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Abstract—Yu-Chi “Larry” Ho famously titled a 2010 blog
post “Control Is Dead?”,

http://blog.sciencenet.cn/blog-1565-344686.html
In follow up posts Larry’s advice has been simple: control has
to be constantly reinvented with the times. It’s success is its
own worst enemy. Therefore, control engineers and theorists
must continue to push the boundaries of possible applications
and take advantage of the adage “necessity is the mother of
invention.” This paper gives a brief outline of a new research
area in biology and medicine where problems for systems,
dynamics, and control are sitting and waiting for solutions and
insights. How much do you know about microbes?

I. INTRODUCTION

They are everywhere. Some 100 trillion inhabit the earth,
comprising half of the animal mass on it. Have you guessed
what I am talking about yet? See the following articles in the
New York Times [25], NY Times Magazine [29], Scientific
American [20], Nature [1], Science [28], or this TED Talk
[22] with the accompanying book [21] to refresh your
memory. Now the human microbiome has been associated
with almost every disease possible, microbes in the gut have
even been associated with brain diseases [27]. The study of
these little things is kind of a big deal.

What is a normal human microbiome?

The most important developments in the human micro-
biome have come via the analysis of large cohorts across
body sites (gut, mouth, vagina, skin, etc) [34] and longitu-
dinal studies where fecal samples have been collected on a
daily scale [12,14]. What we know from these studies is that
the abundance and kinds of microbes are body site specific.
Figure 1 illustrates this point.

In Figure 1 the relative abundance of microbes for 4,788
specimens from 242 adults are projected onto the first two
principle coordinates, see Appendix A for a discussion about
principle coordinates.1 The different body sites are color
coded, and it is clear that the specimens cluster according
to body site and not by subject. We have also learned that
microbial abundances are fairly stable for each site and for
each subject (I will discuss this in more detail shortly).
Before getting to the dynamics and estimation part we need
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1In the original article it is not made clear as to what phylogenetic depth
the microbes are organized for this figure. It is assumed from context that the
microbes are organized in terms of Operational Taxonomic Units (OTUs),
which for simplicity one can think of as the taxonomic rank of species.
More information on OTUs is given in a later section.

a story so as to understand the translational implications of
a better understanding of the human microbiome.

Fecal Microbial Transplantation

This story begins with Jane coming to the hospital because
of an infection in her leg. To kill the infection she is given
broad spectrum antibiotics. After a few days the infection
is gone, but Jane now has severe diarrhea. The antibiotics
have killed some of the healthy bacteria in her gut and now
Jane has an over abundance of Clostridium difficile, i.e. she
has Clostridium Difficile Infection (CDI). Ironically the most
often prescribed treatment for CDI is another antibiotic. This
targeted antibiotic always works in temporarily reducing the
abundance C. difficile, but the CDI is recurrent. So with no
other options Jane asks her brother John for a fecal sample.
This fecal sample is prepared and transplanted into Jane
(Fecal Microbial Transplantation (FMT)). As if a miracle
has occurred Jane is healthy again. This kind of story is
becoming common place in hospitals around the country now
[31].

What happens in terms of the abundance of the microbes
post-FMT is quite amazing. Figure 2 shows the trajectory gut
microbes take before and after an FMT. Several subjects stool
samples pre-FMT are circled in red and the trajectories (post-
FMT) are seen to rapidly converge to the green circle (which
also contains the host sample), overlaid on top of samples
from the 242 healthy adults from Figure 1. A movie of these
trajectories can be downloaded here [2]. While the post-FMT
samples do deviate slightly from the host sample in terms
of relative abundance, the samples remain within the range

Fig. 1. Principle coordinates of samples illustrating variation of the
microbes between body sites. Adapted from [34, Figure 1c]. Permission
from Nature Publishing Group, license number 3700220673812 Copyright
Clearance Center.
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Fig. 2. Trajectories of fecal samples in principle coordinates for patients
receiving FMT. Pre FMT circled in red. Post FMT ‘steady state’ circled in
green. The lines are the trajectories of the daily stool samples projected into
the principle coordinates. Adapted from [37, Figure 1]. Creative Commons
Attribution (CC BY) license.

of what is considered to be healthy. Stated simply what we
are observing is the patients gut microbiome reconstituted
and remaining in an abundance profile similar to that of the
donor. It is quite amazing.

II. IS THE MICROBIOME STABLE?

What we just saw above was that the post FMT stool
samples remained similar to the host after transplantation. So
then one natural question arises: How stable is the human
microbiome? Biologist recognize that this is an important
subject as is evidenced by Figure 3 which appeared in a
recent review article in Science [13].

We should be delighted to see that the notion of stability
has been recognized as an important issue in the human
microbiome. There appears to be a misunderstanding of what
the word stable means however. This is simply an ignorance
issue and as control engineers/theorists we should just simply
educate those in this field. Consider Figure 4 that shows
15 days of samples (shown in yellow) taken from the one
year gut microbiome study in [12], and projected onto the
principle coordinates from a previous study [3,4]. Ignore the
red, green, and blue dots and focus on the trajectories of
the yellow dots with gray lines following the day to day
changes in the stool samples. The authors of [23] wanted to
highlight the fact that the samples can deviate from steady
state in almost all directions. The authors unfortunately draw
the conclusion that this is a visualization of instability in the
gut microbiome. The original figure from the study in [23]
is shown on the left and the annotated figure is on the right.
Note that the two trajectories after deviation return to the
“steady region”. This is not instability, but the very definition
of stability. One could even argue that we are observing
asymptotic like stability, i.e. in the absence of disturbances
all trajectories converge to a single fixed point. Unfortunately
biological systems are noisy at the input, output, and in terms
of model parameters. Could this line of reasoning help to
explain the success of FMT? I think you can begin to see

Fig. 3. An illustration of the stability landscape for a microbial ecosystem.
The top figure illustrates that through the introduction of ‘state’ disturbances
a population can be pushed into another region of local stability. The
bottom figure illustrates that the ’state’ of an ecosystem can also be alterred
indirectly by changing environmental parameters (an example of this in the
gut microbiome would be an extreme diet change). Adapted from [13, Figure
1]. Permission from the American Association for the Advancement of
Science, license number 3700221448858 Copyright Clearance Center.

where those working in the area of dynamics and control
might be needed in this emerging field.

III. HOW DO WE MODEL THE MICROBIOME?

The most common way that microbes interact is through
the consumption of nutrients and the synthesis of products
(not necessarily through the direct consumption of each
other) [26]. Therefore, a detailed model would contain states
for both the abundance of microbes and the abundance of the
metabolites they consume and synthesize. At the finest level
of modeling all host and microbe metabolic pathways would
need to be mapped. We currently do not poses the technology
or sufficiently rich data to perform this rigorously. At this
point in our understanding of microbial dynamics it is more
common to think of a reduced order model that only accounts
for the abundances of the microbes.

The two most popular (reduced order) models are Gener-
alized Lotka-Volterra (GLV) dynamics over a network and
Bayesian networks [16]. The first is deterministic and is the
most common one studied in the literature, while the second
is probabilistic. I will focus on the first one here, but a similar
discussion could follow with a probabilistic mind set as well.

Let xi be the abundance of microbe i for subject 1 at a
specific location on/in the body. Let’s assume for now we
are concerned only with the gut. Then the GLV model for n
microbes interacting in the gut of subject 1 is described by



Trajectory 1: deviation from and return to the steady region
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Fig. 4. Two trajectories of consecutive daily samples from the gut of the male subject in [12]. Adapted from [23, Figure 3A]. Fair use, Copyright Act of
1976, 17 U.S.C. §107.

the following differential equation

ẋi = rixi +

nX

j=1

aijxixj

where i = 1, 2, ..., n. Collecting the abundances of the mi-
crobes into a column vector x = [x1, x2, . . . , xn]

T the
dynamics can be compactly written as

ẋ = diag(r)x+ diag(x)Ax, (1)

where diag takes a column vector and returns a matrix with
the column vector along the diagonal, r is a column vector
of the ri and [A]ij , aij . In this modeling paradigm r

captures linear growth or death and the matrix A captures
causal interactions amongst species, we will refer to A as the
microbial interaction matrix or simply interaction network.
Thus, aij represents the average affect that species j has
on species i by determining what species j generates as
products and what both species i and j consume as nutrients.
For instance, if species j produces products that species i

consumes as nutrients and they do not compete for any other
nutrients then aij would be positive. For a short discussion
on a sufficient condition for stability of the above dynamics
see Appendix B.

As previously mentioned we dot not fully understand
the microbial-metabolic interactions well enough to have
a global bottom up model. Do we have sufficient data to
learn the interactions in the simplified GLV model? We will
discuss this in more detail shortly.

Now consider the gut of a different individual, subject 2,
and assume that the dynamics are as follows

ẏ = diag(r̄)y + diag(y) ¯Ay.

Notice that I have written the dynamics for both subjects with
different variables. The couple (r, A) represents the growth
rates and interaction matrix for subject 1 and the couple
(r̄,

¯

A) for subject 2. Is it possible that for two otherwise
healthy individuals with similar diet A =

¯

A and r = r̄.
Recent attempts to infer the interaction matrices for two
individuals illustrates some short comings in the literature

and another opportunity for those working in system identi-
fication and machine learning to have an immediate impact
in this field.

A. Some Comments on Microbiome Network Reconstruction

As eluded to earlier we are interested in reconstructing
the microbial interaction network for an individual (or all
individuals) and most importantly we would like to know if
two individuals will have the same network. In this section
we will first transform the dynamics in (1) so that linear
regression can be performed [6, 7, 32]. Beginning with the
dynamics in (1) and dividing by xi we have that

ẋi/xi = ri +

nX

j=1

aijxj , xi 6= 0.

Integrating from tk to tk+1 and using the approximation that
x(t) is constant over t 2 [tk, tk+1) we have that

log(xi(tk+1))� log(xi(tk)) =

�k

✓
ri +

nX

j=1

aijxj(tk)

◆
+ ei(tk). (2)

The error term ei arrises from the fact that this is an
approximation.2

Equation (2) can be rewritten in terms of a regressor vector

�(k) = [1, x1(tk), x2(tk), . . . , xn(tk)]
T
,

the parameter vector ✓i = [ri, ai1, ai2, . . . , ain], and the
log difference yi(k) = log (xi(tk+1))� log (xi(tk)) as

ei(k) + yi(k) = ✓i�(k).

2We note that with little effort the integration of
Pn

j=1 aijxj could be
improved given the information available. The approximation in (2) is used
only because it is the one most frequently used in the literature. That being
said, an approximation of the term

R tk+1
tk

xj(⌧) d⌧ , using information
about xj at both endpoints, would result in �k

2 (xj(tk) + xj(tk+1),
and using this information (2) could be replaced by log(xi(tk+1)) �

log(xi(tk)) = �k(ri +
1
2

Pn
j=1 aij(xj(tk) + xj(tk+1)) + ẽi(tk) with

a new error term ẽi.



Fig. 5. Inferred interaction subnetworks of the gut microbiome for the 14 most abundant species from the two subjects in the longitudinal data presented
in [12]. Adapted from [17, Figure 6]. Creative Commons Attribution (CC BY) license.

The identification problem can then be defined as finding the
parameter matrix estimate ˆ

⇥ = [

ˆ

✓

T
1 ,

ˆ

✓

T
2 , · · · , ˆ✓Tn ]T of the true

parameter matrix ⇥ =

⇥
✓

T
1 , ✓

T
2 , · · · , ✓Tn

⇤T. Letting

y(k) = [y1(k), y2(k), . . . , yn(k)]
T

be the log difference vector for all species and Y =

[y(1), y(2), . . . , y(N � 1)] be the log difference matrix,
the system identification problem can be compactly presented
as

min

⇥̂
kY � ˆ

⇥�k2F

where � = [�(1), �(2), . . . , �(N � 1)] is the regressor
matrix and k·kF denotes the Frobenius norm. If ��T is full
rank then the solution to the above minimization problem is
Y �

T
(��

T
)

�1. This however may not be the case and so
one often introduces regularization into the problem so as to
overcome the rank deficiency of the regressor product ��T.
The L2 regularized optimization problem is defined as

min

⇥̂

⇣
kY � ˆ

⇥�k2F + �kˆ⇥k2F
⌘

where � > 0 is the Tikhonov regularization term [36].3 The
minimal solution to the above problem can be given directly
as

argmin

⇥̂

⇣
kY � ˆ

⇥�k2F + �kˆ⇥k2F
⌘
= Y �

T
(��

T
+ �I)

�1

where I is the identity matrix.4 Note that ��T
+ �I is full

rank for any � > 0.
The linear regression technique just described was applied

to the data collected from [12] (daily stool samples from two
individuals over one year) with the identified subnetwork for
the most abundant species shown in Figure 5 [17]. Just by
inspection one can see that the two networks are different.
Thus the conclusion is that the same microbes interact
differently in their hosts. This result actually goes against our

3The Frobenius norm is used here and not the induced 2-norm as
the original problem definition for linear reression is given in terms of
column vectors a, b and a matrix A such that the kAb � ak

2
2 + �kbk

2
2

is minimized. The Frobenius norm is a more natural extension to the
multilinear optimization problem as it is computationally more straight
forward than the induced 2-norm.

4Note that there has been significant interest in L1 “lasso” regularization
[35] do to results by Tao, Candès, and Donaho [8–11, 15].

intuition. Given that the metabolic pathways for otherwise
healthy individuals are the same, microbes should on average
have host independent dynamics, otherwise treatments like
FMT would not work and furthermore post-FMT patients
would not reconstitute into the abundance profile of the
donor. There are two issues with the analysis in [17].

First, only relative species abundance is available from
any given sample. Let us briefly discuss how microbe abun-
dance profiles are generated from a sample [19]. Once a
sample is prepared from a subject it is either sequenced with
a marker gene or shotgun sequencing is performed. After
sequencing and quality measures are taken, each gene of
interest in a sample has a read count. The most common
way to discuss microbe abundance is to then group gene
reads based upon Operational Taxonomic Units (OTUs),
sometimes called phylotypes [19, page 255]. Given that
there are variations in sample size, OTU abundances between
samples are always compared in terms of relative abundance
and not absolute reads.

This is an issue for system identification, as will be
explored now. Let the relative abundance of microbe i for a
given sample be defined as

x̃i =
xi

x⌃
, x⌃ =

nX

i=1

xi.

Then, rewriting the dynamics in (2) using relative abundance
we have

log

✓
x⌃(tk+1)

x⌃(tk)

x̃i(tk+1)

x̃i(tk)

◆
=

�k

✓
ri + x⌃(tk)

nX

j=1

aij x̃j(tk)

◆
+ ei(tk).

So as to overcome the fact that x⌃(tk) is unknown at any
time point tk, in [17] it is assumed that x⌃(tk) is a constant
for all tk. This assumption most likely introduced significant
error in the network reconstruction. Inferring dynamics from
relative abundance measurements alone is not feasible.

Second, given that the data is not sufficiently rich the
authors of [17] decided to only use the union of the top
10 most abundant species from each subject (resulting in
the 14 species shown in Figure 5) in the linear regression
analysis, instead of using regularization techniques. At the



species taxonomic rank there are on the order of 200 species
in a human stool sample. Thus in the generation of Figure
5 more than 90% of the data was not used. It is because
of these two major issues that the conclusions drawn from
the analysis in [17] are most likely not correct. Unfortunately
others have unknowingly built upon this flawed analysis [33].

A similar work looked to infer a subnetwork of microbial
interactions [7], but here the authors focused on those
species that interact most strongly with C. difficile. This
work overcomes the issue of relative abundance by having
recorded the total microbe DNA per gram for each sample.
In addition L2 regularization is used with the Tikhonov
regularization parameter chosen using cross-validation [24].
The authors however do make the mistake of only using
the most abundant species in the linear regression analysis.
Needless to say the results from this work are much more
reliable and the authors are able to confidently illustrate
clinically supported findings from the inferred subnetwork,
see Figure 6.

System identification in biological networks (sometimes
referred to as network reconstruction) needs the influence of
control engineers [5]. In addition to some of the issues just
raised lots of open question remain:

• Are some body sites more stable than others?
• How do we rigorously demonstrate this stability?
• Are the networks of two healthy individuals similar?
• How do different diseases affect that network?
• Why do FMTs work?
• Are there other modeling approaches that can be used

to understand microbial dynamics?
• What are the fundamental limitations for network re-

construction?
• Finally, how do we control the microbiome?

IV. CONCLUSIONS

Aircraft control has been one of the cornerstone applica-
tions for control for more than 50 years. It is time however
to find new areas for research. I hope this has inspired you

Fig. 6. Inferred subnetwork of microbes common to both human and mouse
that most strongly interact with C. difficile. The authors then went on to show
that indeed C. scindens could in fact ameliorate C. difficile infection, see [7,
Figure 3]. Adapted from [7, Figure 2f] Permission from Nature Publishing
Group, license number 3718211295678 Copyright Clearance Center.

to consider the human microbiome as a possible research
area for the application of everything you have learned in
dynamics, control, and system identification.
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Gunnar Rätsch, Eric G. Pamer, Chris Sander, and João B. Xavier,
Ecological modeling from time-series inference: Insight into dynamics
and stability of intestinal microbiota, PLoS Comput Biol 9 (2013),
no. 12.

[33] Steven N Steinway, Matthew B Biggs, Thomas P Loughran Jr, Jason A
Papin, and Reka Albert, Inference of network dynamics and metabolic
interactions in the gut microbiome, PLoS Comput Biol 11 (2015),
no. 6, e1004338.

[34] The Human Microbiome Project Consortium, Structure, function and
diversity of the healthy human microbiome, Nature 486 (2012),
no. 7402, 207–214.

[35] Robert Tibshirani, Regression shrinkage and selection via the lasso,
Journal of the Royal Statistical Society. Series B (Methodological)
(1996), 267–288.

[36] Andrey Tikhonov, Solution of incorrectly formulated problems and the
regularization method, Soviet math. dokl., 1963, pp. 1035–1038.

[37] Alexa Weingarden, Antonio González, Yoshiki Vázquez-Baeza, Sophie
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APPENDIX A
PRINCIPLE COORDINATE ANALYSIS

The purpose of Principle Coordinates Analysis (PCoA)
is to represent a collection of high dimensional data in
a lower dimension. Assume that one has a collection of
samples X 2 Rn⇥p where n is the total number of samples

and p is the dimension of each sample. Let Xi 2 R1⇥p,
i = 1, 2, . . . , n, be the row vectors of X as defined below
X =

⇥
X

T
1 X

T
2 · · · X

T
n

⇤T. The question answered in
this section is how one obtains a Y 2 Rn⇥k, k  n

with Yi 2 R1⇥k, i = 1, 2, . . . , n defined as follows
Y =

⇥
Y

T
1 Y

T
2 · · · Y

T
n

⇤T that is a faithful represen-
tation of X . We begin by defining the dissimilarity be-
tween samples i and j as d(Xi, Xj). Then the goal of
this method is to find Y such that d(Yi, Yj) is similar to
d(Xi, Xj) for the dissimilarity measure of interest. Let D

be a matrix composed of the sample dissimilarities where
the i, j element is defined as [D]ij = � 1

2d(Yi, Yj)
2 and

B =

�
In⇥n � n

�11n1T
n

�
D

�
In⇥n � n

�11n1T
n

�
, where 1n

is an n-dimensional column vector with each entry equal
to 1. The n ⇥ k dimensional representation of the n ⇥ p

sample data is then Y =

⇥
q1
p
�1, q2

p
�2, . . . , qk

p
�k

⇤
,

where B = Q⇤Q

�1 is the eigenvalue decomposition with
eigenvalues �i 2 R, and normalized eigenvectors qi 2 Rn

for i = 1, 2, . . . , n with Q = [q1, q2, . . . , qn] and [⇤]ii = �i

the diagonal eigenvalue matrix [30, Chapter 5]. Due to the
fact that B is symmetric all eigenvalues and eigenvectors will
be real valued. It is furthermore assumed that the eigenvalues
are arranged such that �1 � �2 � · · · � �n.

APPENDIX B
DIAGONAL STABILITY AND GENERALIZED

LOTKA-VOLTERRA DYNAMICS

Definition 1. If there exists a diagonal positive matrix P

such that AT
P + PA � 0 then A is said to be Diagonally

Stable.

Theorem 1 ([18, Theorem 1]). If the system in (1) is such
that the matrix A is diagonally stable and the steady state x

⇤

is in the positive orthant (x⇤ 2 Rn
>0), then the steady state

x

⇤ is uniformly asymptotically stable for all initial conditions
x(t0) in the positive orthant.

Proof. Let V (x, t) = 2

Pn
i=1 pi(xi�x

⇤
i �x

⇤
i log(xi/x

⇤
i )) be

the Lyapunov candidate where pi is the i-th diagonal element
of a diagonal positive matrix P such that AT

P + PA � 0.
Differentiating the Lyapunov candidate it follows that
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T
(A

T
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⇤
).

Thus the Lyapunov candidate is positive definite in x � x

⇤

and its derivative is negative definite in x� x

⇤.


