed into two

intervals Ii+1
2j−1, I

i+1
2j where |Ii+1

2j−1|, |I
i+1
2j | ∈ {ni+1, ni+1 + 1}, and all elements of Ii+1

2j−1 are smaller

than all elements of Ii+1
2j ; observe that such a decomposition is indeed always possible. Now define

Ii+1 = (Ii+1
1 , . . . , Ii+1

2i+1). Clearly, the intervals of Ii+1 satisfy the last condition of the lemma.

In particular, we conclude that for any positive integer w and any n ≥ w there exists an integer

w/2 ≤ w′ ≤ w for which an (n,w′)-interval partition exists.

143

Definition 6.5 ((n, d, k, w)-grid). Let 2 ≤ w ≤ n be integers for which an (n,w)-interval partition

I = (I1, . . . , It) exists. For integers 2 ≤ k ≤ w and d ≥ 1, the (d-dimensional) (n, d, k, w)-grid

induced by I is the set

G =

(x1, . . . , xd) ∈ [n]d
∣∣∣∣ ∃i ∈ [d] such that xi ∈

t⋃
j=1

Ij [: k − 1]

 .

We denote the family of all (n, d, k, w)-grids by G(n, d, k, w). As we have seen in Lemma 6.4, the

family G(n, d, k, w) is non-empty for any w = bn/2ic satisfying w ≥ k.

Definition 6.6 (G-block, Boundary, Closure). Two tuples x = (x1, . . . , xd) and y = (y1, . . . , yd)

in [n]d are considered neighbors if
∑d

i=1 |xi − yi| = 1. Given a grid G ∈ G(n, d, k, w), consider the

neighborhood graph of non-grid entries, i.e., the graph whose set of vertices is V = [n]d \G and two

entries are connected if they are neighbors. A G-block B is a connected component of this graph,

and the closure of B is

B =

{
(x1, . . . , xd) ∈ [n]d

∣∣∣∣ ∃(y1, . . . , yd) ∈ B such that ∀i ∈ [d] |xi − yi| < k

}
.

Note that B ⊆ B. Define the boundary of the block B as ∂B = B \B.

The above notions can naturally be defined with Cartesian products. Recall that the Cartesian

product of sets X1, . . . , Xd, denoted
∏d
j=1Xj or X1 × . . .×Xj , is the set of all tuples (x1, . . . , xd)

with xj ∈ Xj for any j ∈ [d]. Let G ∈ G(n, d, k, w) be the grid induced by the interval partition

I = (I1, . . . , It). It is not difficult to verify that any G-block B can be defined as a Cartesian

product B =
∏d
j=1 Iij [k :] for some intervals Ii1 , . . . , Iid ∈ I (not necessarily different).

B and ∂B can also be defined accordingly, as we detail next. For k as above, define Ii =

Ii ∪ Ii+1[: k − 1] for any 1 ≤ i ≤ t, where we take It+1 = ∅ for consistency. Also define ∂Ii =

Ii \ Ii[k :] = Ii[: k − 1] ∪ Ii+1[: k − 1]. With these in hand, we have

B =

d∏
j=1

Iij [k :] ; B =

d∏
j=1

Iij ; ∂B =

d⋃
j=1

Ii1 × . . .× Iij−1 × ∂Iij × Iij+1 × . . .× Iid (6.1)

Recall that |Iij | ∈ {w,w+ 1} for any j, implying that
∣∣Iij [k :]

∣∣ ≤ w+ 2− k and
∣∣Iij ∣∣ ≤ w+ k. Also

note that
∣∣∂Iij ∣∣ ≤ 2(k − 1). Thus,

|B| ≤ (w + 2− k)d ; |B| ≤ (w + k)d ; |∂B| ≤ 2d(k − 1) · (w + k)d−1 , (6.2)

where the inequality on |∂B| holds since each set in the union expression in (6.1) is of size at most

(2k − 2)(w + k)d−1. The following observation is a direct consequence of (6.1).

Observation 6.7. Let G ∈ G(n, d, k, w). The boundary of any G-block is contained in G.

144

Lemma 6.8. For any G ∈ G(n, d, k, w), any width-k subarray of an [n]d-array intersects exactly

one G-block B. Moreover, the subarray is contained in B.

Proof. Let I = (I1, . . . , It) be the interval partition inducing G. Suppose that the subarray S is

in location (a1, . . . , ad) where aj ∈ Iij for some i1, . . . , id not necessarily distinct. In other words,

the set of entries in S is
∏d
j=1 Sj where Sj = {aj , aj + 1, . . . , aj + k − 1} for any j ∈ [d]. We argue

that S is contained in B, where B = Ii1 [k :] × . . . × Iid [k :]: The fact that aj ∈ Iij implies that

aj + 1, . . . , aj + k − 1 ∈ Iij ∪ Iij+1[: k − 1]. It follows from (6.1) that S ⊆ B. From Observation

6.7 we conclude that S does not intersect any block other than B, and it remains to show that S

intersects B. Indeed, for any 1 ≤ j ≤ d, the fact that aj ∈ Iij implies that one of the elements

aj , . . . , aj + k − 1 must be contained in Iij [k :]. Denoting this element by bj , we conclude that

(b1, . . . , bj) ∈ S ∩B.

6.3 Testing with Grid Queries

In this section we prove the following upper bound for all k-local properties; its proof serves as a

warm-up towards proving the main upper bound of Theorem 6.1.

Theorem 6.9. Any k-local property of [n]d-arrays over any alphabet is ε-testable with one-sided

error using no more than 2(d+ 1)nd−
d
d+1k

d
d+1 ε−

1
d+1 non-adaptive queries.

The upper bound of Theorem 6.9 is sublinear in the size of the array as long as k/ε1/d = o(n).

The rest of the section is dedicated to the proof of the theorem. We may assume that k ≤ ε1/dn/4,

as otherwise the expression in the statement of the theorem is larger than nd and the proof follows

trivially by querying all [n]d entries of the given input array. Under this assumption, it holds that

2k ≤ nd/(d+1)k1/(d+1)ε1/(d+1).

Definition 6.10 (Unrepairable block). Let A be an [n]d-array over Σ, and let G ∈ G(n, d, k, w).

A G-block B is (P, A)-unrepairable (or simply unrepairable, if P and A are clear from context) if

any [n]d-array A′ over Σ that satisfies A′(x) = A(x) for any x ∈ ∂B, including the case A′ = A,

contains an F-copy in B. Otherwise, the block B is said to be (P, A)-repairable.

Note that the (un)repairability of a block B is determined solely by the values of A on ∂B,

and that an unrepairable block always contains an F-copy. These two facts inspire the following

lemma, which serves as the conceptual core behind the test of Theorem 6.9.

Lemma 6.11. Suppose that A is an [n]d-array that is ε-far from satisfying a k-local property P(F),

and let G ∈ G(n, d, k, w) where w ≥ k. Then at least one of the following holds.

• There exists a (P, A)-unrepairable G-block.

• For at least an ε-fraction of the G-blocks B, there is an F-copy in B.

145

Proof. Suppose that the first condition does not hold, that is, all G-blocks are (P, A)-repairable.

By Lemma 6.8, every F-copy is contained in the closure of some G-block.

Let C denote the collection of all G-blocks B such that A contains an F-copy in B. By the

repairability, the values of A in each block B ∈ C can be modified so that after the modification, A

will not contain an F-copy in B. We stress that the modifications for each block B appear only in

B itself and do not modify entries on the grid, so by Lemma 6.8, they cannot create new F-copies

in the closure of other blocks.

After applying all of the above modifications to A, we get an F-free array, i.e., an array that

satisfies P. A was initially ε-far from P, and the number of entries in each block is bounded by

(w + 2− k)d ≤ wd, implying that at least an ε-fraction of the blocks belong to C.

Proof of Theorem 6.9. We may assume that kd/ε ≤ nd/2, otherwise our test may trivially query

all nd entries of A. Our (non-adaptive) test T picks W = bnd/(d+1)k1/(d+1)ε1/(d+1)c ≥ 2k, and an

integer w satisfying k ≤W/2 ≤ w ≤W , for which an (n,w)-interval partition exists. T now makes

the following queries.

1. T queries all entries of an arbitrarily chosen grid G ∈ G(n, d, k, w). The number of entries in

any grid is at most dnd(k − 1)/w ≤ 2dnd−
d
d+1k

d
d+1 ε−

1
d+1 .

2. T chooses a collection B of 2/ε G-blocks uniformly at random and queries all entries in these

blocks. Since each block contains at most (w + 2 − k)d ≤ W d entries, the total number of

queries is bounded by 2W d/ε ≤ 2nd−
d
d+1k

d
d+1 ε−

1
d+1 . Note that the boundaries of all blocks

are queried in the first step (since they are contained in the grid). Thus, for any block B ∈ B,

the test queries all entries of B.

The total number of queries in the above two steps is 2(d+ 1)nd−
d
d+1k

d
d+1 ε−

1
d+1 .

After querying all entries of the grid (and in particular, the whole boundaries of all of the

blocks), T can determine for every G-block B whether it is (P, A)-unrepairable or not. T rejects

if at least one of the blocks is unrepairable or if it found an F-copy in B for some B ∈ B, and

accepts otherwise. The test has one-sided error, since an unrepairable block must contain an F-

copy. In view of Lemma 6.11, T rejects arrays A that are ε-far from P with probability at least

2/3: If A satisfies the first condition of Lemma 6.11, then T always rejects. If the second condition

holds, the probability that none of the 2/ε closures B for B ∈ B contains an F-copy is bounded by

(1− ε)2/ε < e−2, so T rejects with probability at least 1− e−2 > 2/3.

6.4 Systems of Grids and Testing with Spherical Queries

In this section we prove Theorems 6.1 and 6.2. We do so by considering a system of grids with

varying block sizes, defined as follows.

146

Definition 6.12. Let d > 0 and 2 ≤ k ≤ w ≤ n be integers. An (n, d, k, w)-system of grids is an

(r + 1)-tuple (G0, G1, . . . , Gr) of grids, for r(n,w) = blog(n/w)c, so that

• Gi ∈ G(n, d, k, bn/2r−ic) for any 0 ≤ i ≤ r.

• G0 ⊇ G1 ⊇ . . . ⊇ Gr (as subsets of [n]d). In particular, for any i < j ≤ r, any Gi-block B is

contained in a Gj-block B′, and we say that B′ is an ancestor of B. Specifically, the Gi+1-

block containing B is called the parent of B and denoted by Par(B). For the only Gr-block,

Br, we define Par(Br) as the whole domain [n]d.

r(n,w) was chosen so that w ≤ n/2r < 2w, making G0 a G(n, d, k, w′)-grid for w ≤ w′ < 2w.

As we shall see, when working with such a system, unrepairability of blocks can be handled in a

query-efficient way. The following lemma asserts that such a system of grids exists for any suitable

choice of parameters.

Lemma 6.13. An (n, d, k, w)-system of grids exists for all d > 0 and 2 ≤ k ≤ w ≤ n.

Proof. Consider the family of interval partitions I0, . . . , Iblognc obtained by Lemma 6.4. For each

0 ≤ i ≤ r(n,w) define Gi as the (n, d, k, bn/2r−ic)-grid induced by Ir−i. It is not hard to verify

that (G0, . . . , Gr) satisfies all requirements of an (n, d, k, w)-system of grids.

For the rest of the section, fix a k-local property P(F) of [n]d-arrays over Σ, and an [n]d-array A

over Σ. Consider an (n, d, k, w)-system of grids (G0, . . . , Gr) constructed as described in the proof

of Lemma 6.13, where w will be determined later. (For now it suffices to require, as usual, that

2 ≤ k ≤ w ≤ n.) We say that a Gi-block B is a (P, A)-witness if one of the following holds.

• i = 0 and the array A contains an F-copy in the closure B.

• i > 0 and B is (P, A)-unrepairable.

Recall that the closure of unrepairable blocks cannot be F-free, so the closure of any witness block

contains an F-copy. We say that a witness block B is maximal if all of its ancestors are not

witnesses, that is, they are repairable.

Observation 6.14. Any (P, A)-witness is contained in a maximal (P, A)-witness.

We define the maximal witness family W as the set of all maximal (P, A)-witness blocks.

Obviously, the blocks in W might come from different Gi’s

Observation 6.15. B1 ∩B2 = ∅ for any two blocks B1, B2 ∈ W.

Lemma 6.16. All F-copies in A are fully contained in
⋃
B∈W B.

Proof. Let F be an F-copy in A. By Lemma 6.8, F is contained in the closure of a unique G0-block

BF ; hence, BF is a (P, A)-witness. From Observation 6.14 we have BF ⊆ B′ for some maximal

(P, A)-witness B′. We conclude that F ∈ BF ⊆ B′.

147

Lemma 6.17. One can make A satisfy P by only modifying entries of A in
⋃
B∈W Par(B).

Proof. Fix B ∈ W. B is a maximal (P, A)-witness, so Par(B) is repairable.1 Thus, One can

make Par(B) F-free by only modifying entries inside Par(B). By Lemma 6.8, width-k subarrays

that are not fully contained in Par(B) are left unchanged. Therefore, this modification does not

create any new F-copies in A. Seeing that all F-copies in A are originally contained in
⋃
B∈W B ⊆⋃

B∈W Par(B), applying these modifications for all B ∈ W deletes all F-copies in A without creating

new ones, so in the end of the process A satisfies P.

We may assume that k ≤ ε1/dn/10, as otherwise the expression in the theorem is Ω(nd). We

choose w = 2k, working with an (n, d, k, 2k)-system of grids from now on. A very useful consequence

of this choice of w is that here the parent of a block B cannot be much larger than B itself.

Lemma 6.18. Let (G0, G1, . . . , Gr) be an (n, d, k, 2k)-system of grids. Then for any 0 ≤ i ≤ r and

any Gi-block B it holds that |Par(B)|/|B| < 3d.

Proof. For i = r this is trivial. Now fix i < r and let B be a Gi-block. Recall that, following (6.1),

one can write B =
∏d
j=1 Iij [k :] where each interval Iij (for j ∈ [d]) is of size at least 2k ≥ 4. On

the other hand, we can also write Par(B) =
∏d
j=1 I

′
i′j

[k :] where I ′i′j
⊇ Iij for any j ∈ [d]. It is not

hard to verify that |I ′i′j | ≤ 2|Iij |+ 1 most hold, and so

|ParB|
|B|

=
d∏
j=1

|I ′i′j | − (k − 1)

|Iij | − (k − 1)
≤

d∏
j=1

2|Iij |+ 1− (k − 1)

|Iij | − (k − 1)
≤
(

2 · 2k − k + 2

2k − k + 1

)d
< 3d

where the second inequality holds since |Iij | ≥ 2k for any j.

The next corollary follows immediately from Lemmas 6.17 and 6.18.

Corollary 6.19. Suppose that A is ε-far from P. Then the total number of entries in the blocks

of W is at least ε(n/3)d.

We are now ready for the proof of the main upper bound of this chapter, Theorem 6.1.

Proof of Theorem 6.1

As before, we may assume that k ≤ ε1/dn/10. For larger k, the expression in the theorem dominates

nd and thus becomes trivial. Consider the (n, d, k, 2k)-system of grids (G0, G1, . . . , Gr) mentioned

above. For any 0 ≤ i ≤ r, define δi = |Bi ∩W|/|Bi|, where Bi is the set of all Gi-blocks. In other

words, δi is the fraction of maximal witnesses among the Gi-blocks. By Corollary 6.19, if A is ε-far

from P then
∑r

i=0 δi ≥ ε/3d. Define r′ = blog(ε1/dn/k)c ≥ 1, noting that Gr′ ∈ G(n, d, k, wr′) with

wr′ ≥ 2k · 2r′ ≥ ε1/dn. Thus, the total number of blocks in Br′ is bounded by (n/wr′)
d ≤ 1/ε.

1Note that when B = Br is the maximal witness considered, Par(B) is [n]d; the latter is repairable for any

non-empty property.

148

The test We iterate the following basic step 2 · 3d/ε times.

1. Pick B ∈ B0 uniformly at random and query all entries of B.

2. For any 1 ≤ i ≤ r′, pick B ∈ Bi uniformly at random and query all entries of
⋃
B∈Q0

∂B.

Finally, the test rejects if and only if at least one of the blocks B picked during the process is

a (P, A)-witness. (Recall that querying all boundary entries of a Gi-block for i > 0 suffices to

determine whether it is unrepairable, and thus a witness.) The test is clearly non-adaptive, and

has one-sided error: It only rejects if it finds a witness. As we have seen earlier, all witnesses contain

an F-copy. The test is canonical in the following sense. The choice of queries in every basic step

depends only on n, d, k, and (weakly) on ε, and is independent of the property P or the alphabet

Σ. To determine which entries constitute a block, it suffices to know the parameters of the block,

that depend only on n, d, k; the dependence in ε is only taken into account in the choice of r′. The

test only considers P in order to determine whether each queried block is a witness.

Analysis Suppose that A is ε-far from P. If δi > 0 for some i > r′ then it must hold that δr′ > 0

as well (since any unrepairable Gi-block most contain an unrepairable Gi′-block for any i′ < i). By

the choice of r′, we must have δr′ ≥ 1/|Br′ | ≥ ε in this case. If the above doesn’t hold, then δi = 0

for any i ≥ r′, implying that
∑r′−1

i=0 δi ≥ ε/3d. Therefore, in both cases, we have
∑r′

i=0 δi ≥ ε/3d.
The probability that a random Bi-block is a witness is at least δi, and therefore the probability

that a single basic step leads to a rejection of A is at least
∑r′

i=0 δi ≥ ε/3d. Running 2 · 3d/ε
independent iterations of the basic step ensures that the test will accept A with probability at most

(1− ε/3d)2·3d/ε ≤ e−2 < 2/3, as desired.

Query complexity For d = 1, the query complexity of each basic step is O(kr′): The test queries

B for a single block B ∈ B0, and the boundaries of r′ larger blocks. Considering the parameters

of our system of grids, we have |B| ≤ 4k and so |B| < 6k. On the other hand, the boundary of

each of the larger blocks is of size at most 2k − 2. Therefore, the total query complexity for the

1D test is O(kr′/ε) = O
(
k
ε log (εn/k)

)
as desired. For d > 1, consider a single basic step, and for

any 0 ≤ i ≤ r′ let Bi ∈ Bi be the Gi-block picked in this step. From (6.2) we have |B0| ≤ (6k)d,

while for any i > 0 we have |∂Bi| ≤ 2d(k − 1)(4k · 2i + k)d−1 = O(d · (4k)d · 2(d−1)i). Note that the

last expression grows exponentially with (d − 1)i, so the total number of queries in a single basic

step is O((6k)d + d · (4k)d2(d−1)r′). Plugging in r′, we have 2(d−1)r′ = ε(d−1)/d

kd−1 nd−1. As the test runs

O(3d/ε) iterations of the basic step, we conclude that the total query complexity is bounded by

cdkε−1/dnd−1 for an absolute constant c > 0, completing the proof of Theorem 6.1.

Proximity oblivious test The proof of Theorem 6.2 follows by a very simple modification of the

proof of Theorem 6.1. The desired proximity oblivious test (POT) is the so called “basic step” from

the above test, with r replacing r′ (since r′ depends on ε). The POT rejects if it infers that one of

149

the blocks queried is a witness, like the above test. Its query complexity is O(kr) = O(k log n/k) for

d = 1. In the case d > 1, the query complexity is dominated by the size of ∂Br, which is bounded

by O(dknd−1).

Clearly this POT has one-sided error, and its queries do not depend on the property P and

the alphabet Σ (on the other hand, they do depend on n, d, k). Using the notation of the previous

subsection and denoting by εA the Hamming distance of a given input A from P, we get (exactly

as in earlier parts of the proof) a rejection probability of at least
∑r

i=0 δi ≥ εA/3
d for A, which is

linear in εA for fixed d. This concludes the proof.

150

Chapter 7

Testing Meets Pattern Matching: The

Modification Lemma

The results in this chapter appear in [26].

7.1 Introduction

Pattern matching is the algorithmic problem of finding occurrences of a fixed pattern in a given

string. This problem appears in many settings and has applications in diverse domains such as

computational biology, computer vision, natural language processing and web search. There has

been extensive research concerned with developing algorithms that search for patterns in strings,

resulting with a wide range of efficient algorithms [38, 58, 78, 98, 100]. Higher-dimensional analogues

where one searches for a d-dimensional pattern in a d-dimensional array have received attention as

well. For example, the 2D case arises in analyzing aerial photographs [14, 15] and the 3D case has

applications in medical imaging. Given a string S of length n and a pattern P of length k ≤ n,

any algorithm which determines whether P occurs in S has running time Ω(n) [54, 117] and a

linear lower bound carries over to higher dimensions. For the 2D and 3D case, when an n × n
image is concerned, algorithms whose run time is O(n2) are known [15]. These algorithms have

been generalized to the 3D case to yield running time of O(n3) [77]. Finally it is also known (e.g.,

[94]) that for the d-dimensional case it is possible to solve the pattern matching problem in time

O(d2nd logm) (where the pattern is an array of size md). It is natural to ask which tasks of this

type can be performed in sublinear (namely o(nd)) time for d-dimensional arrays.

Here, we are interested in deciding quickly whether a given d-dimensional array A is far from

not containing a fixed d-dimensional pattern P . This is a special case of the setting discussed

in the previous chapter, concerning local properties, where the forbidden family associated with

the property contains a single forbidden pattern. For simplicity of presentation, all results in this

chapter will be presented for cubic arrays in which k1 = · · · = kd, but they generalize to non-cubic

151

arrays in a straightforward manner. We consider the (tolerant) pattern-freeness problem where

one needs to distinguish between the case that a given d-dimensional array A is ε1-close to being

P -free for a fixed pattern P , and the case that A is ε2-far from being P -free, where ε1 < ε2. An

(ε1, ε2)-test Q for this problem is a randomized algorithm that is given access to an array A, as

well as its size and proximity parameters 0 ≤ ε1 < ε2 < 1. Q needs to distinguish with probability

at least 2/3 between the case that A is is ε1-close to being P -free and the case that A is ε2-far from

being P -free. The query complexity of Q is the number of queries it makes in A.

Our interest in the pattern-freeness problem stems from several applications. In certain scenarios

of interest, we might be interested in identifying quickly that an array is far from not containing

a given pattern. For the one dimensional case, being far from not containing a given text may

indicate a potential anomaly which requires attention (e.g., an offensive word in social network

media), hence such testing algorithms may provide useful in anomaly detection. Many computer

vision methods for classifying images are feature based: hence being far from containing a certain

pattern associated with a feature may be useful in rejection methods that enable to quickly discard

images that do not possess a certain visual property.

Beyond practical applications, devising property testing algorithms for the pattern freeness

problem is of theoretical interest. In the first place, it leads to a combinatorial characterization of

the distance from being P -free. Such a characterization has proved fruitful in graph property testing

[7, 10] where celebrated graph removal lemmas were developed en route of devising algorithms for

testing subgraph freeness. We encounter a similar phenomena in studying patterns and arrays: at

the core of our approach for testing pattern freeness lies a modification lemma for patterns which

we state next. We believe that this Lemma may be of independent interest and find applications

beyond testing algorithms. Later we show one such application: computing the exact distance of a

(one dimensional) string from being P -free can be done in linear time.

For a pattern P of size k × k × . . .× k, any of its entries that is in {0, k − 1} × . . .× {0, k − 1}
is said to be a corner of P . We say that P is almost homogeneous if all of its entries but one are

equal, and the different entry lies in a corner of P . Finally, P is removable (with respect to the

alphabet Γ) if for any d-dimensional array A over Γ and any copy of P in A, one can destroy the

copy by modifying one of its entries without creating new P -copies in A. The modification lemma

states that for any d, and any large enough pattern P , when the alphabet is binary it holds that

P is removable if and only if it is not almost homogeneous, and when the alphabet is not binary,

P is removable provided that it is large enough.

Recent works [29, 30] have obtained tolerant tests for visual properties. As observed in [29, 30],

tolerance is an attractive property for testing visual properties as real-world images are often noisy.

With the modification lemma at hand, we show that when P is removable, the (relative) hitting

number of P in A, which is the minimal size of a set of entries that intersects all P -copies in A

divided by |A|, differs from the distance of A from P -freeness by a multiplicative factor that depends

only on d (and not on P or A). This relation allows us to devise very fast (5−dε, ε)-tolerant tests for

152

P -freeness, as the hitting number of P in A can be well approximated using only a very small sample

of blocks of entries from A. The query complexity of our test is O(Cd/ε), where Cd is a positive

constant depending only on the dimension d of the array. Note that our characterization in terms

of the hitting number is crucial: merely building on the fact that A contains many occurrences of P

(as can be derived directly from the modification lemma) and randomly sampling O(1/ε) possible

locations in A, checking whether the sub-array starting at these locations equals P would lead to

query complexity of O(kd/ε). Note that our test is optimal (up to a multiplicative factor that

depends on d), as any test for this problem makes Ω(1/ε) queries.

The one dimensional setting, where one seeks to determine quickly whether a string S is ε-far

from being P -free is of particular interest. We are able to leverage the modification Lemma and

show that the distance of a string S from being P -free for a fixed pattern P (that is not almost

homogeneous) is exactly equal to the hitting number of P in A. For an arbitrary constant 0 < c < 1,

this characterization allows us to devise a ((1− c)ε, ε)-tolerant test making Oc(ε
−1) queries for this

case. For the case of almost homogeneous patterns, and an arbitrary constant c > 0 , we devise a

((1/16 + c)ε, ε)-tolerant test that makes Oc(1/ε) queries. Whether tolerant tests exist for almost

homogeneous patterns of dimension larger than 1 is an open question.

Moreover, the characterization via the hitting number implies an O(n + k) algorithm that

calculates (exactly) the distance of A from being P -free where P is an arbitrary pattern (that may

be almost homogeneous). We are not aware of a previous algorithm for the distance computation

problem. Unlike the one-dimensional case, in d dimensions we do not know of a clean combinatorial

description of the distance to being P -free for higher dimension. Furthermore, it can be shown via

a direct reduction from covering problems in the plane [72], that for dimension d > 1 there exists

patterns P for which calculating the distance to P -freeness is NP-hard.

Related Work The problem of testing pattern freeness is related to the study of testing subgraph-

freeness (see e.g. [3, 7] and Chapter 2). This line of work examines how one can test quickly whether

a given graph G is H-free or ε-far from being H-free, where H is a fixed subgraph. In this problem,

a graph is ε-far from being H-free if at least an ε-fraction of its edges and non-edges need to be

altered in order to ensure that the resulting graph does not contain H as a (not necessarily induced)

subgraph. A key component in these works are removal lemmas: typically such lemmas imply that

if G is ε-far from being H-free, it necessarily contains a “large” number of copies of H. Perhaps

the best example for this phenomena is the triangle removal lemma which asserts that for every

ε ∈ (0, 1), there exists δ = δ(ε) > 0 such that if an n-vertex graph G is ε-far from being triangle

free, then G contains at least δn3 triangles (see e.g., [13] and the reference within).

Alon et al. showed [10] that regular languages over {0, 1} are strongly testable. Testing pattern-

freeness (1-dimensional, binary alphabet, constant pattern length k) is a special case of the former,

since the language of all strings avoiding a fixed pattern is regular. The query complexity of their

test is O
(
c
ε · ln

3(1
ε)
)
, where c is a constant that depends on the minimal size of a DFA AL, that

153

accepts the regular language L. It is shown in [10] that c can be taken to be O(s3) where s is the

size of AL. In the case of the regular language considered here a simple pumping-lemma inspired

argument shows that s ≥ Ω(k). Hence the upper bound on testing pattern freeness implied by their

algorithm is O
(
k3

ε · ln
3(1
ε)
)

. Our 1D test solves a very restricted case of the problem the test of

[10] deals with, but it achieves a better query complexity of O(1/ε) in this setting. Moreover, our

test is much simpler and can be applied in the more general high dimensional setting, or when the

pattern length k is allowed to grow as a function of the string length n.

The problem of testing submatrix freeness was investigated in [6, 8, 68, 69, 71]. As opposed to

our case, which is concerned with tight submatrices, all of these results deal with submatrices that

are not necessarily tight (i.e. the rows and the columns need not be consecutive). Quantitatively,

the submatrix case is very different from our case: in our case P -freeness can be testable using

O(ε−1) queries, while in the submatrix case, for a binary submatrix of size k × k a lower bound of

ε−Ω(k2) on the needed number of queries is easy to obtain, and in the non-binary case there exist

2× 2 matrices for which there exists a super polynomial lower bound of εΩ(log 1/ε).

The 2D part of the results presented here adds to a growing literature concerned with testing

properties of images [29, 115, 121]. Ideas and techniques from the property testing literature have

recently been used in the fields of computer vision and pattern recognition [96, 99].

Notation and definitions We let [[n]] denote the set {0, . . . , n − 1}. Here, for convenience,

we view a d-dimensional (cubic) array A over an alphabet Γ is a function from [[k]]d to Γ. The

x = (x1, . . . , xd) entry of A, denoted by Ax, is the value of the function A at location x. Let P

be a (k, d)-array over an alphabet Γ of size at least two. We say that a d-dimensional array A

contains a copy of P (or a P -copy) starting in location x = (x1, . . . , xd) if for any y ∈ [[k]]d we have

Ax+y = Py. Finally, A is P -free if it does not contain copies of P .

The absolute and relative distance to P -freeness will be denoted by dP (A) and δP (A), respect-

ively. Here, dP (A) is the minimum absolute number of entry modifications required to make A free

from P -copies, and δP (A) = dP (A)/|A|.
For an array A and a pattern P we will call a set of entries in A whose modification can turn it

to be P -free a deletion set and therefore it is natural to call dP (A) (the absolute distance of A to

P -freeness) the deletion number, since it is the size of a minimal deletion set. In a similar manner,

for a given set of entries in A, if every P -copy in A contains at least one of these entries, we call

it a hitting set and we call the size of a minimal hitting set the hitting number, denoted by hP (A).

For all notations here and above, in the 1-dimensional case we will replace A by S (for String).

We recall several definitions regarding tolerant testability and distance estimation [113]. Let P
be a property of arrays and let h1, h2 : [0, 1] → [0, 1] be two monotone increasing functions. An

(h1, h2)-distance approximation algorithm for P is given query access to an unknown array A. The

algorithm outputs an estimate δ̂ to δP (A), such that with probability at least 2/3 it holds that

h1(δP (A)) ≤ δ̂ ≤ h2(δP (A)). Finally, for a property P and for 0 ≤ ε1 < ε2 ≤ 1, an (ε1, ε2)-tolerant

154

test for P is given query access to an array A. The test accepts with probability at least 2/3 if A

is ε1-close to P, and rejects with probability at least 2/3 if A is ε2-far from P. Finally, we define

the additive (multiplicative) tolerance of the test above as ε2 − ε1 (ε2/ε1 respectively).

Main Results The modification lemma result is central in the study of minimal deletion sets.

It classifies the possible patterns into ones that are removable and ones that are not. The result

that the vast majority of patterns are removable is used extensively throughout the chapter in

the design and proofs of algorithms for efficient testing of pattern freeness (in one and higher

dimensions) as well as for the exact computation of the deletion number in one-dimension. Our

1D modification lemma (Lemma 7.10) gives the following full characterization of one-dimensional

patterns (i.e. strings). A binary pattern is removable if and only if it not almost homogeneous,

while any pattern over a larger alphabet is removable. The multidimensional version of the lemma

(Lemma 7.10) makes the exact same classification, but for (k, d)-arrays for which k ≥ 3 · 2d. The

fact that most patterns are removable is very important for analyzing the deletion number (which is

the distance to pattern freeness). As an example, a simple observation is that a removable pattern

appears at least dP (A) times (possibly with overlaps) in the array A, which implies an ε-test that

can simply check for the presence of the pattern in 1/ε random locations in the array at a sample

complexity of O(k/ε).

Another important part of our results here makes explicit connections between the deletion

number and the hitting number for both one and higher dimensions. These are needed in order to

get improved tests (e.g. for getting rid of k in the sample complexity) in d-dimensions as well as

for linear time computation of the distance (deletion number) in 1-dimension. For the 1D case we

show that the deletion number dP (S) equals the hitting number hP (S), which leads to an exact

computation of dP (S) in time O(n + k) (Theorem 7.19) as well as a tolerant tests for Pattern

Freeness: An (ε1, ε2)-tolerant test for any 0 ≤ ε1 < ε2 ≤ 1 at a complexity of O(ε2
2/(ε2 − ε1)3)

(Theorem 7.20) as well as an ((1 − τ)ε, ε)-tolerant test for a fixed τ > 0 and any 0 < ε ≤ 1 at

a complexity of O(ε−1τ−3) (Corollary 7.21). For higher dimensions, we show (Lemma 7.15) that

hP (A) ≤ dP (A) ≤ αdhP (A) ≤ αdk
−d, a bound that relates the hitting number hP (A) and the

deletion number dP (A) through a constant αd = 4d + 2d that depends only on the dimension d.

This bound enables a ((1−τ)dα−1
d ε, ε)-tolerant test making Cτε

−1 queries, where Cτ = O(1/τd(1−
(1− τ)d)2) (Theorem 7.23).

Our main results are summarized in Table 7.1. Additional results regarding almost homogeneous

patterns are given in the full version [26].

7.2 Modification Lemma

Theorem 7.1 (Modification Lemma). Let d > 1 and let P be a (k, d)-array over the alphabet Γ

where k ≥ 3 · 2d.

155

dim. template type
deletion number

modification lemma
test query

computation tolerance complexity

1D
general O(n+ k) removable for any k 1/(1− τ) O(1/ετ3)

almost homog. O(n+ k) not removable for any k (16 + c) αc/ε

2+D
general NP-Hard removable for k > 3 · 2d (1− τ)−dαd βd,τ/ε

almost homog. − not removable for any k − −

Table 7.1: Summary of results. 0 < τ < 1 and c > 0 are arbitrary constants. αc is a constant

that depends only on c. βd,τ is a constant that depends only on d and τ . ’modification lemma’

specifies if patterns are classified as removable or not. the ’test tolerance’ is multiplicative.

1. If |Γ| = 2 then P is removable if and only if it is not almost homogeneous.

2. If |Γ| ≥ 3 then P is removable.

Remark 7.2. Theorem 7.1 states that any large enough binary pattern which is not almost homo-

geneous is removable. The requirement that the pattern is large enough is crucial, as the 2× . . .× 2

pattern P satisfying Px = 0 for any x = (x1, . . . , xd) with x1 = 0 and Px = 1 otherwise is not

removable even though it is not almost homogeneous. To see this, consider the following 4× . . .× 4

array A: Mx = 0 if either x1 = 0, or x1 = 1 and xi ∈ {1, 2} for any 2 ≤ i ≤ d, or x1 = 2 and

xi ∈ {0, 3} for some 2 ≤ i ≤ d. For any other value of x, Mx = 1. Note that A contains a copy of

P starting at (1, . . . , 1), but flipping any bit in this copy creates a new P -copy in A. Still, the size

of the counterexample is only 2× . . .× 2 while in the statement of Theorem 7.1, the dependence is

exponential in d. It will be interesting to understand what is the correct order of magnitude of the

dependence of k on d.

Proof of Theorem 7.1. The second statement of the theorem can be easily derived from the first

statement; If P does not contain all letters in Γ then it is clearly removable, as changing any of

its entries to any of the missing letters cannot create new P -copies. Otherwise, we can reduce

the problem to the binary case: let σ1, σ2 be the letters in Γ that appear the smallest number of

times in P . Consider the following (k, d)-array P ′ over {0, 1}: P ′x = 0 if Px ∈ {σ1, σ2} and P ′x = 1

otherwise. Observe that P ′ is not almost homogeneous, implying that it is removable. It is not

hard to verify now that P is removable as well.

In what follows, we will prove the first statement. If P is binary and almost homogeneous then it

is not removable: Without loss of generality P(0,...,0) = 1 and Px = 0 for any x 6= (0, . . . , 0). Consider

a (2k, d)-array A such that A(0,...,0) = A(1,...,1) = 1 and A = 0 elsewhere. Clearly, modifying any bit

of the P -copy starting at (1, . . . , 1) creates a new copy of P in A, so P is not removable.

The rest of the proof is dedicated to the other direction. Suppose that P is a binary (k, d)-array

that is not removable. We would like to show that P must be almost homogeneous. As P is not

removable, there exists a binary array A containing a copy of P that such that flipping any single

bit in this copy creates a new copy of P in A. This copy of P will be called the template of P in A.

156

Figure 7.1: Illustration for Lemma 7.4. A 2-dimensional example, where i is the vertical

coordinate: Flipping the bit (of the template P) at location ā creates the P -copy Qa at

location m(a). Similarly, the copy Qb is created at location m(b). Note that the pair of

points (x̄, ȳ) (which is (x, y) in P) and the copy locations pair (m(a),m(b)) are both (i,∆i)-

related. The values Px and Py (Mx̄ and Mȳ) must be equal.

Clearly, all of the new copies created by flipping bits in the template must intersect the template,

so we may assume that A is of size (3k − 2)d and that the template starts in location k = (k −
1, . . . , k − 1).

For convenience, let I = [[k]]d denote the set of indices of P . For any x ∈ I let x̄ = x+ k; x̄ is

the location in A of bit x of the template.

Roughly speaking, our general strategy for the proof would be show that there exist at most

two ”special” entries in P such that when we flip a bit in the template, creating a new copy of P

in A, the flipped bit usually plays the role of one of the special entries in the new copy. We will

then show that in fact, there must be exactly one special entry, which must lie in a corner of P ,

and that all non-special entries are equal while the special entry is equal to their negation. This

will finish the proof that P is almost homogeneous.

Definition 7.3. Let i ≤ d and let δ be positive integers. Let x = (x1, . . . , xd) and y = (y1, . . . , yd)

be d-dimensional points. The pair (x, y) is (i, δ)-related if yi − xi = δ and yj = xj for any j 6= i.

An (i, δ)-related pair (x, y) is said to be an (i, δ)-jump in P if Px 6= Py.

Lemma 7.4. For any 1 ≤ i ≤ d there exists 0 < ∆i < k/3 such that at most two of the (i,∆i)-

related pairs of points from I are (i,∆)-jumps in P .

Proof. Recall that, by our assumption, flipping any of the K = kd bits of the template creates a

new copy of P in A. Consider the following mapping m : I → [[2k − 1]]d. m(x1, . . . , xd) is the

157

starting location of a new copy of P created in A as a result of flipping bit x = (x1, . . . , xd) of the

template (which is bit x̄ of A). If more than one copy is created by this flip, then we choose the

starting location of one of the copies arbitrarily.

Observe that m is injective, and let S be the image of m, where |S| = K. Let 1 ≤ i ≤ d and

consider the collection of (one-dimensional) lines

Li =
{
{x1} × . . .× {xi−1} × [[2k − 1]]× {xi+1} × . . .× {xd} | ∀j 6= i : xj ∈ [[2k − 1]]

}
.

Clearly
∑

`∈Li |S ∩ `| = K. On the other hand, |Li| =
∏
j 6=i(2k − 1) < 2d−1

∏
j 6=i k = 2d−1K/k, so

there exists a line ` ∈ Li for which |S ∩ `| > k/2d−1 ≥ 6. Hence |S ∩ `| ≥ 7. Let α1 < . . . < α7

be the smallest i-indices of elements in S ∩ `. Since α7 − α1 < 2k − 1 there exists some 1 ≤ l ≤ 6

such that αl+1 − αl < k/3. That is, S contains an (i,∆i)-related pair with 0 < ∆i < k/3. In other

words, there are two points a, b ∈ I such that flipping ā (b̄) would create a new P -copy, denoted

by Qa (Qb respectively), which starts in location m(a) (m(b) respectively) in A, and (m(a),m(b))

is an (i,∆i)-related pair. The following useful claim completes the proof of the lemma.

Claim 7.5. For a and b as above, let (x, y) be a pair of points from I that are (i,∆i)-related and

suppose that y 6= ā−m(a) and that x 6= b̄−m(b). Then Px = Py.

Proof. The bits that were flipped in A to create Qa and Qb are ā, b̄ respectively. Since y+m(a) 6= ā,

the copy Qa contains the original entry of A in location y + m(a). Therefore, Py = My+m(a) (as

My+m(a) is bit y of Qa, which is a copy of P). Similarly, since x+m(b) 6= b̄, we have Px = Mx+m(b).

But since both pairs (x, y) and (m(a),m(b)) are (i,∆i)-related, we get that m(b)−m(a) = y − x,

implying that x+m(b) = y +m(a), and therefore Px = Mx+m(b) = My+m(a) = Py, as desired.

Clearly, the number of (i,∆i)-related pairs that do not satisfy the conditions of the claim is at

most two, finishing the proof of Lemma 7.4.

Let ∆ = (∆1, . . . ,∆d) where for any 1 ≤ i ≤ d, we take ∆i that satisfies the statement of

Lemma 7.4 (its specific value will be determined later).

Definition 7.6. Let x ∈ I. The set of ∆-neighbors of x is

Nx =
{
y ∈ I

∣∣ ∃i : (x, y) is (i,∆i)-related or (y, x) is (i,∆i)-related
}

and the number of ∆-neighbors of x is nx = |Nx|, where d ≤ nx ≤ 2d. We say that x is a ∆-corner

if nx(∆) = d and that it is ∆-internal if nx(∆) = 2d. Furthermore, x is (∆, P)-isolated if Px 6= Py

for any y ∈ Nx, while it is (∆, P)-generic if Px = Py for any y ∈ Nx.

When using the above notation, we will sometimes omit the parameters (e.g. simply writing

isolated instead of (∆, P)-isolated) as the context is usually clear. The definition imposes a sym-

metric neighborhood relation, that is, x ∈ Ny holds if and only if y ∈ Nx. If x ∈ Ny we say that

x and y are ∆-neighbors. Note that a point x = (x1, . . . , xd) ∈ I is a ∆-corner if xi < ∆i or

xi ≥ k −∆i for any 1 ≤ i ≤ d, and that x is ∆-internal if ∆i ≤ xi < k −∆i for any 1 ≤ i ≤ d.

158

Claim 7.7. Two (∆, P)-isolated points in I cannot be ∆-neighbors.

Proof. Suppose towards contradiction that x = (x1, . . . , xd) and y = (y1, . . . , yd) are two distinct

(∆, P)-isolated points and that (x, y) is (i,∆i)-related for some 1 ≤ i ≤ d. Since ∆i < k/3, at least

one of x or y participates in two different (i,∆i)-related pairs: if xi < k/3 then yi+∆i = xi+2∆i < k

so y is in two such pairs, and otherwise xi ≥ ∆i, meaning that x participates in two such pairs.

Assume without loss of generality that the two (i,∆i)-related pairs are (t, x) and (x, y), then Pt 6= Px

and Px 6= Py as x is isolated. By Lemma 7.4, these are the only (i,∆i)-jumps in P .

Choose an arbitrary j 6= i and take v = (v1, . . . , vd) where vj = ∆j and vl = 0 for any l 6= j.

Recall that ∆j < k/3, implying that either xj + vj < k or xj − vj ≥ 0. Without loss of generality

assume the former, and let x′ = x+ v and y′ = y + v. Since x and y are (∆, P)-isolated, and since

x′ ∈ Nx and y′ ∈ Ny, we get that Px′ 6= Px 6= Py 6= Py′ , and thus Px′ 6= Py′ (as the alphabet is

binary). Therefore, (x′, y′) is also an (i,∆i)-jump in P , a contradiction.

Illustration for Definition 7.8. Re-

call that flipping a bit ā in A creates a

new P -copy Qa (which contains ā), loc-

ated at the point m(a) in the coordin-

ates of A. The bits x and a are mapped

to y and f(a) respectively.

Definition 7.8. For three points x, y, a ∈ I, we say that x is mapped to y as a result of the flipping

of a if x̄ = m(a) + y. Moreover, define the function f : I → I as follows: f(x) = x̄ −m(x) is the

location to which x is mapped as a result of flipping x.

In other words, x is mapped to y as a result of flipping the bit a if bit x̄ of A ”plays the role”

of bit y in the new P -copy Qa that is created by flipping a. Note that

• If x̄−m(a) /∈ I then x is not mapped to any point. However, this cannot hold when x = a,

so the function f is well defined.

• For a fixed a, the mapping as a result of flipping a is linear: if x and y are mapped to x′ and

y′ respectively, then y−x = y′−x′. In particular, if (x, y) is (i,∆i)-related for some 1 ≤ i ≤ d
then (x′, y′) is also (i,∆i)-related.

• If x is mapped to y as a result of flipping a and x 6= a, then Px = Py.

• On the other hand, we always have Px 6= Pf(x).

• If x is ∆-internal and (∆, P)-generic, then f(x) must be (∆, P)-isolated.

159

The first four statements are easy to verify. To verify the last one, suppose that x is internal

and generic and let z ∈ Nf(x); we will show that Pf(x) 6= Pz. Since x is internal, there exists

y ∈ Nx such that y − x = z − f(x). Then y is mapped to z as a result of flipping x, since

ȳ = y+ k = z+ (x+ k)− f(x) = z+ x̄− f(x) = z+m(x). Therefore Py = Pz. On the other hand,

Px = Py as x is generic and Px 6= Pf(x), and we conclude that Pz 6= Pf(x).

Lemma 7.9. There is exactly one (∆, P)-isolated point in I.

Proof. Let S be the set of isolated points; our goal is to show that |S| = 1. Consider the set

C = {(x, y) : x, y ∈ I, (x, y) is an (i,∆i)-jump for some 1 ≤ i ≤ d}.

Clearly, each point in S is contained in at least d pairs from C. By claim 7.7 no pair of isolated

points are ∆-neighbors and therefore every pair in C contains at most one point from S. By Lemma

7.4, |C| ≤ 2d which implies that |S| ≤ 2. On the other hand we have |S| ≥ 1. To see this, observe

that the number of (∆, P)-internal points in I is greater than
∏d
i=1 k/3 ≥ 2d

2
, while the number of

non-∆-generic points is at most 2|C| ≤ 4d, implying that at least 2d
2−4d > 0 of the internal points

are generic. Therefore, pick an internal generic point z ∈ I. As we have seen before, f(z) must be

isolated. To complete the proof it remains to rule out the possibility that |S| = 2. If two different

(∆, P)-isolated points a = (a1, . . . , ad) and b = (b1, . . . , bd) exist, each of them must participate in

exactly d pairs in C. This implies that both of them are ∆-corners with d neighbors. It follows

that every ∆-internal point z must be generic (since an internal point and a corner point cannot

be neighbors), implying that either f(z) = a or f(z) = b.

Let 1 ≤ i ≤ d and define δi > 0 to be the smallest integer such that there exists an (i, δi)-

related pair (x, y) of generic internal points with f(x) = f(y). For this choice of x and y we have

m(y) −m(x) = ȳ − f(y) − (x̄ − f(x)) = ȳ − x̄ = y − x, so (m(x),m(y)) is also (i, δi)-related. In

particular, we may take ∆i = δi (Recall that until now, we only used the fact that ∆i < k/3, without

committing to a specific value). Without loss of generality we may assume that f(x) = f(y) = a.

By Claim 7.5, any pair (s, t) of (i,∆i)-related points for which s 6= ȳ − m(y) = f(y) = a and

t 6= x̄ − m(x) = f(x) = a is not an (i,∆i)-jump. Since b is not a ∆-neighbor of a, it does not

participate in any (i,∆i)-jump, contradicting the fact that it is (∆, P)-isolated.

Finally, we are ready to show that P is almost homogeneous. Let a = (a1, . . . , ad) be the single

(∆, P)-isolated point in I. Consider the set

J = {x = (x1, . . . , xd) ∈ I : ∆i ≤ xi < ∆i + 2d for any 1 ≤ i ≤ d}

and note that all points in J are ∆-internal. Let 1 ≤ i ≤ d and partition J into (i, 1)-related pairs of

points. There are 2d
2−1 ≥ 4d pairs in the partition. On the other hand, the number of non-generic

points in J is at most 2|C| − (d− 1) < 4d (to see it, count the number of elements in pairs from C

and recall that a is contained in at least d pairs). Therefore, there exists a pair (x, y) in the above

160

partition such that x and y are both generic. As before, f(x) and f(y) must be isolated, and thus

f(x) = f(y) = a, implying that ∆i = δi = 1. We conclude that ∆ = (1, . . . , 1).

Claim 7.5 now implies that any pair (s, t) of (i, 1)-related points for which s 6= ȳ − m(y) =

f(y) = a and t 6= x̄ − m(x) = f(x) = a is not an (i, 1)-jump. That is, for any two neighboring

points s, t 6= a in I, Ps = Pt, implying that Px = Py for any x, y 6= a (since ∆ = (1, . . . , 1), a

∆-neighbor is a neighbor in the usual sense). To see this, observe that for any two points x, y 6= a

there exists a path x0x1 . . . xt in I where xj and xj+1 are neighbors for any 0 ≤ j ≤ t − 1, the

endpoints are x0 = x and xt = y, and xj 6= a for any 0 < j < t. Since a is isolated, it is also true

that Pa 6= Px for any x 6= a. To finish the proof that P is almost homogeneous, it remains to show

that a is a corner. Suppose to the contrary that 0 < ai < k − 1 for some 1 ≤ i ≤ d and let b, c ∈ I
be the unique points such that (a, b) and (c, a) are (i, 1)-related, respectively. Clearly f(b) = a,

so a is mapped to ā − m(b) = ā − b̄ + f(b) = c − a + a = c as a result of flipping b, which is a

contradiction - as Pa 6= Pc and b 6= a, c. This finishes the proof.

The above proof only works when the dimension is bigger than one, though it can be adapted

to the one-dimensional case. However, we present here another proof for the one-dimensional case,

which is simpler than the general proof above and works for any pattern which is not almost

homogeneous (as opposed to the proof above, that required the forbidden pattern to also be large

enough). The main strategy here is to consider the longest streaks of zeros and ones in the pattern

- a strategy that cannot be used in higher dimensions.

Theorem 7.10 (1D Modification Lemma). A one-dimensional pattern is removable if and only if

it is almost homogeneous.

Proof of Theorem 7.10. The reduction from a general alphabet to a binary one and the negative

example for almost homogeneous patterns which were presented in the proof of Theorem 7.1 also

hold here. It remains to prove that any 1-dimensional binary pattern that is not almost homogen-

eous is removable. Let P = P0 . . . Pk−1 be a binary pattern of length k, that is contained in an

arbitrary binary string S. We need to show that one can flip one of the bits of P without creating a

new P -copy in S. We assume that P contains both 0s and 1s (i.e. it is not homogeneous) otherwise

flipping any bit would work. Therefore we can assume from now that k ≥ 3 (since for k = 1, 2 all

patterns are homogeneous or almost homogeneous).

Let us assume also that P starts with a 1, i.e. P0 = 1 and let t ≤ k − 1 be the length of the

longest 0-streak (sub-string of consecutive 0s) in P . Let i > 0 be the leftmost index in which such

a 0-streak of length t begins. Clearly, Pi−1 = 1 and Pi = . . . = Pi+t−1 = 0.

If i+ t ≤ k (i.e. the streak is not at the end of P) then Pi+t = 1 and in such a case if we modify

Pi+t to 0, the copy of P is removed without creating new P -copies in S. To see this, observe that

a new copy cannot start at the bit flip location i + t or within the 0-streak at any of its locations

i, . . . , i+ t− 1 since the bits in these locations are 0 while the starting bit of P is 1. On the other

161

hand, a new copy cannot start after i + t since it must include the bit flip location or anywhere

before Pi since otherwise it would contain a 0-streak of length t+ 1.

This implies that P contains exactly one 0-streak of length t at its last t locations. In particular,

we have that at the last location Pk−1 = 1, and if we denote by r the length of the longest 1-streak

in P , a symmetric reasoning shows that P begins with its only longest 1-streak of length r.

If P is not of the form 1s0t, it can be verified that flipping Ps (the leftmost 0 in P) to 1

does not create any P -copy. The only case left is P = 1s0t, where s, t ≥ 2 since P is not almost

homogeneous. Consider the bit of the string S that is to the left of P . If it is a 0 then we flip P1

to 0 and otherwise, we flip P0 to 0, where in both cases no new copy is created.

7.3 Characterizations of the Deletion Number

We use the modification lemmas of Section 7.2 to investigate several combinatorial characterizations

of the deletion number, which will in turn allow exact (and efficient) computations of the deletion

number in the 1-dimensional case, as well as efficient approximation and testing of pattern freeness

for removable patterns in the d-dimensional case for any d. In particular, we prove some surprising

connections between minimal deletion sets and minimal hitting sets. The characterizations for

almost homogeneous 1-dimensional patterns are given in the full version [26], along with an optimal

algorithm to compute the exact deletion number and an optimal test for pattern freeness in that

case. The rest of this section deals with removable patterns, for both the 1-dimensional and multi-

dimensional settings. In the 1-dimensional case, we show that for any removable pattern there

exist certain minimal hitting sets which are in fact minimal deletion sets. These are sets where

none of the flips create new occurrences. Our constructive proof shows how to build such a set and

allows for a linear time algorithm for finding the deletion number. The result is summarized in

Theorem 7.11 and proved next.

Theorem 7.11 (dP (S) equals hP (S); Linear time computation of dP (S)). For a binary string S

of length n and a binary pattern P of length k that is removable, the deletion number dP (S) equals

hP (S) and can be computed in time O(n+ k) and space O(k).

Proof. The main challenge is in proving that dP (S) = hP (S), since then all we need is an algorithm

that computes hP (S), which is relatively standard in template matching: Find the set O of all

P -copies in S; Go though the P -copies in O from left to right, repeating the following: (i) Let

P ∗ be the leftmost P -copy in O; (ii) Increment the hitting set count by 1; (iii) Remove from O
all the (following) P -copies that intersect P ∗ (those whose starting location is not to the right of

the rightmost location in P ∗);. Clearly, the complexity of the algorithm is dominated by the first

step of finding O, which can be done in O(n+ k) using, e.g., the KMP algorithm [98]. Taking the

rightmost location in each of the visited P ∗s creates a hitting set, which is minimal, due to the fact

that the set of P ∗s is independent.

162

It is trivial that dP (S) ≥ hP (S) and hence we have to show that dP (S) ≤ hP (S). Refer to

Algorithm 1 below that constructs a set of bit flip locations. Note that the choice in Step 3 is

possible using the modification lemma, while the choice in Step 4 is possible, since if h is contained

in only one P -copy P 0 ∈ D, by definition of D there is some P 1 ∈ D such that P 0 and P 1 intersect

at some location x (in particular one of the 2 endpoints of P 0 must be in the intersection). Simply

replace h by x. It is easy to verify that the set of locations F that it computes is a (particular)

minimal hitting set of O, and hence |F| = hP (S). It is therefore sufficient to show that flipping the

bit locations in F turns the string S to be P -free. This will be guaranteed, using the fact that F
is a hitting set of O, by Lemma 7.12 that shows that no bit flip of a location in F creates a new

P -copy. Therefore, the proof of Lemma 7.12 will complete the proof of Theorem 7.11.

Algorithm 1

Input: Binary string S of length n and removable binary string P of length k

Output: Minimal set F of flip locations in S that make it P -free (|F | = dP (S))

1. Find the set O of all P -copies in S

2. Divide O into I ∪ D, where I is the subset of P -copies that do not intersect any other

P -copy in O, while D is the subset of P -copies that intersect some other P -copy in O.

3. For each P -copy P ∗ ∈ I add to F a bit location whose flipping removes P ∗ without creating

any other P -copy

4. Find a minimal hitting set H of D such that every location h ∈ H is contained in at least

two P -copies in D.

5. Add H to F

return F

Lemma 7.12 (Flipping bits in F does not create new P -copies). Let f ∈ F . Flipping the bit at

location f does not create any new P -copy in S.

Proof. Recall that F consisted of bits in I as well as bits in D. Each of the bit flips that are in I
was chosen (step 3 of Algorithm 1) using the modification lemma to be such that no new P -copy is

created. The main challenge is in showing that the remaining bit flips, i.e. at locations H, do not

create any new P -copies. Notice our requirement that any location h ∈ H is contained in at least

two P -copies. By symmetry considerations, we have the following:

Observation 7.13. [Flipping an arbitrary bit in the intersection of 2 P -copies can create a new

P -copy] ⇐⇒ [Flipping an arbitrary bit in a P -copy can create 2 new P -copies]

By Observation 7.13, in order to show that bit flips in H do not create new P -copies, one can

163

prove that an arbitrary bit-flip in a P -copy cannot create more than 1 P -copy. Applying Lemma

7.14 below thus completes the proof.

Lemma 7.14 (Any bit flip in a pattern P cannot create more than 1 new P -copy). Let x ∈ [[k]].

Flipping the bit Px can create at most 1 new P -copy in S.

Proof. The proof goes by contradiction, assuming that a bit flip in P has created two new P -copies

P 1 and P 2, and will analyze separately the two possible cases:

Case 1: ‘P 1 and P 2 intersect P from different sides’

In this case, flipping the bit location x of P creates a P -copy P 1 shifted t1 locations to the left

and a P -copy P 2 shifted t2 locations to the right, where we assume w.l.o.g. that t1 < t2. One can

verify that Px−t2 = P 2
x−t2 6= Px (and similarly that Px 6= P 1

x+t1 = Px+t1). We assume that Px = 0

and hence Px−t2 = 1. See Figure 7.2 and its caption for the intuition of the proof.

Figure 7.2: Illustration for Case 1: Our proof is based on ’skipping’ along a ’path’ from

location x to location x− t2 in P , while each skip is done between entries with equal values.

A complete path from x to x − t2 will give a contradiction, since Px−t2 6= Px. The path

starts at x and makes skips of size t1 to the left as long as it does not pass x − t2, then it

makes a single skip to the right of size t2. It repeats this traversal until reaching x− t2.

Since the P -copy P 1 was created from P at a left offset of t1 by the flipping at location x, we

can infer that Py = Py+t1 for any y ∈ [[k − t1]] , y 6= x (or informally that ”P is t1-cyclic except at

x from the right”). Similarly, we know that ”P is t2-cyclic except at x from the left”.

We define a ’path’ of skips that starts from location x, makes skips of size t1 to the left as long

as it does not pass x− t2, then it makes a single skip to the right of size t2. Call this short path a

traversal. The path repeats this traversal until reaching x − t2. It is easy to verify that the path

is always within the open range (x− t2, x+ t1) (except for the last step that reaches x− t2). This

implies in particular that the path does not go from x + t1 to x or from x to x − t2 (i.e. through

the two only ”value switching skips”), and hence the value of P along the path must be 0.

It remains to prove that the path eventually reaches x−t2 and does not continue in some infinite

loop. For each location y that the path goes through we can look at the value y (mod t1). Assume

164

w.l.o.g. that for the ’target’ location x− t2 we have that x− t2 = 0 (mod t1). This implies for the

’starting’ location x that x = t2 (mod t1) = 0. Now, each skip by t1 does not change the location

(mod t1), while a skip by t2 to the right increases the value by t2 (mod t1). In other words, the

sub-sequence of locations at the beginning of each traversal (before the first left skip) is of the form

` · t2 (mod t1), for ` = 1, 2, 3, This is exactly the subgroup of Zt1 (the additive group of integers

modulo t1) generated by the element t2 and hence must contain the identity element 0 (mod t1).

This proves that the location x− t2 will be reached.

Case 2: ‘P 1 and P 2 intersect P from one (the same) side’

Flipping a location x in a P -copy P creates two new P -copies P i (i = 1, 2) that intersect P from

the same side, w.l.o.g. right, at a shift of ti, where t1 < t2. Refer to Figure 7.3 and its caption for

the intuition of the proof. We ’follow’ the two disjoint ’arrow paths’ shown in the figure that lead

from x in P to x′ := x− t2 in P 1 to reach a contradiction. Formally:

Px = P 1
x = P 2

x−t2+t1 = Px−t2+t1 = P 1
x−t2

Px 6= P 2
x−t2 = Px−t2 = P 1

x−t2

as desired.

Figure 7.3: Illustration for Case 2: All arrows (ignoring directions) except the red one

represent equality, while the red arrow represents inequality. The two disjoint ’arrow paths’

from x in P to x′ in P 1 imply that both Px = Px′ and Px 6= Px′ , leading to contradiction.

The proof of the theorem now immediately follows from Lemma 7.12.

For the multidimensional case, we start by showing that when P is removable, the hitting

number hP (A) of A approximates the deletion number up to a multiplicative constant that depends

only on the dimension d. This is done in two stages, the first of which involves the analysis of a

procedure that proves the existence of a large collection of P -copies with small pairwise overlaps,

among the large set of at least dP (A) P -copies that exist in A. This procedure heavily relies on

the fact that P is removable. The second stage shows the existence of a large hitting set of the

collection with small pairwise overlaps. The result is summarized in Lemma 7.15.

165

Lemma 7.15 (relation between distance and hitting number). Let P be a removable (k, d)-array

over an alphabet Γ, and let A be an (n, d)-array over Γ. Let αd = 4d + 2d. It holds that: hP (A) ≤
dP (A) ≤ αdhP (A) ≤ αd(n/k)d.

Proof. The first inequality follows from the fact that one needs to modify at least one entry in

any P -copy in A. For the third inequality, note that the set {(x1, . . . , xd) ∈ [[k]]d : ∀1 ≤ i ≤
d, xi ≡ k − 1(mod k)} is a set of size [[n/k]]d that hits all k × . . .× k consecutive subarrays of A,

and in particular all P -copies. It remains to prove that dP (A) ≤ αdhP (A). We may assume that

the alphabet Γ is binary by applying the standard reduction from non-binary to binary alphabets

presented in Section 7.2. We present a procedure on the array A that makes it P -free by sequentially

flipping bits in it. In what follows, we will say that the center of a (k, d) matrix lies in location

(bk/2c, . . . , bk/2c) in the matrix. Let P be the set of all P -copies before A is modified. In Phase

1, the procedure ”destroys” all P -copies in P by flipping central bits of a subset of the original P -

copies in A, which is chosen in a greedy manner. However, these bit flips might create new P -copies

in M , which are removed in Phase 2 using the modification lemma. The procedure maintains sets

A,B that contain the bits flipped in Phases 1,2 respectively.

• Let P be the set of all P -copies in A, N ← φ A ← φ, B ← φ.

• Phase 1: While P 6= φ

– Pick Q ∈ P arbitrarily.

– Flip Ax where x is the center of Q.

– Add Q to A and remove all P -copies containing x from P.

– Add all P -copies created by flipping Ax to N .

• Phase 2: While N 6= φ

– Pick Q ∈ N arbitrarily.

– Pick a location x in Q whose flipping does not create new P -copies in A (exists by

modification lemma).

– Flip the bit Ax and add x to B.

For the analysis of the procedure, we say that two P -copies Q,Q′ in A whose starting points are

x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ [[n]]d respectively are 1/2-independent if |xi − yi| ≥ k/2 for

some 1 ≤ i ≤ d. Note that 1/2-independence is a symmetric relation. A set of P -copies is 1/2-

independent if all pairs of copies in it are 1/2-independent. Denote by iP (A) the maximal size of

a 1/2-independent set in A, divided by nd.

For Q and Q′ as above, if Q′ does not contain the center of Q then Q,Q′ are 1/2-independent, as

there is some 1 ≤ i ≤ d for which either yi < xi+bk/2c− (k−1) ≤ xi−k/2+1 or yi > xi+bk/2c ≥

166

xi + k/2 − 1. In both cases |yi − xi| ≥ k/2, implying the 1/2-independence. Therefore the set A
generated by the procedure is 1/2-independent: if Q,Q′ ∈ A are two different P -copies and Q was

added to A before Q′, then Q′ does not contain the center of Q′, so Q and Q′ are 1/2-independent.

Using the following claims, it is not hard finish the proof of the lemma.

Claim 7.16. iP (A) ≤ 2dhP (A).

The proof of Claim 7.16 will be given later. For what follows, we say that P has a cycle of size

t = (t1, . . . , td) ∈ Zd, if Px = Py for every pair of locations x = (x1, . . . , xd), y = (y1, . . . , jd) ∈ [[k]]d

such that xi ≡ yi (mod |ti|) ∀i ∈ [d]. The following claim is straightforward to verify.

Claim 7.17. [Shifted occurrences imply a cyclic pattern] If M contains two overlapping occurrences

of A, at a relative offset of t ∈ Zd, then P has a cycle of size t.

Claim 7.18. [Central bit flip creates few new occurrences] Flipping the central bit of a P -occurrence

in A creates at most 2d new occurrences of P in A.

We first show how to use these claims to finish the proof. Consider the sets A,B after the

procedure ends. The procedure flips |A|+ |B| bits in A, so |A|+ |B| ≥ dP (A)nd. On the other hand,

|A| ≤ iP (A)nd ≤ (2n)dhP (A) as A is 1/2-independent. Claim 7.18 now implies that |B| ≤ 2d|A|,
and we get that

nddP (A) ≤ |A|+ |B| ≤ (2d + 1)|A| ≤ αdndhP (A)

Dividing by nd yields the desired inequality. We now prove the claims.

Proof of Claim 7.16. Let S be a 1/2-independent set of P -copies in A, which is of size iP (A). We

will show that no point in [[n]]d is contained in more than 2d copies from S, implying that to hit

all copies of P in A (and in particular, all copies of P in S) we will need at least |S|/2d = iP (A)/2d

entries. Suppose to the contrary that there are 2d + 1 copies from S that contain the point

x = (x1, . . . , xd) ∈ [[n]]d. we will say that a copy from S containing x is i-lower if k/2 ≤ xi− yi < k

and i-higher if 0 ≤ xi − yi < k/2 (note that 0 ≤ xi − yi < k must hold). Therefore, there exist

two copies Q,Q′ ∈ S containing x, starting at (y1, . . . , yd) and (y′1, . . . , y
′
d) respectively, such that

for any 1 ≤ i ≤ d, Q is i-higher (i-lower) if and only if Q′ is i-higher (i-lower respectively). But

then, for any i, either 0 ≤ yi, y
′
i < k/2 or k/2 ≤ yi, y

′
i < k, implying that |yi − y′i| < k/2, thus

contradicting the fact that S is 1/2-independent.

Proof of Claim 7.18. Assume that more than 2d new occurrences are created. Since these occur-

rences overlap (at the bit flip location),the same argument as in Claim 7.16 implies that there must

be two of them, P1 and P2, that are shifted (one from the other) by some vector t ∈ Zd, where

|ti| < k/2 ∀i ∈ [d]. By Claim 7.17, P (and hence also P1 and P2) has a cycle of size t. Let x be the

point in M of the (central) flipped bit in P0 and consider the point x′ = x+ t, which is also in P0,

since |ti| < k/2 ∀1 ≤ i ≤ k. The occurrence P2 overlaps both locations x and x′ (since both new

occurrences P1 and P2 overlap the bit flip location x and P2 is shifted by t from P1, which overlaps

167

x). On one hand we have Mx = Mx′ (before the bit flip), since both locations belong to P0, which

has a cycle of size t. On the other hand, Mx 6= Mx′ , since these locations both belong to P2 and

must be equal after flipping Mx as P2 has a cycle length of t. This leads to a contradiction.

The proof of the lemma is now complete by combining the above claims.

7.4 Tests for Pattern Freeness

We describe efficient tests for both the one-dimensional and the d-dimensional removable patterns

that have tolerance and query complexity that only depend on d (and not on k; using a completely

naive test, it can be seen that the tolerance and the query complexity depend on k). The tests

essentially approximate the hitting number, which is related to the deletion number by the char-

acterizations that were shown in Section 7.3. We start by presenting the distance approximation

algorithm for P -freeness, which has both additive and multiplicative errors.

Theorem 7.19 (Approximating the deletion number in one dimension). Let P be a removable

string of length k and fix constants 0 < τ < 1, 0 < δ < 1/k. Let h1, h2 : [0, 1]→ [0, 1] be defined as

h1(ε) = (1− τ)ε− δ and h2(ε) = ε+ δ. There exists an (h1, h2)-distance approximation algorithm

for P -freeness with query complexity and running time of O(1/kτδ2).

Note that dP (S) = hP (S) ≤ n/k always holds, so having an additive error parameter of δ ≥ 1/k

is pointless. The proof of Theorem 7.19 can be adapted to derive (ε1, ε2)-tolerant tests for any

0 ≤ ε1 < ε2 ≤ 1, which we describe in Theorem 7.20.

Theorem 7.20. Let P be a removable string of length k and let 0 ≤ ε1 < ε2 ≤ 1. There exists an

(ε1, ε2)-tolerant tester whose number of queries and running time are O(ε2
2/(ε2 − ε1)3) where the

constant term does not depend on k.

Corollary 7.21 (Multiplicative tolerant test for pattern freeness in 1D). Fix 0 < τ < 1. For any

0 < ε ≤ 1 there exists a ((1 − τ)ε, ε)-tolerant test whose number of queries and running time are

O(ε−1τ−3).

It is not clear whether this upper bound is tight in general. However, for the important special

case of tolerant testers with multiplicative tolerance of 1 + τ , where τ > 0 is a constant, the above

tester is optimal (up to a multiplicative constant that depends on τ), as is shown by taking ε2 = ε

and ε1 = (1− τ)ε in Theorem 7.20, leading to the multiplicative tester given in Corollary 7.21.

Proof of Theorems 7.19 and 7.20. Let S be a string of length n ≥ βk, where β = 3/τ . Write

ε = δP (S) and let H ⊆ [[n]] be a hitting set for P in S whose size is εn. That is, H is a minimal

set of locations that satisfies the following: if S contains a copy of P starting at location l, then

{l, . . . , l+ k− 1}∩H 6= φ. For i ∈ [[n]] let Ii denote the “cyclic interval” of length βk starting at i.

That is, if i+βk > n then Ii = {i, . . . , n}∪{0, . . . , i+βk−n−1} and otherwise Ii = {i, . . . , i+βk−1}.

168

Let the random variable X denote the size of the minimal hitting set Hi for P in the interval Ii,

divided by βk, where i ∈ [[n]] is chosen uniformly at random. Note that X is computable in time

O(βk), by Theorem 7.11. Let µ and σ2 denote the expectation and the variance of X, respectively.

By the minimality of Hi, we have that |Hi| ≤ |H ∩ Ii| since the set in the RHS is a hitting set for

P with respect to the interval Ii. Thus, µ ≤ E[|H ∩ Ii|]/βk = ε. Next we bound µ from below.

Since Hi hits all P -copies that lie exclusively inside Ii, and by the minimality of H, we must have

|Hi| > |H ∩ I ′i| where I ′i is the cyclic interval that starts in i + k and ends in (i + (β − 1)k − 1)

mod n. Therefore, µ ≥ E[H ∩ I ′i]/βk = (1 − 2/β)ε ≥ (1 − τ)ε. To conclude, we have seen that

(1− τ)ε ≤ µ ≤ ε. To compute the variance of X, note that 0 ≤ X ≤ 1/k, as there exist β entries

in Ii such that any sub-interval of length k in Ii contains at least one of them. By convexity, the

variance satisfies σ2 ≤ kµ(1/k−µ)2 +(1−kµ)(0−µ)2 = µ(1/k−µ) ≤ ε/k. Now let Y = 1
t

∑t
j=1Xj

where the Xj are independent copies of X and t will be determined later. Then E[Y] = µ and

Var(Y) = σ2/t ≤ ε/kt.
Recall that (1 − τ)ε ≤ µ ≤ ε, so to get the desired approximation, it suffices to estimate Y

with an additive error of no more than δ with constant probability. Chebyshev’s inequality implies

that it suffices to have V ar(Y) = Θ(δ2). In other words, it will be enough to sample t = Θ(ε/kδ2)

blocks, each of size βk = Θ(k/τ). In total, it is enough to make Θ(kε(1/k − ε)/τδ2) = O(ε/τδ2)

queries. In the setting of approximation, ε is not known in advance, but ε ≤ 1/k always holds, so

sampling t = Θ(1/k2δ2) blocks would suffice to get the desired additive error. The return value of

the approximation algorithm will be its estimate of Y . The query complexity and running time are

βtk = Θ(1/kτδ2). This finishes the proof of Theorem 7.19.

Now consider the setting of (ε1, ε2)-tolerant testing. By monotonicity of the tester, we can

assume that we are given a string whose distance from P -freeness is either exactly ε2 or exactly

ε1. Pick ε = ε2, δ = (ε2 − ε1)/4, τ = (ε2 − ε1)/4ε2, and sample t = Θ(ε/kδ2) blocks, with query

complexity and running time Θ(ε/τδ2) = Θ(ε2
2/ε2 − ε1

3), as was stated above. If the given string S

is ε2-far from P -freeness, then with probability at least 2/3, after sampling t = Θ(ε/τδ2) samples,

the value of Y will be bigger than (ε2) ∗ (1− τ)− δ = (ε2 + ε1)/2. On the other hand, if S is ε-close

then with probability at least 2/3, Y ≤ ε1 + δ < (ε2 + ε1)/2 Therefore, the tester will answer that

the input is ε2-far if and only if Y ≥ (ε2 + ε1)/2. This concludes the proof of Theorem 7.20.

For the multidimensional case, our distance approximation algorithm and tolerant test for P -

freeness are given in Theorems 7.22 and 7.23. As their technical details are very similar to those

in the 1D case, we provide only a sketch of the main ideas.

Theorem 7.22 (Approximating the deletion number in multidimensional arrays). Let P be a re-

movable (k, d)-array and fix constants 0 < τ ≤ 1, 0 ≤ δ ≤ 1/kd. Let h1, h2 : [0, 1]→ [0, 1] be defined

as h1(ε) = (1 − τ)dα−1
d ε − δ and h2(ε) = ε + δ. There exists an (h1, h2)-distance approximation

algorithm for P -freeness making at most γ/kdτdδ2 queries, where γ > 0 is an absolute constant,

and has running time ζτ/k
dδ2 where ζτ is a constant depending only on τ .

169

Theorem 7.23 (Multiplicative tolerant test for pattern freeness in multidimensional arrays). Fix

0 < τ ≤ 1 and let P be a removable (k, d)-array. For any 0 < ε ≤ 1 there exists a ((1− τ)dα−1
d ε, ε)-

tolerant test making Cτε
−1 queries, where Cτ = O(1/τd(1− (1−τ)d)2). The running time is C ′τε

−1

where C ′τ depends only on τ .

Proof sketch for Theorems 7.22 and 7.23. Take β = 2/τ . Let A be an (n, d)-array where we may

assume that n ≥ βk for a suitable choice of C. Again, the strategy is to take t (to be determined)

independent samples of blocks of size βk × . . . × βk and compute the hitting number of each

sampled block. Note that (as opposed to the one-dimensional case), computing the minimal hitting

set is generally an NP -complete problem, but since the hitting number of each of these blocks

is at most βd = Θ(τ−d), here we may compute it with running time that depends only on τ

and d. As in the 1D case, the expected relative hitting number µ of a sampled block satisfies

(1 − τ)dhP (A) = (1 − 2/β)dhP (A) ≤ µ ≤ hP (A). The variance of the hitting number for a single

sample is no bigger than kd(1/kd − µ)2 + (1 − kdµ)µ2 = µ(1/kd − µ) ≤ µ/kd, so for t samples it

is O(hP (A)/kdt). To get additive error of at most δ with constant probability, we may have (by

Chebyshev’s inequality) hP (A)/kdt = Θ(δ2), or t = Θ(hP (A)/kdδ2).

Therefore, for an approximation algorithm (in which we don’t know hP (A) in advance, though

we have an upper bound of hP (A) ≤ 1/kd), t = Θ(k−2dδ−2) sampled blocks are enough, and the

total number of samples is O(1/kdτdδ2). For a ((1− τ)dε, ε)-tolerant tester for the hitting number

(which translates to a ((1 − τ)dα−1
d ε, ε)-tolerant tester for the deletion number), as observed in

the 1D case, when deciding on the number of samples we may assume that hP (A) = ε and pick

δ = Θ((1−(1−τ)d)ε) , so t = Θ(ε/kdδ2) = Θ(1/kd(1−(1−τ)d)2ε) sampled block suffice. Since each

block is of size Θ(kd/τd), the total number of queries is O(Cτε
−1) where Cτ = 1/τd(1− (1− τ)d)2,

while the running time is C ′τε
−1, where C ′τ depends on the time required to compute the hitting

number in a single sampled block.

7.5 Discussion and Open Questions

This chapter address the property of pattern-freeness for a single forbidden pattern. Naturally, the

problem of approximate pattern matching is an intriguing venue for further research and might

be of practical interest. While recent results by Chan et al. [49] (see also [134]) address a related

problem in one dimension, efficient testing for approximate pattern matching in higher dimensions

is left as an open problem. The family of forbidden patterns for this problem might consist of a

pattern and all patterns that are close enough to it, and the distance measures between patterns

might also differ from the Hamming distance (e.g., `1 distance for grey-scale patterns).

It is also desirable to settle the problem of testing pattern freeness for the almost homogeneous

case by either finding an efficient test for the almost homogeneous multi dimensional case, or proving

that an efficient test cannot exist for such patterns. Additionally, it is of interest to examine which

of the [[k]]d patterns with k < 3 · 2d are removable.

170

Chapter 8

Conclusions

In this thesis, we conduct a systematic study of property testing in data with complex structure, a

topic that has not been well-understood throughout the years. The contributions span several new

concepts and new types of results in multiple objects of interest, including:

Structural characterizations We prove several wide structural results that lead to new efficient

property testing algorithms for very general classes of properties, including all hereditary

properties of 2D structured objects (Chapter 2) and all local properties of one- and multi-

dimensional arrays (Chapter 6). Such general testability results were known before only for

objects that exhibit inherent symmetry, like unordered graph properties and symmetric distri-

bution properties, and were missing for objects with complex structure. The characterizations

obtained here can roughly be divided into two types.

The first type, exhibited in Chapter 2, substantially extends important characterizations from

the unordered regime (i.e., for unordered graph properties) to the ordered regime by com-

pletely relaxing the need for symmetry in the combinatorial techniques and proofs. Informally,

this type of extension suggests that “ultimately global” properties of structured objects be-

have in high-level quite similarly to symmetric properties of unordered objects. Following

the results of Chapter 2, this was subsequently explored in recent years to obtain a relatively

good understanding of what makes global properties testable in ordered structures [24, 25].

The second type, described in Chapter 6, is entirely new and does not resemble any char-

acterizations from the unordered/symmetric setting. Instead, it takes a new perspective on

property testing which relies on a new, seemingly useful, notion of locality discussed below.

What is testable? One of the central barriers to good understanding of structured property

testing has been a lack of relevant notions and definitions. Indeed, to understand “what is

testable”, one needs to define classes of properties of interest, with a shared trait that al-

lows for efficient testability. In Chapter 6, we define the class of local properties, and show

that numerous interesting properties are local: monotonicity, Lipschitz continuity, convex-

171

ity, submodularity, and others. Notably, a corresponding definition for “global” properties,

the earthmover-resilient ones, has been defined outside the context of this thesis [24]. The

combination of these two families already captures a lot of the properties of interest in the

structured setting.

Surprising combinatorial phenomena Property testing in structured settings usually reveals

beautiful and surprising combinatorial phenomena that were not previously evident in other

contexts. The best examples in this thesis are perhaps the results in the second part, on

detecting structural patterns in sequential data, and especially the non-adaptive pattern-

dependent lower bounds (based on stitching and other interesting combinatorial parameters,

see Chapter 3) and the structural decomposition results for monotone patterns (see Chapter 3

and, to a lesser extent, Chapter 4). This phenomenon is also clearly evident in the third part,

in our study of locality, where property testing algorithms benefit from a rather unorthodox

non-explicit perspective on the data via the structure of boundaries (Chapter 6) or from a

new family of combinatorial arguments, so-called modification lemmas (Chapter 7).

Adaptivity Assessing to what extent adaptivity helps in general is perhaps the most important

challenge in structured property testing. However, understanding adaptivity seems very dif-

ficult in general: on the one hand, non-adaptive algorithms are usually tightly connected

to the combinatorial characteristics of the problem, with a smaller algorithmic component,

which makes proving upper and especially lower bounds much easier. On the other hand,

proving upper bounds for adaptive algorithms typically require both excellent combinatorial

understanding of the problem and new algorithmic ideas, and obtaining any non-trivial lower

bounds for them (beyond the most basic properties like monotonicity testing) is a major open

problem. In this thesis we make a preliminary step in utilizing the power of adaptivity. Spe-

cifically, in Chapter 4, we show how strong structural characterizations can be combined with

wishful thinking algorithms to yield an effective adaptive algorithm for detecting monotone

patterns in sequential data.

8.1 Central Open Problems

While this thesis makes several steps forward in the systematic investigation of structured property

testing, the field is still at a relatively early stage, and many central and interesting problems are

still wide open. Various open problems are scattered along the different chapters, specifically in

Sections 2.1, 5.1.3, 6.1.5, and 7.5. Below, we summarize the directions for future research which

we believe are the most interesting.

172

8.1.1 The Quest for Adaptivity

Perhaps the most important challenge in this regime is to understand the power of adaptive al-

gorithms, and how it compares to non-adaptive ones. With the possible exception of Chapter 2

(where adaptivity doesn’t help much [24, 86]), it is plausible that for all main directions of research

explored in this thesis, adaptivity should help immensely. Here we present several central open

questions regarding adaptivity.

Adaptive detection of patterns in sequential data The first open question, posed by New-

man et al. [108, 109] and discussed in detail in Chapter 5, asks the following.

Is it true that for any order pattern π of fixed length, detecting a π-copy in a sequence

that is Θ(1)-far from π-freeness requires a number of queries that is only polylogarithmic

in the sequence length?

A positive answer (which we believe holds here) would be a major breakthrough, not only because of

the conceptual message that structure can be explored adaptively very effectively, but also because

non-adaptive algorithms are very weak here: in Chapter 5 we have seen that most patterns of

length k require Θ(n1−1/(k−Θ(1))) non-adaptive queries, a minimal improvement over the trivial

sampling-based algorithm.

Adaptivity for local properties The other major questions on adaptivity relate to local prop-

erties. In Chapter 6, we mention that the non-adaptive generic algorithm for local properties is

optimal among non-adaptive algorithms for any fixed dimensionality d, and ask whether adaptive

algorithms can break this barrier. Specifically, we ask the following.

Is it true that any O(1)-local property of d-dimensional arrays over [n] is testable with

f(d) · g(n) adaptive queries, where f(d) depends only on d, and g(n) depends only

(reasonably) on n?

This should be compared to the tight Θ(nd−1) non-adaptive query complexity, and would imply

that an effective domain size reduction can be achieved with adaptivity.

Adaptivity and convexity Finally, the problem of convexity testing poses a major challenge

with respect to adaptivity. This important property, very relevant for the field of optimization,

seems very challenging to attack from the property testing perspective. Our non-adaptive up-

per bound of O(nd−1) is the first sublinear upper bound known for convexity testing in multiple

dimensions, and was very recently shown to be tight non-adaptively for d = 2 by Belovs, Blais

and Bommireddi [20]. However, for adaptive algorithms no such limitations are known, and the

following was asked in [20]:

173

Can two-dimensional convexity testing be conducted with a polylogarithmic number of

adaptive queries?

This would, again, imply an exponential separation from the Θ(n) non-adaptive query complexity.

In higher-dimensional convexity testing, one may guess (see [20]) that the adaptive query complexity

is of the form f(d) · g(n) as suggested above, where g(n) might be only polylogarithmic in n, and

f(d) is at most exponential (and perhaps even polynomial) in d. In contrast, for non-adaptive

algorithms, an nΩ(d) lower bound is proved in [20].

8.1.2 Better Structural Understanding

In several occasions throughout the thesis, the structural understanding we currently have leaves

much to be desired. In these cases, better structural understanding would lead to more efficient

algorithms or to a wider applicability of the currently known algorithms.

Efficient matrix removal lemma The results in Chapter 2 show that any hereditary property

of ordered graphs and matrices is testable with a constant number of queries. However, this number

of queries, while technically independent of the graph or matrix size, is enormous: it is at least

a wowzer (tower of tower) type in the proximity parameter ε, as it relies on strong variants of

Szemerédi regularity lemma. In 2007, Alon, Fischer, and Newman [8] devised an efficient regularity

lemma for ordered binary matrices, where the dependence between the parameters is polynomial.

They used this lemma to show that any unordered binary matrix property characterized as F -

freeness for a finite family F of forbidden submatrices has a removal lemma with polynomial

dependence in ε, which leads to poly(1/ε)-query tests for all such properties. They posed the

ordered analogue as an open problem. In [6], some progress is made towards settling this question,

by proving a removal lemma for all “semi-ordered” properties of this type. The problem in its

full generality, of proving efficient removal lemmas for the ordered case, is however wide open. We

phrase a seemingly simple special case of this question from [8], where the forbidden family F
consists of just a single forbidden submatrix F .

Consider the property of F -freeness in binary matrices, where F is a single, fixed size

forbidden matrix. Does this property satisfy a removal lemma where the dependence

between the parameters is polynomial? if not, what about an exponential dependence?

We conclude by mentioning that the proof from Chapter 2 can be combined with the efficient

regularity lemma from [8] to obtain a tower-type bound (instead of a wowzer-type one) for binary

matrices. Perhaps the first step would be to refine this proof so as to obtain a bound with a tower

of constant height (e.g., a doubly-exponential bound).

Extending the modification lemma In Chapter 7, we prove that nearly all consecutive pat-

terns in d dimensions (except for the almost homogeneous ones), of side length at least 2 ·3d, satisfy

174

a modification lemma. As the only known lower bound asserts that the side length should be at

least 3, there is a huge gap here. It is thus natural to ask the following.

Can one obtain a full characterization of those patterns that satisfy a modification

lemma? In particular, is it true that for any pattern of side length at least, say, 10,

which is not almost homogeneous, a modification lemma holds?

As the property of approximate pattern freeness described in the same chapter is also of interest,

we ask the following.

In what situations can a modification lemma type argument be proved for the property

of approximate pattern freeness?

Modification lemmas also seem relevant for applications in computational biology, where one wishes

to efficiently “clean” a genetic sequence from instances of forbidden patterns, e.g. due to the need to

produce sequences without problematic substrings that can trigger the immune system. We leave

the general task of exploring modification lemmas in computational biology for future research.

Pattern-dependent upper bounds for sequential data The results in Chapter 5 demonstrate

a pattern-dependent lower bound for detecting general (i.e., non-monotone) patterns with non-

adaptive algorithms. However, at this point the generic algorithms we have are only known to

be optimal for the hardest patterns, and do not take the structure of the pattern into account.

This is in contrast to the lower bound side, where we have a relatively good understanding of non-

adaptive algorithms, via the unique signed partition number (USPN) parameter that we devise.

To summarize, our question here is as follows.

How can one devise non-adaptive algorithms (upper bounds) for sequential pattern de-

tection that take the structure of the particular pattern into account?

175

176

Bibliography

[1] P. Afshani, K. Matulef, and B. T. Wilkinson. Property testing on linked lists. Electronic

Colloquium on Computational Complexity (ECCC), 20:187, 2013.

[2] N. Ailon, B. Chazelle, C. Seshadhri, and D. Liu. Estimating the distance to a monotone

function. Random Structures & Algorithms, 31:371–383, 2007.

[3] N. Alon. Testing subgraphs in large graphs. Random Structures & Algorithms, 21:359–370,

2002.

[4] N. Alon, O. Ben-Eliezer, and E. Fischer. Testing hereditary properties of ordered graphs

and matrices. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science

(FOCS), pages 848–858, 2017.

[5] N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster. The algorithmic aspects of the

regularity lemma. Journal of Algorithms, 16:80–109, 1994.

[6] N. Alon and O. Ben Eliezer. Efficient removal lemmas for matrices. Order, 37:83–101, 2020.

[7] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs. Com-

binatorica, 20:451–476, 2000.

[8] N. Alon, E. Fischer, and I. Newman. Efficient testing of bipartite graphs for forbidden induced

subgraphs. SIAM Journal on Computing, 37:959–976, 2007.

[9] N. Alon, E. Fischer, I. Newman, and A. Shapira. A combinatorial characterization of the

testable graph properties: it’s all about regularity. SIAM Journal on Computing, 39:143–167,

2009.

[10] N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are testable with a

constant number of queries. SIAM Journal on Computing, 30:1842–1862, 2001.

[11] N. Alon and A. Shapira. Every monotone graph property is testable. In Proceedings of the

37th Annual ACM Symposium on Theory of Computing (STOC), pages 128–137, 2005.

177

[12] N. Alon and A. Shapira. A characterization of the (natural) graph properties testable with

one-sided error. SIAM Journal on Computing, 37:1703–1727, 2008.

[13] N. Alon and J.H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016.

[14] A. Amir and G. Benson. Two-dimensional periodicity in rectangular arrays. SIAM Journal

on Computing, 27:90–106, 1998.

[15] A. Amir, G. Benson, and M. Farach. An alphabet independent approach to two-dimensional

pattern matching. SIAM Journal on Computing, 23:313–323, 1994.

[16] P. Awasthi, M. Jha, M. Molinaro, and S. Raskhodnikova. Testing Lipschitz functions on

hypergrid domains. Algorithmica, 74:1055–1081, 2012.

[17] M. Axenovich, Y. Person, and S. Puzynina. A regularity lemma and twins in words. Journal

of Combinatorial Theory, Series A, 120:733–743, 2013.

[18] A. Belovs. Adaptive Lower Bound for Testing Monotonicity on the Line. In Approxim-

ation, Randomization and Combinatorial Optimization. Algorithms and Techniques (AP-

PROX/RANDOM), pages 31:1–31:10, 2018.

[19] A. Belovs and E. Blais. Quantum algorithm for monotonicity testing on the hypercube.

Theory of Computing, 11:403–412, 2015.

[20] A. Belovs, E. Blais, and A. Bommireddi. Testing convexity of functions over finite domains.

In Proceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

2030–2045, 2020.

[21] O. Ben-Eliezer. Testing local properties of arrays. In Proceedings of the 10th Conference on

Innovations in Theoretical Computer Science (ITCS), pages 11:1–11:20, 2019.

[22] O. Ben-Eliezer, C. Canonne, S. Letzter, and E. Waingarten. Finding monotone patterns

in sublinear time. In IEEE 60th Annual Symposium on Foundations of Computer Science

(FOCS), pages 1469–1494, 2019.

[23] O. Ben-Eliezer and C. L. Canonne. Improved bounds for testing forbidden order patterns.

In Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

2093–2112, 2018.

[24] O. Ben-Eliezer and E. Fischer. Earthmover resilience and testing in ordered structures.

In Proceedings of the 33rd Computational Complexity Conference (CCC), pages 18:1–18:35,

2018.

[25] O. Ben-Eliezer, E. Fischer, A. Levi, and Y. Yoshida. Limits of ordered graphs and their

applications. arXiv preprint arXiv:1811-02023, 2018.

178

[26] O. Ben-Eliezer, S. Korman, and D. Reichman. Deleting and testing forbidden patterns in

multi-dimensional arrays. In Proceedings of the 44th International Colloquium on Automata,

Languages and Programming (ICALP), 2017.

[27] O. Ben-Eliezer, S. Letzter, and E. Waingarten. Optimal adaptive detection of monotone

patterns. arXiv preprint arXiv:1911-01169, 2019.

[28] B. A. Berendsohn, L. Kozma, and D. Marx. Finding and counting permutations via CSPs.

In 14th International Symposium on Parameterized and Exact Computation (IPEC), volume

148, pages 1:1–1:16, 2019.

[29] P. Berman, M. Murzabulatov, and S. Raskhodnikova. Constant-time testing and learning of

image properties. arXiv preprint arXiv:1503-01363, 2015.

[30] P. Berman, M. Murzabulatov, and S. Raskhodnikova. Tolerant testers of image properties. In

Proceedings of the 43th International Colloquium on Automata, Languages and Programming

(ICALP), pages 90:1–90:14, 2016.

[31] P. Berman, M. Murzabulatov, and S. Raskhodnikova. Testing convexity of figures under the

uniform distribution. Random Structures & Algorithms, 54:413–443, 2019.

[32] P. Berman, S. Raskhodnikova, and G. Yaroslavtsev. Lp-testing. In Proceedings of the 46th

ACM Symposium on the Theory of Computing (STOC), pages 164–173, 2014.

[33] H. Black, D. Chakrabarty, and C. Seshadhri. A o(d)·polylogn monotonicity tester for boolean

functions over the hypergrid [n]d. In Proceedings of the 29th ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 2133–2151, 2018.

[34] E. Blais and A. Bommireddi. Testing submodularity and other properties of valuation func-

tions. In Proceedings of the 8th Conference on Innovations in Theoretical Computer Science

(ITCS), pages 33:1–33:17, 2017.

[35] E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication com-

plexity. Computational Complexity, 21:311–358, 2012.

[36] E. Blais, S. Raskhodnikova, and G. Yaroslavtsev. Lower bounds for testing properties of

functions over hypergrid domains. In Proceedings of the 29th Conference on Computational

Complexity (CCC), pages 309–320, 2014.

[37] C. Borgs, J. Chayes, L. Lovász, V. T. Sós, B. Szegedy, and K. Vesztergombi. Graph limits and

parameter testing. In Proceedings of the 38th ACM Symposium on the Theory of Computing

(STOC), pages 261–270, 2006.

179

[38] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Communications of the ACM,

20:762–772, 1977.

[39] A. Brandstadt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. Monographs on Discrete

Mathematics and Applications. Society for Industrial and Applied Mathematics, 1999.

[40] J. Briët, S. Chakraborty, D. Garćıa-Soriano, and A. Matsliah. Monotonicity testing and

shortest-path routing on the cube. Combinatorica, 32:35–53, 2012.

[41] C. L. Canonne, E. Grigorescu, S. Guo, A. Kumar, and K. Wimmer. Testing k-monotonicity.

In Proceedings of the 8th Conference on Innovations in Theoretical Computer Science (ITCS),

pages 29:1–29:21, 2017.

[42] C. L. Canonne and Tom Gur. An adaptivity hierarchy theorem for property testing. Com-

putational complexity, 27:671–716, 2018.

[43] D. Chakrabarty. Monotonicity testing. In M. Kao, editor, Encyclopedia of Algorithms, pages

1352–1356. Springer Berlin Heidelberg, 2014.

[44] D. Chakrabarty, K. Dixit, M. Jha, and C. Seshadhri. Property testing on product distribu-

tions: optimal testers for bounded derivative properties. ACM Transactions on Algorithms,

13:20:1–20:30, 2017.

[45] D. Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz testing

over hypercubes and hypergrids. In Proceedings of the 45th ACM Symposium on the Theory

of Computing (STOC), pages 419–428, 2013.

[46] D. Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing over

hypergrids. Theory of Computing, 10:453–464, 2014.

[47] D. Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for boolean functions over

the hypercube. SIAM Journal on Computing, 45:461–472, 2016.

[48] D. Chakrabarty and C. Seshadhri. Adaptive boolean monotonicity testing in total influence

time. In Proceedings of the 10th Conference on Innovations in Theoretical Computer Science

(ITCS), pages 20:1–20:7, 2019.

[49] T. M. Chan, S. Golan, T. Kociumaka, T. Kopelowitz, and E. Porat. Approximating text-to-

pattern hamming distances. In Proccedings of the 52nd Annual ACM SIGACT Symposium

on Theory of Computing (STOC), pages 643–656, 2020.

[50] X. Chen, A. De, R. A. Servedio, and L. Tan. Boolean function monotonicity testing requires

(almost) n1/2 non-adaptive queries. In Proceedings of the 47th ACM Symposium on the Theory

of Computing (STOC), pages 519–528, 2015.

180

[51] X. Chen, A. Freilich, R. A. Servedio, and T. Sun. Sample-based high-dimensional convexity

testing. In Approximation, Randomization and Combinatorial Optimization. Algorithms and

Techniques (APPROX/RANDOM), pages 37:1–37:20, 2017.

[52] X. Chen, R. A. Servedio, and L. Tan. New algorithms and lower bounds for monotonicity

testing. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer

Science (FOCS), pages 285–295, 2014.

[53] X. Chen, E. Waingarten, and J. Xie. Beyond Talagrand functions: new lower bounds for

testing monotonicity and unateness. In Proceedings of the 49th ACM Symposium on the

Theory of Computing (STOC), pages 523–536, 2017.

[54] Richard Cole. Tight bounds on the complexity of the boyer–moore string matching algorithm.

SIAM Journal on Computing, 23:1075–1091, 1994.

[55] D. Conlon and J. Fox. Bounds for graph regularity and removal lemmas. Geometric and

Functional Analysis, 22:1191–1256, 2012.

[56] D. Conlon and J. Fox. Graph removal lemmas. In Surveys in Combinatorics, 2013.

[57] D. Conlon, J. Fox, C. Lee, and B.Sudakov. Ordered ramsey numbers. Journal of Combinat-

orial Theory, Series B, 122:353–383, 2017.

[58] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq, W. Plandowski, and

W. Rytter. Speeding up two string-matching algorithms. Algorithmica, 12:247–267, 1994.

[59] P. Damaschke. Forbidden ordered subgraphs. In Rainer Bodendiek and Rudolf Henn, editors,

Topics in Combinatorics and Graph Theory: Essays in Honour of Gerhard Ringel, pages 219–

229. Physica-Verlag HD, 1990.

[60] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,

51:161–166, 1950.

[61] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica,

2:463–470, 1935.

[62] F. Ergün and H. Jowhari. On the monotonicity of a data stream. Combinatorica, 35:641–653,

2015.

[63] F. Ergün, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Vishwanthan. Spot-checkers.

Journal of Computer and System Sciences, 60:717–751, 2000.

[64] C. Even-Zohar and C. Leng. Counting small permutation patterns. arXiv preprint

arXiv:1911-01414, 2019.

181

[65] U. Feige, T. Koren, and M. Tennenholtz. Chasing ghosts: Competing with stateful policies.

SIAM Journal on Computing, 46:190–223, 2017.

[66] E. Fischer. On the strength of comparisons in property testing. Information and Computation,

189:107–116, 2004.

[67] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky.

Monotonicity testing over general poset domains. In Proceedings of the 34th ACM Symposium

on the Theory of Computing (STOC), pages 474–483, 2002.

[68] E. Fischer and I. Newman. Testing of matrix properties. In Proceedings of the Thirty-Third

Annual ACM Symposium on Theory of Computing (STOC), pages 286–295, 2001.

[69] E. Fischer and I. Newman. Testing of matrix-poset properties. Combinatorica, 27:293–327,

2007.

[70] E. Fischer and I. Newman. Testing versus estimation of graph properties. SIAM Journal on

Computing, 37:482–501, 2007.

[71] E. Fischer and E. Rozenberg. Lower bounds for testing forbidden induced substructures

in bipartite-graph-like combinatorial objects. In Approximation, Randomization and Com-

binatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), pages 464–478,

2007.

[72] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the plane

are NP-complete. Information Processing Letters, 12:133–137, 1981.

[73] J. Fox. A new proof of the graph removal lemma. Annals of Mathematics, 174:561–579, 2011.

[74] J. Fox. Stanley–Wilf limits are typically exponential. arXiv preprint arXiv:1310-8378, 2013.

Also: Advances in Mathematics, to appear.

[75] J. Fox and L. M. Lovász. A tight lower bound for szemerédi’s regularity lemma. Combinat-

orica, 37:911–951, 2017.

[76] A. Gál and P. Gopalan. Lower bounds on streaming algorithms for approximating the length

of the longest increasing subsequence. SIAM Journal on Computing, 39:3463–3479, 2010.

[77] Z. Galil, J. G. Park, and K. Park. Three-dimensional periodicity and its application to pattern

matching. SIAM Journal of Discrete Mathematics, 18:362–381, 2005.

[78] Z. Galil and J. Seiferas. Time-space-optimal string matching. Journal of Computer and

System Sciences, 26:280–294, 1983.

182

[79] L. Gishboliner and A. Shapira. Removal lemmas with polynomial bounds. In Proceedings of

the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 510–522,

2017.

[80] O. Goldreich, editor. Property Testing - Current Research and Surveys [outgrow of a workshop

at the Institute for Computer Science (ITCS) at Tsinghua University, January 2010], volume

6390 of Lecture Notes in Computer Science. Springer, 2010.

[81] O. Goldreich. Introduction to property testing. Cambridge University Press, 2017.

[82] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing monotonicity.

Combinatorica, 20:301–337, 2000.

[83] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning

and approximation. Journal of the ACM, 45:653–750, 1998.

[84] O. Goldreich and Tali Kaufman. Proximity oblivious testing and the role of invariances. In

O. Goldreich, editor, Studies in Complexity and Cryptography, pages 173–190. Springer Berlin

Heidelberg, 2011.

[85] O. Goldreich and D. Ron. On proximity-oblivious testing. SIAM Journal on Computing,

40:534–566, 2011.

[86] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Random

Structures & Algorithms, 23:23–57, 2003.

[87] P. Gopalan, T. S. Jayram, R. Krauthgamer, and R. Kumar. Estimating the sortedness of

a data stream. In Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 318–327, 2007.

[88] W.T. Gowers. Lower bounds of tower type for szemerédi’s uniformity lemma. Geometric and

Functional Analysis, 7:322–337, 1997.

[89] E. Grigorescu, A. Kumar, and K. Wimmer. Flipping out with Many Flips: Hardness of

Testing k-Monotonicity. In Approximation, Randomization and Combinatorial Optimization.

Algorithms and Techniques (APPROX/RANDOM), pages 40:1–40:17, 2018.

[90] S. Guillemot and D. Marx. Finding small patterns in permutations in linear time. In Pro-

ceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 82–101,

2014.

[91] G. Higman. Ordering by Divisibility in Abstract Algebras. Proceedings of the London Math-

ematical Society, s3-2:326–336, 1952.

183

[92] M. Jha and S. Raskhodnikova. Testing and reconstruction of Lipschitz functions with applic-

ations to data privacy. SIAM Journal on Computing, 42:700–731, 2013.

[93] S. Kalyanasundaram and A. Shapira. A wowzer type lower bound for the strong regularity

lemma. Proceedings of the London Mathematical Society, 106:621–649, 07 2011.

[94] J. Kärkkäinen and E. Ukkonen. Multidimensional string matching. In M. Kao, editor,

Encyclopedia of Algorithms, pages 559–562. Springer US, 2008.

[95] S. Khot, D. Minzer, and M. Safra. On monotonicity testing and boolean isoperimetric type

theorems. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer

Science (FOCS), pages 52–58, 2015.

[96] I. Kleiner, D. Keren, I. Newman, and O. Ben-Zwi. Applying property testing to an image

partitioning problem. IEEE Transactions on Pattern Analysis and Machine Intelligence,

33:256–265, 2011.

[97] D. E. Knuth. The Art of Computer Programming: Volume I: Fundamental Algorithms.

Pearson Education, 1997.

[98] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt. Fast pattern matching in strings. SIAM

Journal on Computing, 6:323–350, 1977.

[99] S. Korman, D. Reichman, G. Tsur, and S. Avidan. Fast-match: Fast affine template matching.

International Journal of Computer Vision, 121:111–125, 2017.

[100] T. Lecroq. Fast exact string matching algorithms. Information Processing Letters, 102:229–

235, 2007.

[101] L. Lovász. Large Networks and Graph Limits. American Mathematical Society colloquium

publications. American Mathematical Society, 2012.

[102] L. Lovász and B. Szegedy. Szemerédi’s lemma for the analyst. Geometric and Functional

Analysis, 17:252–270, 2007.

[103] S. Moriguchi and K. Murota. On discrete hessian matrix and convex extensibility. Journal

of the Operations Research Society of Japan, 1:48–62, 2012.

[104] G. Moshkovitz and A. Shapira. A short proof of Gowers’ lower bound for the regularity

lemma. Combinatorica, 36:187–194, 2016.

[105] K. Murota. Discrete Convex Analysis. Society for Industrial and Applied Mathematics, 2003.

[106] B. Nagle, V. Rödl, and M. Schacht. The counting lemma for regular k-uniform hypergraphs.

Random Structures & Algorithms, 28:113–179, 2006.

184

[107] T. Naumovitz and M. E. Saks. A polylogarithmic space deterministic streaming algorithm for

approximating distance to monotonicity. In Proceedings of the 26th ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 1252–1262, 2015.

[108] I. Newman, Y. Rabinovich, D. Rajendraprasad, and C. Sohler. Testing for forbidden or-

der patterns in an array. In Proceedings of the 28th ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 1582–1597, 2017.

[109] I. Newman, Y. Rabinovich, D. Rajendraprasad, and C. Sohler. Testing for forbidden order

patterns in an array. Random Structures & Algorithms, 55(2):402–426, 2019. Preliminary

version in SODA’17 [108].

[110] I. Newman and Christian Sohler. Every property of hyperfinite graphs is testable. SIAM

Journal on Computing, 42:1095–1112, 2013.

[111] R. K. S. Pallavoor, S. Raskhodnikova, and N. M. Varma. Parameterized property testing of

functions. ACM Transactions on Computation Theory, 9:17:1–17:19, 2018.

[112] M. Parnas, D. Ron, and R. Rubinfeld. On testing convexity and submodularity. SIAM

Journal on Computing, 32:1158–1184, 2003.

[113] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance approximation.

Journal of Computer and System Sciences, 72:1012–1042, 2006.

[114] L. Rademacher and S. Vempala. Testing geometric convexity. In Foundations of Software

Technology and Theoretical Computer Science (FSTTCS), pages 469–480, 2004.

[115] S. Raskhodnikova. Approximate testing of visual properties. In Approximation, Randomiz-

ation and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM),

pages 370–381, 2003.

[116] S. Raskhodnikova. Testing if an array is sorted. In M. Kao, editor, Encyclopedia of Algorithms,

pages 2219–2222. Springer Berlin Heidelberg, 2014.

[117] R. L. Rivest. On the worst-case behavior of string-searching algorithms. SIAM Journal on

Computing, 6:669–674, 1977.

[118] V. Rödl and J. Skokan. Regularity lemma for k-uniform hypergraphs. Random Structures &

Algorithms, 25:1–42, 2004.

[119] D. Ron. Property testing: A learning theory perspective. Foundations and Trends in Machine

Learning, 1:307–402, 2008.

[120] D. Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends in

Theoretical Computer Science, 5:73–205, 2009.

185

[121] D. Ron and G. Tsur. Testing properties of sparse images. ACM Transactions on Algorithms,

10, 2014.

[122] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to

program testing. SIAM Journal on Computing, 25:252–271, 1996.

[123] A. Rubinstein, S. Seddighin, Z. Song, and X. Sun. Approximation algorithms for lcs and

lis with truly improved running times. In IEEE 60th Annual Symposium on Foundations of

Computer Science (FOCS), pages 1121–1145, 2019.

[124] I. Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles.

Combinatorics (Proceedings of the Fifth Hungarian Colloquium, Keszthely, 1976), 2:939–945,

1978.

[125] M. Saks and C. Seshadhri. Space efficient streaming algorithms for the distance to monoton-

icity and asymmetric edit distance. In Proceedings of the 24th ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 1698–1709, 2013.

[126] M. Saks and C. Seshadhri. Estimating the longest increasing sequence in polylogarithmic

time. SIAM J. Comput., 46:774–823, 2017.

[127] C. Seshadhri and J. Vondrák. Is submodularity testable? Algorithmica, 69:1–25, 2010.

[128] R. Simion and F. W. Schmidt. Restricted permutations. European Journal of Combinatorics,

6:383–406, 1985.

[129] M. Sudan. Invariance in property testing. In O. Goldreich, editor, Property Testing: Current

Research and Surveys, pages 211–227. Springer Berlin Heidelberg, 2010.

[130] X. Sun and D. P. Woodruff. The communication and streaming complexity of computing the

longest common and increasing subsequences. In Proceedings of the 18th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 336–345, 2007.

[131] E. Szemerédi. Regular partitions of graphs. Problèmes combinatoires et théorie des graphes

(Interbational Coloquium of the CNRS, Orsay, 1976), pages 399–401, 1978.

[132] T. Tao. A variant of the hypergraph removal lemma. Journal of Combinatorial Theory,

Series A, 113:1257–1280, 2006.

[133] T. Tao. Structure and Randomness: Pages from Year One of a Mathematical Blog. American

Mathematical Society, 2008.

[134] P. Uznański. Approximating Text-To-Pattern Distance via Dimensionality Reduction. In 31st

Annual Symposium on Combinatorial Pattern Matching (CPM), pages 29:1–29:11, 2020.

186

[135] P. Valiant. Testing symmetric properties of distributions. In Proceedings of the 40th ACM

Symposium on the Theory of Computing (STOC), pages 383–392, 2008.

[136] J. van Leeuwen. Graph algorithms. In Handbook of Theoretical Computer Science (Vol. A):

Algorithms and Complexity, pages 525–631. MIT Press, 1991.

[137] V. Vatter. Permutation classes. In Handbook of Enumerative Combinatorics, chapter 12.

CRC Press, 2015.

[138] Y.Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky. Im-

proved testing algorithms for monotonicity. In Approximation, Randomization and Com-

binatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), pages 97–108,

1999.

187

תכונה זו היא מקומית, עם משפחה אסורה בעלת איבר אחד בלבד. המוטיבציה לחקר תכונה זו מגיעה מתחומים

ביולוגיה חישובית או ראיה ממוחשבת, בהם יש צורך משמעותי באלגוריתמים יעילים למציאת תבניות כגון

מקומיות בכמות גדולה של מידע. התוצאה המרכזית כאן היא אלגוריתם בדיקה יעיל לתכונה של אי הכלת תבנית

𝑃 מספר הדגימות של האלגוריתם תלוי במימד .𝑑 1-וכן לינארית ב/𝜀 לוי באך אינו ת-𝑛 בנוסף אנו מציגים .

קשה -𝑁𝑃מימד; במימדים גבוהים יותר, בעיה זו היא -אלגוריתם לחישוב מדויק של המרחק מקיום התכונה בחד

הבעיה של חישוב מדויק של המרחק ביעילות הינה רלוונטית בביולוגיה חישובית, לצרכים של ניקוי סדרות].72[

 פר קטן של שינויים ככל האפשר.מידע גנטי מתבניות בעייתיות תוך מס

, הוא הטענה הבאה: כמעט לכל תבנית למת השינויהגרעין המתמטי של ההוכחה, שאנו מכנים תשתית מתמטית.

, 𝑃כתבנית רצופה, קיים ערך במיקום כלשהו במופע זה של 𝑃המכיל מופע של 𝐴, ולכל מערך 𝑃גדולה מספיק

. מלמת שינוי כזו ניתן להוכיח למת הסרה, שכן כמסקנה ישירה 𝑃של ששינויו לא יגרום ליצירת עותקים חדשים

 כתבנית רצופה. 𝑃מאי הכלה של 𝐴הוא לפחות כמרחקה 𝐴-ב 𝑃שלה, מספר מופעי

 התוצאות המוצגות בחלק זה מבוססות על המאמר הבא. מקורות:

O. Ben-Eliezer, S. Korman, D.Reichman, Deleting and testing forbidden patterns in multi-

dimensional arrays, Proc. 44th International Colloquium on Automata, Languages and

Programming (ICALP), 2017, 9:1--9:14.

 אלגוריתם כללי לתכונות מקומיות

 .6מופיעות בפרק התוצאות המתוארות בפסקה זו

 𝑑-מקומיות ב-𝑘-צדדית, לבדיקת כל התכונות ה-אלגוריתם כללי, עם שגיאה חדהיא 6התוצאה המרכזית בפרק

𝑂מספר הדגימות הנדרש הוא סופי (לא בהכרח בגודל קבוע). Σמימדים, מעל כל אלפבית ቀ

ఌ
⋅ log

ఌ

ቁ במקרה

-מימדי, ו-החד

ఌభ/
⋅ ൫𝑂(𝑛)൯

ௗିଵ
𝑑עבור > ,𝑘מימדים. בפרט, עבור 1 𝜀 קבועים, החסמים המתאימים הינם

𝑂(log 𝑛) ו- 𝑂(𝑛ௗିଵ) .כן , במימד אחד ותכונותהחסמים המתקבלים הדוקים עבור מגוון רחב של בהתאמה

לינאריים לבדיקת -כמקרה פרטי של אלגוריתם כללי זה, מתקבלים אלגוריתמים תת במימדים גבוהים יותר.

 .]20[שונים לבדיקת תכונות אלולינאריים הרא-ו האלגוריתמים התתמודולוריות במימדים גבוהים. אל-קמירות ותת

] לכך שמונוטוניות ניתנת לבדיקה באמצעות 63נתבונן בהוכחה הקלאסית של ארגון ואחרים [תשתית מתמטית.

𝑂(log 𝑛) דגימות לא אדפטיביות. נבחר איבר אקראי𝑖 ∈ [𝑛] ונבצע חיפוש בינארי דמיוני על איברי ,[𝑛]ת , שנקוד

𝑄. תהא 𝑖-ההתחלה שלו היא מרכז המערך והוא מסתיים ב ⊆ [𝑛] קבוצת האיברים שבהם ביקרנו במהלך

תמצא 𝑄רחוקה ממונוטוניות, אזי דגימת כל איברי -𝜀] היא שאם הסדרה הינה 63התהליך. הטענה המרכזית של [

 ה על ידי האלגוריתם.לפחות הוכחה לכך שהסדרה אינה מונוטונית, ובכך תגרום לדחיית 𝜀בהסתברות

אנו מראים כי באופן מפתיע, הרעיון המתואר לעיל לבדיקת מונוטוניות מתאים לבדיקת כל תכונה מקומית. לשם

𝑑נוחות, נתבונן במקרה הפשוט ביותר, בו = 1, 𝑘 = אם, כאשר אינו בר תיקוןמערך עוקב -נאמר שתת. 2

מקבעים את ערכי הקצה של תת המערך (ערך ההתחלה וערך הסיום), אך מאפשרים לשנות את ערכי הפנים שלו,

מערך -תמקיים את התכונה. במונוטוניות, ההגדרה הזו טבעית: ת אינוכל בחירה של ערכי פנים תייצר תת מערך ש

ההוכחה המתוארת עבור בדיקת מונוטוניות ון. אחראיבר המהבערכו ם האיבר הראשון בו גדול אינו בר תיקון א

-הינו מונוטוני, מוודאים כי כל תתי 𝑄תתאים לכל תכונה מונוטונית, כאשר במקום לבדוק האם אוסף האיברים

 האינטרוולים בו ברי תיקון.

 התוצאות המוצגות בחלק זה מבוססות על המאמר הבא. מקורות:

O. Ben-Eliezer, Testing local properties of arrays, Proc. 10th Innovations in Theoretical

Computer Science (ITCS), 2019, 11:1--11:20.

 הכלת תבנית רצופה-למת השינוי ובדיקת אי

 .7התוצאות המתוארות בפסקה זו מופיעות בפרק

מתאים לטווח רחב מאוד של תכונות, ובאופן טבעי עבור רבות מהתכונות האלגוריתם הכללי עבור תכונות מקומיות

. 𝑃התכונה של אי הכלת תבנית רצופה ספציפית –הללו, הוא אינו אופטימלי. כעת נתמקד בתכונה אחת כזו

מספר וכיחים כאן מציגים פרמטר חדש של פרמוטציות, מההיבט הקומבינטורי, החסמים התחתונים שאנו מ

), שטרם הוגדר או נחקר בעבר. בעוד שפרמטר unique signed partition number(תהייחודי מסומנתהחלוקה ה

נותן 𝑠(𝜋)) שנסמנו כאן stitching number(מספר התפירהזה מסובך למדי לתיאור, וריאציה פשוטה יותר שלו,

יותר אך קל יותר להסבר, ונציג אותו בקצרה כאן. עבור פרמוטציה בה (בלי הגבלת הכלליות) תוצאות מעט חלשות

איברים המינימלי של זוגות גודל האוסף, מספר התפירה הוא 𝑘מופיע לפני הערך המקסימלי 1הערך המינימלי

𝑖, כך שלכל איבר עוליםעוקבים בפרמוטציה, שערכיהם ∈ [𝑘] קיים זוג עוקב כנ"ל עבורו𝑎 ≤ 𝑖 ≤ 𝑏 ניתן לראות .

-מצד שני, מקרה פרטי של החסם התחתון הלא. 3או 2הינו 𝑘כי מספר התפירה של כמעט כל התבניות באורך

Ω൬𝑛, מספר הדגימות הנדרש הינו 𝜋אדפטיבי שלנו מראה כי לכל תבנית
ଵି

భ

ೖషೞ(ഏ)൰,בחיבור שתי תוצאות אלו .

Ωቀ𝑛ଵିל מתקבל החסם התחתון ש
భ

ೖషయቁ עבור כמעט כל התבניות מאורך𝑘.

 התוצאות המוצגות בחלק זה מבוססות על המאמר הבא. מקורות:

O. Ben-Eliezer, C. Canonne, Improved bounds for testing forbidden order patterns,

Proc. 29th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2018, 2093--2112.

בדיקת תכונות מקומיות במבנים סדורים :שלישיחלק

מימדיים. -מימדיים ורב-, נעסוק בבדיקת תכונות מקומיות במערכים חד)6-7(פרקים של התזה האחרוןחלק ב

:𝐴הינו פונקציה מהצורה Σמימדי מעל אלפבית -𝑑מערך [𝑛]ௗ → Σ תכונה נחשבת .𝑘- מקומית אם ניתן לאפיין

. לדוגמה, מונוטוניות 𝑘אסורים באורך עוקבים (או רצופים)מערכים -אותה באופן מלא על ידי משפחה של תתי

מקומית, כיוון שסדרה היא מונוטונית לא יורדת אם -2מימד (ולמעשה, גם במימדים גבוהים יותר) היא תכונה -בחד

,𝑎)הצורה ורק אם היא אינה מכילה תת מערך עוקב מ 𝑏) עבור𝑎 > 𝑏.

רבות מהתכונות הנחקרות ביותר בספרות של תחום בדיקת התכונות הן מקומיות. כך למשל, מונוטוניות ורציפות

מקומית בדרך כלל, כתלות בהגדרה; באופן כללי, תכונות -4או -3מקומיות; קמירות דיסקרטית היא -2ליפשיץ הן

𝑘)הן 𝑘-המוגדרות על ידי הנגזרת הדיסקרטית ה + מקומית; ותכונות רבות -2מודולריות היא -מקומיות. תת-(1

 קטן. 𝑘מקומיות עבור -𝑘בתחומים אפליקטיביים יותר, כמו ביולוגיה חישובית וראייה ממוחשבת, הן

לינארי. בנוסף, באמצעת ניתוח -בחלק זה, נראה כי כל התכונות המקומיות ניתנות לבדיקה במספר דגימות תת

מערך אחד בלבד, -קומבינטורי מעמיק יותר של המקרה בו המשפחה האסורה (בהגדרת המקומיות) מכילה תת

 חסמים משופרים מושגים עבור התכונה של "אי הכלת תת מערך עוקב ספציפי".

גדולה, וגורמת בהכרח ליצירת מספר גדול של סדרות מונוטוניות השוניםבמקרה הכאוטי, כמות הפרופילים

𝑂(logארוכות וקלות למציאה באמצעות 𝑛) ותאדפטיביללא דגימות, אפילו .

כפלי התשלום אדפטיביים, בשל ה-שיקולים דומים לאלו הלא ביעילות לא ניתן להפעילהאדפטיבי, המקרהעבור

𝑂(logשל 𝑛) במקום זאת, האלגוריתם מבוסס על גישת עבור כל עומק של הרקורסיה .wishful thinking

) 𝑘-ו 1כערכי הקצה (, הדוגמת מספר קטן של איברים ובוחרת מתוכם זוג איברים המועמדים לתפקד רקורסיבית

…,1,2)של מופע אפשרי של , 𝑘) וממשיכה בחיפוש מופע באורך ,𝑘 − בתת הסדרה שבין איברים אלו. 2

 .יםהתוצאות המוצגות בחלק זה מבוססות על המאמרים הבא מקורות:

- O. Ben-Eliezer, C. Canonne, S. Letzter, E. Waingarten, Finding monotone patterns in

sublinear time, Proc. 60th Annual IEEE Symposium on Foundations of Computer Science

(FOCS), 2019, 1457—1482.

- O. Ben-Eliezer, S. Letzter, E. Waingarten, Optimal adaptive detection of monotone

patterns.

 מונוטוניות לא תבניות

 .5מופיעות בפרק התוצאות המתוארות בפסקה זו

אלגוריתמים לא אדפטיביים הם כמעט חסרי ות שעבורןתבני] מראות כי קיימות 109[שותפיוות של נוימן והתוצא

𝑂ניתנת לבדיקה על ידי 𝜋תועלת. בפרט, בעוד שכל תבנית ቀ𝑛ଵି
భ

ೖቁ דגימות מקריות מהסדרה, קיימות תבניות

Ωቀ𝑛שבמקרה הלא אדפטיבי דורשות לפחות
ଵି

మ

ೖశభቁ דגימות. בתזה זו נשפר משמעותית את ההבנה הכללית של

-ראשית, נראה אלגוריתם המשפר במעט את החסם המתקבל מדגימות מקריות, לאדפטיבי. -המקרה הלא

𝑂 ቀ𝑛ଵି
భ

ೖషభቁ.אלגוריתם זה משלב, לצד דגימות מקריות, גם דגימות של אינטרוולים רצופים מלאים .

Ωቀ𝑛ଵିת תבניות הדורשות קבוע נראה כי קיימו 𝑘מצד שני, לכל
భ

ೖషభቁ .דגימות לא אדפטיביות. חסם זה הדוק

, מספר 𝑘למעשה, החסם התחתון שאנו מוכיחים הינו כללי בהרבה, ומראה למשל שכמעט לכל התבניות באורך

Ωቀ𝑛ଵିאדפטיביות הנדרש הינו -הדגימות הלא
భ

ೖషయቁ כלומר, כמעט לכל התבניות באורך .𝑘 אפקטיבית, לא קיימים ,

1אדפטיביים טובים משמעותית מדגימה אקראית! בנוסף, נראה כי לכל -גוריתמים לאאל ≤ ℓ ≤ 𝑘 − , קיימת 1

Θ෩ שדורשת 𝑘תבנית באורך ቀ𝑛ଵି
భ

ℓቁ החלק השני של השאלה הפתוחה של נוימן עלדגימות, ובכך נענה בחיוב

 אדפטיבי.-הנוגעת למקרה הלא ושותפיו

𝜋 = (𝑘, 𝑘 − 1,… לבין שאר התבניות: בעוד שתבניות מונוטוניות ניתנות לבדיקה על ידי אלגוריתם לא (1,

 ות כאשרדגימ Ω(√𝑛)אדפטיבי עם מספר פולילוגריתמי של דגימות, כל התבניות שאינן מונוטוניות דורשות לפחות

𝜋האלגוריתם אינו אדפטיבי. מספר זה כמעט הדוק עבור = . בנוסף, עבור תבנית זו, יש אלגוריתם (1,3,2)

 אדפטיבי.-כלומר, שיפור אקספוננציאלי לעומת המקרה הלא –אדפטיבי שמספר הדגימות שלו פולילוגריתמי בלבד

 באותו המאמר מועלות שתי שאלות פתוחות.

ניתנת לבדיקה באמצעות אלגוריתם אדפטיבי עם מספר 𝜋ל תבנית המקרה האדפטיבי: האם כ . 1

 פולילוגריתמי בלבד של תכונות?

אדפטיביות הנדרשות -על מספר הדגימות הלא 𝜋אדפטיבי: כיצד משפיע מבנה התבנית -המקרה הלא . 2

-שעבורן מספר זה קטן מ לא מונוטוניות, 𝜋? האם ישנו מספר אינסופי של תבניות 𝜋למציאת מופע של

𝑂(𝑛.ଽଽ)?

בחלק זה, נציג מספר תוצאות, הן במקרה האדפטיבי והן במקרה הלא אדפטיבי. השאלה הפתוחה הראשונה,

באופן הנוגעת לאדפטיביות במקרה הכללי, היא כנראה קשה מאוד. את השאלה הפתוחה השניה אנו פותרים

).ואומל(את חלקה השני אנו פותרים ב חלקי

 תבניות מונוטוניות

 .3-4מופיעות בפרקים התוצאות המתוארות בפסקה זו

𝜋] מראות שלתבנית המונוטונית 109[ושותפיוהתוצאות של נוימן = (1,2,… , 𝑘) קיים אלגוריתם לא אדפטיבי ,

log)בעל מספר דגימות 𝑛)ை(
మ)?כפי שנראה, . נשאלת השאלה: מהי התלות הפולילוגריתמית הנכונה בבעיה זו

Θ൫(log-למקרה האדפטיבי ו Θ(log𝑛)התשובה הינה 𝑛)⌊୪୭మ ⌋൯ האלגוריתם של נוימן אדפטיבי.-למקרה הלא

, 𝑘מתבסס על האבחנה הבאה בנוגע לפריקות של תבניות מונוטוניות: כדי למצוא תבנית כזו באורך שותפיוו

,ℓשתי תבניות קצרות יותר, באורכים מופעים מספיק למצוא 𝑘 − ℓ במובן שנקודת ההתחלה –, שניתנות לשרשור

של אחד המופעים היא בעלת ערך גבוה מנקודת הסיום של המופע האחר, וכן מיקומה של נקודת התחלה זו הוא

באמצעות תכונת פריקות זו, ניתן למצוא תבניות מונוטוניות באופן רקורסיבי אחרי נקודת הסיום של המופע האחר.

 " מתאימים.על ידי מניה על "רוחבים

(ראו למשל את אדפטיבי, אנו מוכיחים אפיון מבני מסוג "מבנה או כאוס" -במקרה הלא חסם הנ"לכדי לשפר את ה

…,1,2)הכלת התבנית -סדרות שהינן רחוקות מאי עבור)]133[הספר של טאו , 𝑘) במקרה המבני, כמות גדולה .

; הפעלה איטרטיבית של המקרה המבני טיפוסי מרחקים"ממופעי התבנית המונוטונית הם בעלי אותו "פרופיל

…,1,2)קדקדים, למרחקים האופייניים בין הערכים של מופעי 𝑘יוצרת "פרופיל עץ" טיפוסי, בעל , 𝑘) בגרף.

𝑂(logהאבחנה האלגוריתמית המרכזית היא, שבאמצעות תשלום כפלי של 𝑛) דגימות, ניתן לשבור את פרופיל

 , נדרש מספר קבוע של דגימות.1; וכן, שבבסיס האינדוקציה, עבור עצים בגודל 𝑘/2 העץ לעצים בגודל עד

מצליחה "לייצג" אובייקטים סדורים בצורה ראויה. התרומה הטכנית המשמעותית בחלק זה של התזה היא בניית

תשתית רגולריות התומכת באובייקטים סדורים. מעשית, דבר זה מבוצע על ידי שזירת רגולרית לגרפים עם

להשתמש במשפט מסגנון רמזי עבור רגולריות למחרוזות באופן זהיר. בנוסף לבניה זו, אנו נדרשים להוכיח ו

חלקי -גרף רב-חלקיים עם צלעות "בלתי רצויות". אנו מראים כי בכל גרף גדול מספיק כנ"ל, קיים תת-גרפים רב

הגרף המושרה בין כל זוג חלקים הוא מונוכרומטי, ובנוסף -מושרה, עם מספר נתון של קדקדים בכל חלק, כך שתת

 ות בתת המבנה לא גדול בהרבה מבגרף המקורי.המספר הכולל של קשתות בלתי רצוי

 התוצאות המוצגות בחלק זה מבוססות על המאמר הבא. מקורות:

N. Alon, O. Ben-Eliezer, E. Fischer, Testing hereditary properties of ordered graphs and

matrices, Proc. 58th Annual IEEE Symposium on Foundations of Computer Science

(FOCS), 2017, 848--858.

לינאריים -תת םאלגוריתמי: שניחלק

 למציאת תבניות במידע סדרתי

:𝑓) נעסוק בבעיית בדיקת תכונות במידע סדרתי (פונקציות 3-5 חלק השני של התזה (פרקיםב [𝑛] → ℝ (

:𝜋המוגדרת כדלקמן. נקבע פרמוטציה [𝑘] → [𝑘] כאשר ,𝑘 קבוע. סדרה𝑓 כנ"ל מכילה מופע של𝜋 אם קיימים

1 ≤ 𝑖ଵ < 𝑖ଶ < ⋯ < 𝑖 ≤ 𝑛 עבורם𝑓൫𝑖൯ < 𝑓(𝑖ℓ) אם ורק אם𝜋(𝑗) < 𝜋(ℓ) נוימן, רבינוביץ', רג'נדרפרסד .

במידע סדרתי מנקודת המבט של בדיקת תכונות. π] חקרו את הבעיה של מציאת מופע של 109 ,108וזולר [

 εוכן פרמטר המרחק 𝑘". לצורך הדיון, נניח כי 𝜋לת מופע של ספציפית, הבעיה הנחקרת היא של התכונה "אי הכ

 צדדית.-שניהם קבועים, ונתמקד באלגוריתמי בדיקת תכונות עם שגיאה חד

), תחום time series analysisהמוטיבציה הטבעית ביותר לחקר הבעיה הנ"ל מגיעה מאנליזה של סדרות עתיות (

בנוסף, לובליות במידע סדרתי שבמקרים רבים הוא עצום בגודלו.שבו המשימה המרכזית היא מציאת תבניות ג

לבעיה זו קשרים הדוקים עם בעיות קלאסיות אחרות בסדרות, כמו בעיית תת הסדרה העולה הארוכה ביותר.

𝜋המקרה הפשוט ביותר של הבעיה, בו = שהיא כנראה הבעיה –בדיקת מונוטוניות ל, שקול לחלוטין (2,1)

 .)3.1 תחום בדיקת התכונות המדגמית כולו (ראו פרקהנחקרת ביותר ב

", המרמזות כי בבעיה 𝜋מוכיחים מספר תוצאות מפתיעות בנוגע לבדיקת "אי הכלת ושותפיו], נוימן 109במאמרם [

, וכן תלות משמעותית במידת האדפטיביות של האלגוריתם. 𝜋זו תלות קומבינטורית מעניינת בזהותה של התבנית

𝜋, התוצאות המרכזיות הינן הפרדה בין התבניות המונוטוניות בהקשר המבני = (1,2,… , 𝑘) וכן

קדקדים 𝑞מושרה על הגרף ה-, בהסתברות טובה, תתℱרחוק מאי הכלת -𝜀, כך שלכל גרף שהינו 𝑞טבעי

], 131. ההוכחה נובעת מגרסה חזקה של למת הרגולריות של סמרדי [ℱגרף אסור מתוך -אקראיים בגרף יכיל תת

 .למת הרגולריות החזקההנקראת

, שבתורן מוכחות בעזרת למות רגולריות, הינה השיטה המקובלת ביותר להוכחת תוצאות למות הסרהשימוש ב

] הראו כי מידת 9ל גרפים במודל הצפוף. יש לכך סיבה טובה: תוצאות מאוחרות יותר [כלליות בבדיקת תכונות ש

אלון רגולריות של תכונה שקולה, במובן חזק יחסית, ליכולת לבדוק אותה באמצעות מספר קבוע של דגימות.

. כיוון שכל תכונה תורשתית בגרפים]12[ושפירא הכלילו את למת ההסרה המושרית למשפחות אינסופיות

(כלומר, תכונה סגורה תחת הסרה של קדקדים) ניתנת לאפיון על ידי משפחה סופית או אינסופית של תתי גרפים

 מושרים אסורים, אנו מסיקים את התוצאה הכללית הבאה באשר לבדיקת תכונות בגרפים.

 כל תכונה תורשתית בגרפים לא מסודרים הינה בדיקה במספר קבוע של דגימות. :)]12[(משפט

הוכחה על ידי אלון, פישר ונוימן ללא חשיבות לסדר השורות והעמודות סרה יעילה עבור מטריצות בינאריותלמת ה

עמודות מתוך מטריצה (לאו דווקא רצופות) 𝑡-שורות ו 𝑠. בהקשר זה, אנו מתיייחסים לחיתוך של 2007] בשנת 8[

𝑠מטריצה מסדר -בתור תת × 𝑡 המטריצה מושרה מזה של המטריצה -של המטריצה המקורית, כאשר הסדר בתת

למת רגולריות מותנית יעילה עבור מטריצות בינאריות. כיוון שלמת רגולריות זו] הינו 8המקורית. הכלי המרכזי ב[

ת שבהן הועלתה ההשערה שניתן להוכיח באמצעותה למת הסרה סדורה למטריצו סדורה מטבעה, באותו המאמר,

סדר השורות והעמודות חשוב (בדומה למצב בגרפים, מקרה זה הוא פחות סימטרי, וההוכחה למקרה הסימטרי

] לא תתאים עבורו).8מתוך [

. למעשה, רת לעילהנזכ התוצאה המרכזית בחלק הראשון של התזה היא הוכחת גרסה מוכללת של ההשערה

מעל כל אלפבית ותסדור בעלי יותר משני צבעי קשתות אפשריים, ולמטריצות סדורים ההוכחה תקפה גם לגרפים

 בגודל קבוע. בשונה מהתוצאות הקודמות שתוארו כאן, הוכחת טענה זו אינה דורשת סימטריה כלל.

מקיימת למת הסרה, ולכן גם ניתנת כל תכונה תורשתית של גרפים או מטריצות מעל אלפבית קבוע : משפט

 סדורות כאחד.-לבדיקה במספר קבוע של דגימות. טענה זו נכונה לתכונות סדורות ולא

הוכחת למות הסרה בדרך כלל דורשת בניית "סכמת רגולריות" מתאימה: מבנה בגודל קבוע תשתית מתמטית.

המקיים שתי תכונות מרכזיות. הראשונה היא דמיון משמעותי לגרף המקורי, במובן זה שניתן לשנות את הגרף

ות, במובן השניה היא ייצוגיהמקורי לניפוח של הסכמה באמצעות הוספת והסרת מספר קטן מאוד של קשתות.

 כזה שכל תופעה רלוונטית שניתן לראות בגרף הסכמטי, קיימת גם בגרף המקורי.

]. במקרה 131למת ההסרה הבסיסית ביותר משתמשת בלמת הרגולריות של סמרדי בתור סכמת רגולריות [

ינה ת, אפילו סכמה זו אאהמסובך יותר של למת ההסרה המושרית, יש צורך בסכמה מסובכת יותר. יחד עם ז

בתזה זו, אנו מנסים לבסס הבנה שיטתית כיצד לייצר אלגוריתמי בדיקת תכונות אפקטיביים עבור מידע סדור, לא

סימטרי. בתזה נדון במספר תוצאות רלוונטיות, החל בשבירת "מחסום הסימטריה" עבור בדיקת תכונות בגרפים,

יליים לבעיות מציאת תבניות במידע סדרתי, וכלה בגילוי דרך מציאת אלגוריתמים והוכחת חסמים תחתונים אופטימ

כלים בסיסיים חדשים לפתרון בעיות מקומיות במידע סדור. לכל הבעיות הנדונות בתזה זו מבנה קומבינטורי יפה

לפתרון הבעיה. חלק מהשיטות המוצגות כאן גרמו לפיתוחם של מינוחים קומבינטוריים ומעניין, שהבנתו חיונית

 עניינים לכשלעצמם.חדשים, מ

שלושה חלקים. בחלק הראשון, נדון בבדיקת תכונת בגרפים מסודרים (ללא שבעה פרקים המחולקים ללתזה זו

החלק השני דן בבדיקת תכונות מבניות של מידע סדרתי. החלק השלישי עוסק בבדיקת סימטריה בין הקדקדים).

תכונות סדורות מקומיות. לכל אחד מהחלקים, נציג כעת את הרקע הכללי לבעיה, הפתרון האלגוריתמי, ונקודת

 המבט הקומבינטורית.

תחום בדיקת התכונות. מידע נוסף את המינוחים וההגדרות הסטנדרטיים ב ה\מכיר ת\מכאן ואילך נניח כי הקורא

 .1.4מופיע בפרק

 חלק ראשון: בדיקת תכונות בגרפים סדורים

 .2תוצאות המתוארות בפסקה זו מופיעות בפרק ה

לאלגוריתמים יעילים) עבור מגוון רחב של תכונות ן מובילותהסרה (שבתור למות, נפתח הראשון של התזהבחלק

של עבודות בתחום בדיקת התכונות עסק באפיון התכונות מספר ניכרבגרפים ומטריצות, ללא צורך בסימטריה.

הבדיקות ביעילות (בדרך כלל במספר קבוע של דגימות) עבור גרפים לא סדורים, שבהם ישנה סימטריה בין

אלו לא טיפלו במקרה בו לקדקדים יש סדר מובנה ובלתי ניתן לשינוי, למשל בגרפים הקדקדים. עם זאת, עבודות

סדורים או בתמונות (שניתן לייצגן כגרפים דו צדדים סדורים בעלי מגוון צבעי קשתות, כאשר הקדקדים בצד אחד

קסל בתמונה). מייצגים את מספרי השורות, בצד השני את מספרי העמודות, וקשת בין שורה לעמודה מייצגת פי

:𝐺, שבו גרפים מיוצגים על ידי פונקציות צפוףכל התוצאות המתוארות בפרק זה נכונות למודל ה ൫[]
ଶ
൯ → {0,1}.

כל התכונות הניתנות לייצוג כ"תכונות חלוקה" את הוכח כי] 83במאמר המקורי של גולדרייך, גולדווסר ורון [

גדול, ניתן לבדוק באמצעות מספר קבוע של דגימות (ראו גם צביעות, או הכלה של תת גרף שלם -𝑘בגרפים, כגון

 ℱ "אסורה" שפחהממ 𝐹תת גרף מושרה] הוכיחו כי התכונה של אי הכלת 7]). אלון, פישר, קריבלביץ' וסגדי [86[

. ℱ(ללא חשיבות לסדר בין הקדקדים) ניתנת גם היא לבדיקה במספר קבוע של דגימות עבור כל משפחה סופית

, שהיא הכללה של למת ההסרה הידועה לגרפים של למת ההסרה המושריתתוצאתם נבעה ממשפט קומבינטורי,

𝜀כנ"ל ולכל ℱ]. למת ההסרה המושרית טוענת כי לכל משפחה סופית 131 ,5רוז'ה וסמרדי [> קיים מספר 0

 הקדמה
לתה את הצורך לפיתוח שיטות יעילות להבנה וניתוח העבעידן הנוכחי בתחומי המדע וההנדסה התפוצצות המידע

) חוקר נושא Property Testingכאשר הגישה למידע מוגבלת. התחום של בדיקת תכונות מדגמית (ובפרטמידע,

מה ניתן ומה לא ניתן להבין מדגימות קטנות מהמידע (שלעתים עשויות להיות אדפטיביות, כלומר –זה בדיוק

כאלו שנבחרו בצורה המותאמת למידע הנצפה). מאז ייסודו של התחום לפני כעשרים וחמש שנים, על ידי

ותיות, הן בשל התקדמות], הוא נהנה מפריצות דרך משמע83] וכן גולדרייך, גולדווסר ורון [122רובינפלד וסודן [

של התקדמויות אלגוריתמיות בהבנה המתמטית (קומבינטורית, אלגברית או טופולוגית) של התחום, והן ב

מרשימות, שהסתמכו במקרים רבים על ההתקדמות המתמטית. למספר מקורות כלליים בנושא בדיקת תכונות,

].120 ,119 ,81 ,80ראו [

מידע, המיוצג פורמלית, הבעיה הטיפוסית בבדיקת תכונות מדגמית היא מהצורה הבאה: בידינו היכולת לדגום

:𝑓כפונקציה 𝑋 → 𝑌 לא ידועה בעלת התחוםX והטווחY (שניהם ידועים), כאשר דגימה הינה שאילתא מהצורה

𝑓(𝑥) עבור𝑥 לבחירתנו. המטרה היא להחליט, בהסתברות טובה, האם𝑓 ימת תכונה מסוימת מקי𝒫 ידועה

𝜀עבור פרמטר מרחק מראש, או רחוקה מלקיים תכונה זו. > רחוקה מקיום -𝜀פונקציה היא , אנו אומרים כי 0

קלטים על מנת שתקיים את התכונה. יעילות נמדדת |𝜀|𝑋 לפחות התכונה אם יש לשנות את ערכי הפונקציה עבור

בזמן הריצה הכולל של האלגוריתם. ככלל, אלגוריתמי בדיקת תכונות בדרך כלל במספר הדגימות, ולפעמים גם

לינאריים, ואינם קוראים את הקלט כולו. לכן, האלגוריתם בהכרח הסתברותי, ותשובותיו נכונות -הינם תת

 בהסתברות טובה, אך לא באופן דטרמיניסטי.

וח כאשר המידע סימטרי יחסית. תופעה זו באופן כללי, אלגוריתמי בדיקת תכונות נוטים להיות פשוטים יותר לנית

צפתה במגוון תתי תחומים של בדיקת תכונות. לדוגמה, תכונות סימטריות של התפלגויות (כגון האנטרופיה או נ

זוהי –המרחק מאחידות) הן בדיוק אותן התכונות המוגדרות באופן מלא על ידי "טביעת האצבע" של ההתפלגות

, יחסית, של יעילות אלגוריתמי אפיון זה הוביל להבנה מצוינת ההתפלגות.ל ש ההיסטוגרמה של ההיסטוגרמה

בגרפים (בפרט במודל ה"צפוף", בו גרפים מיוצגים על ידי מטריצת].135בדיקת תכונות התפלגות סימטריות [

סדר שכנויות), עד כה ההתקדמות בהבנת אלגוריתמי בדיקת תכונות התרחשה כמעט אך ורק עבור תכונות שבהן

הקדקדים אינו משנה. בבעיות בדיקת תכונות אלגבריות, סימטריות ושמורות (אינווריאנטים) נחקרו בהעמקה

 תפסות כ"פשוטות יותר" להבנה באופן כללי.נ], ובעיות בעלות סימטריה רבה יותר 129[

עתיות, או מידע לעומת זאת, בבעיות בדיקת תכונות במידע לא סימטרי, כמו מידע סדרתי (למשל טקסט, סדרות

ביולוגי), תמונות, ופנקציות בוליאניות ממימד גבוה, ההתקדמות איטית בהרבה. תוצאות חזקות וכלליות למקרים

בדיקת כגוןבהם אין סימטריה נדירות יחסית, ורוב ההתקדמות המחקרית התמקדה בבעיות סדורות ספציפיות,

 .ות בתמונותונוטוניות בפונקציות בוליאניות, או קמירות וקשירמ

Θ൫(logמבלי להסתכל על המידע) הינו 𝑛)⌊୪୭మ ⌋൯ כאשר ,𝑛 הינו אורך המידע כולו ו-𝑘 הוא אורך

, לתבניות לא מונוטוניות . בנוסף, אנו מוכיחים חסמים תחתונים עבור אלגוריתמים לא אדפטיבייםהתבנית

 בהשוואה לדגימה אקראית מתוך המידע הינו מזעריהמראים כי השיפור שמשיגים אלגוריתמים כאלו

 .עבור רובן המוחלט של התבניות

בחלקה השלישי של התזה, אנו עוסקים בבעיות מקומיות במידע מובנה. בהקשר זה, בעיה נקראת

מקומית אם אפשר לתארה על ידי אוסף של תבניות רצופות קטנות "אסורות". הגדרה זו מתאימה לרבות

רו בתחום בדיקת התכונות במבנים סדורים. התוצאה המרכזית מראה כי כל התכונות מהבעיות שנחק

לינארי של דגימות. אלגוריתם הבדיקה -המקומיות במידע סדור ניתנות לבדיקה באמצעות מספר תת

הכללי דוגם מבנים דמויי קליפה כדורית במידע. האלגוריתם הינו אופטימלי עבור מספר בעיות שנחקרו

מימדי. במימד גבוה, זוהי התוצאה הראשונה המראה כי תכונות כגון -חד כאשר המידע חדבעבר, במיו

 לינארי של דגימות.-מודולריות ניתנות לבדיקה באמצעות מספר תת-קמירות או תת

בנוסף, אנו מוכיחים "למת שינוי" קומבינטורית המאפיינת את המבנה של תכונות סדורות מקומיות,

גוריתם בדיקה יעיל עבור בעיות חיפוש תבניות. בכך אנו עונים על שאלה ומשתמשים בה לבניית אל

 , באשר לקיומם של אלגוריתמים יעילים כאלו.2001-שנשאלה על ידי פישר ונוימן ב

 תקציר
) עוסק בשאלה הבאה: מה ניתן להסיק Property Testingתחום המחקר של בדיקת תכונות מדגמית (

מתוך מידע נתון באמצעות מספר קטן של דגימות למידע זה. בעשרים וחמש השנים האחרונות, הושגו

מבנה פריצות דרך רבות ומשמעותיות בתחום. עם זאת, רובן הגדול הושגו תחת ההנחה שלמידע יש

פשוט יחסית (לדוגמה, כאשר המידע מוגרל מהתפלגות כלשהי), או שהבעיה הנדונה היא סימטרית

בהוויתה (לדוגמה, המחקר בנושא בדיקת תכונות בגרפים עסק, רובו ככולו, בתכונות שמניחות שאין סדר

 מובנה בין הקדקדים השונים בגרף).

ת מדגמית שבהן המידע הינו בעל מבנה מורכב יחסית. בתזה זו אנו עוסקים במגוון בעיות בבדיקת תכונו

בפרט, אנו מציגים מספר תופעות קומבינטוריות מפתיעות, שהבנתן מובילה לפיתוח שיטות עבודה

חדשות במחקר בעיות מבניות. השימוש בשיטות אלו מוביל לפתרון או להתקדמות המחקר בכמה

 מהשאלות המרכזיות בתחום זה.

לושה חלקים. בחלקה הראשון, אנו עוסקים בבדיקת תכונות בגרפים סדורים (כלומר, תזה זו מחולקת לש

גרפים להם סדר מובנה על הקדקדים). תוצאה ידועה של אלון ושפירא מראה כי כל תכונה תורשתית של

גרפים לא סדורים, כלומר, גרפים בהם הסדר בין הקדקדים חסר משמעות, ניתנת לבדיקה באמצעות

ל דגימות. עם זאת, הוכחת הטענה מסתמכת באופן משמעותי על הסימטריה הנובעת מספר קבוע ש

מההנחה שהקדקדים אינם סדורים, ואינה מתאימה עבור גרפים שקדקדיהם מסודרים במבנה מסוים

(לדוגמא בתמונות, שניתן להציגן כגרף דו צדדי סדור, שמיקומי השורות והעמודות בו משמעותיים, כיוון

האם ניתן להוכיח תוצאה ברוח דומה 2007-מיקומי פיקסלים). אלון, פישר ונוימן שאלו ב שהם מייצגים

לזו הנזכרת לעיל עבור תמונות. אנו עונים על שאלה זו בחיוב, ובתוך כך מפתחים כלים מבוססי

 סמרדי, המתאימים למבנים סדורים.-רגולריות

יות במידע סדרתי. בהנתן סדרה של בחלקה השני של התזה, אנו עוסקים במציאת תבניות גלובל

מספרים ממשיים המכילה מופעים זרים רבים של תבנית סדר מסוימת, כיצד ניתן למצוא עותק יחיד של

מסתבר כי לבעיה זו מבנה קומבינטורי מעניין ביותר, שהבנתו חיונית למציאת תבנית הסדר ביעילות?

ית, אנו פותרים שאלה פתוחה שהועלתה אלגוריתמים יעילים. באמצעות מחקר הבעיה הקומבינטור

לאחרונה ע"י נוימן, רבינוביץ', רג'נדרפרסד וזולר. בנוסף, אנו פותרים במלואה את הבעיה הנ"ל במקרה

אדפטיבי. באופן מפתיע, מספר -בו התבנית הינה תת סדרה מונוטונית במקרים האדפטיבי והלא

הכריז" על כלל הדגימות שתבוצענה מראש, הדגימות הנדרש עבור אלגוריתם לא אדפטיבי (שעליו "ל

מדוייקים למדעים הפקולטה
סאקלר ובברלי ריימונד ע"ש

בלווטניק ע"ש המחשב למדעי ביה"ס

ומבניות סדורות לבעיות מהירים אלגוריתמים

לפילוסופיה" "דוקטור תואר לקבלת מהדרישות כחלק מוגש זה חיבור

מאת

אליעזר בן עומרי

אלון נוגה פרופ' בהנחיית

2020 יוני

	Introduction
	Ordered Graphs: Regularity and Removal
	Property Testing Algorithms for Sequential Pattern Detection
	Monotone Patterns
	Non-Monotone Patterns

	Understanding Locality in Structured Property Testing
	Testing Local Properties: Follow the Boundary
	Testing Meets Pattern Matching: the Modification Lemma

	Notation

	I Ordered Graphs: Regularity and Removal
	Removal Lemma for Ordered Graphs and Matrices
	Introduction
	Outline
	Finding a Regularity Scheme
	Proving a Finite Removal Lemma

	Preliminaries and Definitions
	Technical Aids
	A Quantitative Ramsey-type Theorem
	Multipartitions and Rounding

	A Regularity Scheme for Ordered Graphs
	The Approximating Partition Framework
	The Core Lemmas
	The Finite Case for Graphs
	Representing Subsets
	The Graph of the Representatives and its Coloring
	Cleaning the Original Graph
	Proof of Main Theorem

	The Infinite Case
	Embeddability
	Adapting the Proof for Infinite Families
	Adapting the Proof for Matrices

	II Property Testing Algorithms for Sequential Pattern Detection
	Monotone Patterns: A Non-Adaptive ((logn)log2 k) Algorithm
	Introduction
	Techniques
	Structural Result
	Rematching Procedure
	Growing Suffixes and Splittable Intervals
	Tree Descriptors
	The Structural Dichotomy Theorem
	Proof of Structural Dichotomy Theorem

	The Algorithm
	High-level Plan
	Proof of Lemma 3.20: An Algorithm for Growing Suffixes
	Proof of Lemma 3.21: An Algorithm for Splittable Intervals

	Monotone Patterns: An Adaptive O(logn) Algorithm
	Introduction
	Techniques

	Stronger Structural Dichotomy
	The Algorithm

	General Patterns: Stitching, Lower Bounds, and Hierarchies
	Introduction
	Previous Work
	Our Contributions
	Discussion and Open Problems

	Upper Bound
	Lower Bounds

	III Understanding Locality in Structured Property Testing
	Testing Local Properties: Follow the Boundaries
	Introduction
	Previous Results on Local Properties
	Our Results
	Proof Ideas and Techniques
	Other Related Work
	Discussion and Open Questions

	The Grid Structure
	Testing with Grid Queries
	Systems of Grids and Testing with Spherical Queries

	Testing Meets Pattern Matching: The Modification Lemma
	Introduction
	Modification Lemma
	Characterizations of the Deletion Number
	Tests for Pattern Freeness
	Discussion and Open Questions

	Conclusions
	Central Open Problems
	The Quest for Adaptivity
	Better Structural Understanding

