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Abstract— Closed–loop reference models have recently been
proposed for states accessible adaptive systems. They have been
shown to have improved transient response over their open
loop counter parts. The results in the states accessible case
are extended to single input single output plants of arbitrary
relative degree.

I. INTRODUCTION

Recently a class of adaptive controllers with Closed–loop

Reference Models (CRM) for states accessible control has

been proposed [1]–[7]. The main feature of this class is the

inclusion of a feedback gain in the reference model. Without

the feedback gain the CRM reduces to the Open–loop

Reference Model (ORM) which is used in classical adaptive

control [8], [9]. The main advantage of the CRM-adaptive

systems is their ability to shape and improve the transient

response of the adaptive system. This was demonstrated in

[3]–[5] through the use of L2 norms of the model following

error, the derivative of the adaptive parameter and the rate

of control input, and improved further in in [3]–[5] with an

analytical justification for the reduction in high frequency

oscillations which are conspicuously absent in CRM systems.

References [6], [7] also addressed a peaking phenomenon

that occurs in CRM systems. In [3]–[7], it was shown that

the extra design freedom in the adaptive system in the form

of the feedback gain in the reference model allowed this

improvement. Other recent works on states accessible CRM

adaptive control can be found in [10], [11].

This paper addresses the next step in the design of adaptive

systems, which is the case when only outputs are available

for measurement rather than the entire state. It is shown

that even with output feedback, the resulting CRM–based

adaptive systems are first and foremost stable, and exhibit an

improved transient response. As in the case when states are

accessible, it is shown that this improvement is possible due

to the suitable choice of the feedback gain in the reference

model. Unlike the approach in [12], the classical model

reference adaptive control structure is used here, with the

focus on single-input single-output systems.

Similar to the states-accessible case, the CRM-based adap-

tive systems with output feedback presented here have the

advantage of an improved transient response. This is made

possible by the introduction of an extra degree of freedom

in the reference model. The introduction of this degree of

freedom reduces the burden on the adaptive controller by
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allowing the reference model to meet the plant “half-way”.

Also, this degree of freedom allows the trade-off between

speed of adaptation and the size of the parametric uncertainty

to be relaxed and enables reduced oscillations. In the specific

context of output feedback, the advantage of the CRM over

the ORM manifests in the form of judicious selections of

the reference model, filters, and the feedback gain. These

allow the underlying transfer function in the error model

to not only be strictly positive real, but also to have poles

and zeros that are arbitrarily fast. In addition, the CRM

allows the analysis and design of a minimal representation

of the adaptive system, and removes the restriction that

ORM-based adaptive systems often possess, which is due to

the location of the eigenvalues of the nonobservable states

of the underlying adaptive system. The CRM-based design

and overall analysis of stability and transient response are

presented in this paper. Both cases when the relative degree

is unity and arbitrary are analyzed.

This paper is organized as follows. Section II contains

the notation. In Section III the control problem is defined.

Section IV contains the analysis of the ORM with relative

degree 1. Section V contains the analysis of the CRM with

relative degree 1. Section VI analysis the arbitrary relative

degree case, and Section VII closes with our conclusions.

II. NOTATION

All norms unless otherwise stated are the Euclidean norm

and enduced Euclidean norm. Let PC[0,∞) denote the set of

all bounded piecewiese continuous signal.

Definition 1: Let x, y ∈ PC[0,∞). The big O–

notation, y(t) = O[x(t)] is equivalent to the existence

of constants M1,M2 > 0 and t0 ∈ R
+ such that

|y(t)| ≤ M1|x(t)|+M2 ∀t ≥ t0.
Definition 2: Let x, y ∈ PC[0,∞). The small o–notaion,

y(t) = o[x(t)] is equivalent to the existence of con-

stants β(t) ∈ PC[0,∞) and t0 ∈ R
+ such that

|y(t)| = β(t)x(t) ∀t ≥ t0 and limt→∞ β(t) = 0.

Definition 3: Let x, y ∈ PC[0,∞). If y(t) = O[x(t)] and

x(t) = O[y(t)]. Then x and y are said to be equivalent and

denoted as x(t) ∼ y(t).
Definition 4: Let x, y ∈ PC[0,∞). x and y are said to grow

at the same rate if supt≤τ |x(τ)| ∼ supt≤τ |y(τ)|.
Definition 5: The prime notation is an operator that re-

moves the high frequency gain from a transfer function

W(s) , k
sm−1 + b1s

m−2 + · · · bm−1

sm + a1sm−1 + · · ·+ am
.

so that

W ′(s) ,
W(s)

k
.
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III. THE CONTROL PROBLEM

Consider the Single Input Single Output (SISO) system of

equations

y(t) = W (s)u(t) (1)

where u ∈ R is the input, y ∈ R is the measurable output,

and s the differential operator. The transfer function of the

plant is parameterized as

W (s) , kp
Z(s)

P (s)
, kpW

′(s) (2)

where kp is a scalar, and Z(s) and P (s) are monic polynomi-

als with deg(Z(s)) < deg(P (s)). The following assumptions

will be made throughout.

Assumption 1: W (s) is minimum phase.

Assumption 2: The sign of kp is known.

Assumption 3: The relative degree of W (s) is known.

The goal is to design a control input u so that the output

y in (1) tracks the output ym of the reference system

ym(t) = Wm(s)r(t) , km
Zm(s)

Pm(s)
r(t) (3)

where km is a scalar and Zm(s) and Pm(s) are monic

polynomials with Wm(s) relative degree n∗. In Sections IV

through VI, we present the control designs for n∗ = 1 and

for an arbitrary n∗.

IV. n∗ = 1 AND ORM

Assumption 4: W ′
m(s) is Strictly Positive Real (SPR).

The structure of the adaptive controller is now presented:

ω̇1(t) = Λω1 + bλu(t) (4)

ω̇2(t) = Λω2 + bλy(t) (5)

ω(t) , [r(t), ωT
1 (t), y(t), ωT

2 (t)]
T (6)

θ(t) , [k(t), θT1 (t), θ0(t), θT2 (t)]
T (7)

u = θT (t)ω (8)

where Λ ∈ R
(n−1)×(n−1) is Hurwitzx, bλ ∈ R

n−1, k̂ ∈ R,

ω1, ω2 ∈ R
n−1, and θ ∈ R

2n is adaptive gain vector with

k(t) ∈ R, θ1(t) ∈ R
n−1, θ2(t) ∈ R

n−1 and θ0(t) ∈ R. The

update law for the adaptive parameter is then defined as

θ̇(t) = −γsign(kp)eyω, (9)

where ey = y − ym.

Before stability is proved, a discussion on parameter

matching is needed. Let θc , [kc, θT1c, θ0c, θT2c]
T be

a constant vector. When θ(t) = θc the forward loop and

feedback loop take the form

λ(s)

λ(s) − C(θc; s)
and

D(θc; s)

λ(s)
.

For simplicity we choose λ(s) = Zm(s), but note that this

is not necessary and the stability of the adaptive system will

still hold. The closed loop system is now of the form

y(t) = Wcl(θc; s)r(t)

with

Wcl(θc; s) ,
kckpZ(s)Zm(s)

(Zm(s)− C(θc; s))P (s)− kpZ(s)D(θc; s)
.

From the Bezout Identity, a θ∗T , [k∗, θ∗T1 , θ∗0 , θ∗T2 ]T

exists such that Wcl(θ
∗; s) = Wm(s).

Therefore,

y(t) = kpW
′
m(s)(φT (t)ω(t) + k∗r(t)) (10)

and

ey(t) = kpW
′
m(s)φ(t)ω(t), (11)

where φ(t) = θ(t)− θ∗(t) and k∗ = km/kp.

A. Stability for n∗ = 1

The plant in (2) can be represented by the unknown

quadruple, (Ap, bp, cp, kp)

ẋ = Apx+ bpu; y = kpc
T
p x (12)

where kpc
T
p (sI −Ap)bp = W (s).

In general one does not need to keep the high frequency

gain as a separate variable when writing the transfer function

dynamics in state space form. In the context of adaptive

control however, the sign of kp is important in proving

stability and is therefore always singled out from the rest

of the dynamics. Using (12), the dynamics in (10) can be

represented as

ẋ = Amnx+ bmn(φ
T (t)ω + k∗r); y = kpc

T
mnx (13)

where

Amn =





Ap + bpθ
∗
0kpc

T
p bpθ

∗T
1 bpθ

∗T
2

bλθ
∗
0kpc

T
p Λ + bλθ

∗T
1 bλθ

∗T
2

bλkpc
T
p 0 Λ





bmn =





bp
bλ
0



 , cmn =





cp
0
0



 and x ,





xp

ω1

ω2





with the reference model having an equivalent non–minimal

representation

ẋmn = Amnxmn + bmnk
∗r; ym = kpc

T
mnxmn

with the property that

kpc
T
mn(sI −Amn)bmn = kpW

′
m(s).

The non–minimal error vector is defined as emn = x− xmn

and satisfies the following dynamics

ėmn = Amnemn + bmnφ
Tω; ey = kpc

T
mnemn. (14)

Theorem 1: Following Assumptions 1-4, the plant in (1)

with the reference model in (3), controller in (8) and the

update law in (9) are globally stable with the model following

error asymptotically converging to zero.

Proof: See [8, §5.3].
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V. n∗ = 1 AND CRM

Unlike the ORM, in this case, the reference model is

chosen as

ẋm = Amxm + bmkmr + ℓ(y − ym), ym = cTmxm (15)

where (Am, bm, cTm) is an m dimensional system in observer

canonical form with cTm = [0 . . . 0 1] and satisfying

cTm(sI −Am)bmkm = Wm(s).

The feedback gain ℓ makes the reference model somewhat

similar to the Luenberger observer. ym(t) is now related to

the reference command r(t) and model following error ey(t)
as

ym(t) = Wm(s)r(t) +Wℓ(s)(y(t)− ym(t)) (16)

where

Wℓ(s) , kℓ
Zℓ(s)

Pm(s)
, (17)

and kℓ ∈ R along with the m − 1 order monic polynomial

Zℓ(s) are a function of ℓ and free to choose. Subtracting (16)

from (10) results in the following differential relation

ey = kpW
′
e(s)φ

Tω (18)

where

W ′
e(s) ,

Zm(s)

Pm(s)− kℓZℓ(s)
. (19)

Lemma 2: An ℓ can be chosen such that W ′
e(s) is SPR for

any n∗ = 1 and minimum phase transfer function W ′
m(s).

Proof: The product kℓZℓ(s) a polynomial of order

n− 1 with n− 1 degrees of freedom through ℓ. Pm(s) is a

monic polynomial of degree n. Therefore, Pm(s)− kℓZℓ(s)
is a monic polynomial of order n with n − 1 degrees of

freedom determined by ℓ. Thus for any Zm(s) the roots of

W ′
e(s) can be placed freely in the closed left–half plane such

that W ′
e(s) is SPR.

Let

Ae = Amn +Gℓkpc
T
mn (20)

where G transforms xm to the controllable subspace in xmn,

which always exist [13]. The non–minimal error dynamics

therefore take the form

ėmn(t) = Aeemn(t) + bmnφ(t)ω(t). (21)

Remark 1: It is worth noting that in the construction of the

minimal and non–minimal systems the location of the gains

kp and km switch from being located at the input to the

output. The non–minimal systems is never created and thus

need not be realized. For the case of the minimal reference

model in (15) it is critical however that km appears at the

input of the system. This is done so that given the canonical

form of cm the ℓ in (15) completely determines the zeros

and high frequency gain of Wℓ(s) in (17).

Theorem 3: Following Assumptions 1-3 and ℓ chosen as

in Lemma 2, the plant in (1) with the reference model in (15),

controller in (8) and the update law in (9) are globally stable

with the model following error asymptotically converging to

zero.

Proof: Given that W ′
e(s) is SPR, there exists a

Pe = PT
e > 0 such that

AT
e Pe + PeAe = −Qe and Pebmn = cmn. (22)

where Qe = QT
e > 0. Thus V = eTmnPeemn + φTφ

γ|kp|
is a

Lyapunov function with derivative V̇ = −eTmnQeemn. Bar-

balat Lemma ensures the asymptotic convergence of emn to

zero.

A. Performance

Now that we have proved stability we can return to a

minimal representation of the error dynamics in (18) which

is

ėm = Aℓem + bmkpφ
Tω, ey = cTmem; (23)

where the all the eigen–values of Aℓ are the roots to

Pm(s)− kℓZℓ(s), as can be seen from (19). Recall the

Anderson version of KY Lemma;

AT
ℓ P + PAℓ = −ggT − 2µP ; Pbm = cm (24)

where

µ , min
i

|λi(Aℓ)| , i = 1 to m. (25)

The following performance function

Vp = eTmPem +
φTφ

γ|kp|
(26)

has a time derivative

V̇p ≤ −2µeTmPem. (27)

From (27) it directly follows that

‖ey(t)‖
2
L2

≤
1

2µ

(

λmax(P )

λmin(P )
‖e(0)‖2 +

1

γ|kp|

‖φ(0)‖2

λmin(P )

)

.

(28)

Example 1: The transfer function W ′
e(s) must be SPR,

therefore, the poles of W ′
e(s) are limited by the location of

its zeros. The order of Am however is free to choose so long

as m ≥ 1, thus we can choose m = 1. Therefore making

Wm(s) = km
1

s+ am

where bm = km and Am = −am. The closed loop reference

model transfer function therefore is

We(s) = km
1

s+ am + l
(29)

where ℓ = −l, l > 0. From (29), it is clear that there are no

zeros limiting the location of the closed loop pole.

Further more, the Anderson Lemma reduces to the trivial

solution of P = 1, g = 0, and µ = am + l. Since there are

no zeros to worry about, W ′
e(s) is SPR for all l. Therefore,

µ can can be chosen arbitrarily. The bound in (28) for this

example simplifies to

‖ey(t)‖L2
≤

1

2(am + ℓ)

(

‖e(0)‖2 +
‖φ(0)‖2

γ|kp|

)

. (30)
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Remark 2: The use of CRMs has two advantages com-

pared to the use of ORMs. The first is that the reference

model need not be SPR a priori, but only needs to be of

appropriate relative degree. There are several methods of

dealing with non–SPR reference models for n∗ = 1, but these

methods require the use of pre–filters [14], or augmented

error approaches (see [8], and Section VI).

The second advantage is illustrated in Example 1. Using

this approach, a reference model can be chosen such that it

has no zeros. When this is done and a CRM is used, the

location of the slowest pole of the error model dynamics

is free to choose. When using ORMs, the location of the

slowest eigenvalue of the closed–loop error model is not free

to choose, as speeding up the reference model eigenvalues

without the use of CRMs will require the use of high–gain

feedback which is equivalent to ‖θ∗‖ being large if the open–

loop plant has slow eigenvalues.

In the next section, we will show that the above advantages

help in realizing a bound on the derivatives of the adaptive

parameters which leads to a reduction in the oscillations that

adaptive systems often exhibit.

VI. ARBITRARY n∗ AND CRM

For higher relative degrees it is common to use an aug-

mented error approach, where by the original model follow-

ing error ey is not used to adjust the adaptive parameter,

but an augmented error signal which does satisfy the SPR

conditions needed for stability. The augmented error method

used in this result is Error Model 2 as presented in [8, §5.4],

with some changes to the notation.

For ease of exposition and clarity in presentation we

present the kp known. For the case when kp unknown we

refer the reader to [15].

A. Stability for known high frequency gain

We begin by replacing Assumption 2 with:

Assumption 2′: kp is known.

Without loss of generality we choose km = kp = 1 and the

control input for the generic relative degree case reduces to

u(t) = r(t) + sθT (t)sω(t) (31)

where Ď(·) denotes the vectors,

sω(t) , [ωT
1 (t), y(t), ωT

2 (t)]
T (32)

sθ(t) , [θT1 (t), θ0(t), θT2 (t)]
T . (33)

A feedforward time varying adaptive gain k(t) is no longer

needed and thus r(t) has been removed from the regressor

vector do to the fact that kp = km = 1. The model following

error then, satisfies the following differential relation

ey = W ′
e(s)

sφT
sω (34)

where the reader is reminded that the prime notation removes

the high frequency gain from transfer functions, and since

km = kp = 1, W ′
e(s) = We(s). A stable minimally realized

filter F (s) with no zeros is used to generate the filtered

regressor
sζ = F (s)Isω (35)

where I is the 2n−1 by 2n−1 identity matrix, F (s) designed

with unity high frequency gain, and F (s) and ℓ chosen so

that

W ′
f (s) , W ′

e(s)F
−1(s) (36)

is SPR.

Lemma 4: For any stable F (s) an ℓ can be chosen such

that W ′
f (s) is SPR.

Proof: The proof follows the same arguments as in

Lemma 2.

The tuning law for the arbitrary relative degree case uses

an augmented error ea, which is generated from the model

following error ey and an auxiliary error eχ. Using the CRM

in (15), the augmented and auxiliary error are defined as:

ea , ey +W ′
f (s)

(

eχ − easζT sζ
)

(37)

eχ , sθT sζ − F (s)sθT sω. (38)

A stable tuning law for the system is then defined as

ṡθ = −γeaζ̄. (39)

Theorem 5: Following Assumptions 1, 2′ and 3, with ℓ
chosen such that W ′

f (s) is SPR, the plant in (1) with the

reference model in (15), controller in (31) and update law

in (39) are globally stable with the model following error ey
asymptotically converging to zero.

Proof: The proof proceeds in 4 steps. First it is

shown that sθ(t) and ea are bounded and that ea, ṡθ ∈ L2.

Second, treating sθ(t) as a bounded time–varying signal,

then all signals in the adaptive system can grow at most

exponentially. Third, if it is assumed that the signals grow in

an unbounded fashion, then it can be shown that y, ω1 ω2,

sω, sζ and u grow at the same rate. Finally, from the fact that
ṡθ ∈ L2 it is shown that ω2 and sω do not grow at the same

rate. This results in a contradiction and therefore, all signals

are bounded and furthermore, ey(t) asymptotically converges

to zero. Steps 1 and 4 are detailed below. Steps 1-3 follow

directly from [8, §5.5] with little changes. Step 4 does involve

a modification to the analysis which is addressed in detail

next.

Step 1: Expanding the error dynamics in (37) and cancel-

ing like terms of W ′
e(s)

sθTω we have

ea = −W ′
e(s)

sθ∗T sω +W ′
f (s)

(

sθT sζ − easζT sζ
)

.

Adding and subtracting W ′
f (s)

sθ∗T sζ the equation becomes

ea = W ′
f (s)

(

sφT sζ − easζT sζ
)

+ δ(t) (40)

where δ(t) is an exponentially decaying term do to initial

conditions and defined as

δ(t) = W ′
f (s)

(

sθ∗T sζ(t)− F (s)sθ∗T sω(t)
)

. (41)

Breaking apart sζ from its definition in (35) and noting that
sθ∗ now commutes with F (s) we have that

δ(t) = W ′
f (s)

(

sθ∗T (F (s)− F (s)) Isω
)

. (42)

Therefore, if the filter F (s) is chosen to have the same

initial conditions when constructing sζ and eχ then, δ = 0
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for all time. For this reason we ignore the affect of choosing

different filter initial conditions. The interested reader can see

how one can prove stability in augmented error approaches

where δ(0) 6= 0 [8, pg. 213], with the addition of an extra

term in the Lyapunov function.

A non–minimal representation of ea is given as

ėan = Aeean + ban
(

sφT sζ − easζT sζ
)

, ea = cTanean (43)

where

cTan(sI −Ae)
−1ban , W ′

f (s). (44)

Given that Wf (s) is SPR, there exists a Pa = PT
a > 0 such

that

AT
e Pa + PaAe = −Qa and Paban = can. (45)

where Qa = QT
a > 0.

Consider the Lyapunov candidate V = eTanPaean +
φTφ
γ

. Differentiating along the system dynamics in (43)

and substitution of the tuning law from (39) results in

V̇ ≤ −eTanQaean − 2e2a
sζT sζ . Therefore, ean, sθ ∈ L∞ and

ean, ṡθ ∈ L2

Step 2: The plant dynamics can be expressed as

ẋ = Amnx+ bmn(sφT (t)ω + r); y = cTmnx (46)

where with an appropriate choice of a C can be expressed

as

ẋ =
(

Amn + bmn
sφT (t)C

)

x+ bmnr (47)

From Step 1 it is known that sφ is bounded, and therefore

x grows at most exponentially. Futhermore, for r piecewise

continuous, x and sζ are both piecewise continuous as well.

Step 3: If it is assumed that all signals grow in an

unbounded fashion then it can be shown that

sup
τ≤t

|y(τ)| ∼ sup
τ≤t

‖ω1(τ)‖ ∼ sup
τ≤t

‖ω2(τ)‖ . . .

∼ sup
τ≤t

‖sω‖ ∼ sup
τ≤t

‖sζ‖ ∼ sup
τ≤t

|u(τ)|
(48)

[8, §5.5]

Step 4: Rewrinting (38) in terms of sω we have that

eχ , sθTF (s)Isω − F (s)sθT sω (49)

and given that ṡθ ∈ L2 and F (s) is stable the following holds

eχ(t) = o

[

sup
τ≤t

‖sω(τ)‖

]

. (50)

The above bound follows from the Swapping Lemma [8,

Lemma 2.11]. From (39) and the fact that ṡθ ∈ L2 we have

that easζ ∈ L2. Given that W ′
f (s) is asymptotically stable,

[8, Lemma 2.9] can be applied and it follows that

W ′
f (s)

(

(easζ)T sζ
)

= o

[

sup
τ≤t

‖sζ(τ)‖

]

(51)

The plant output can be written in terms of the reference

model and model following error as

y(t) =ym(t) + ey(t)

=W ′
m(s)r(t) + (1 +W ′

ℓ(s)) ey(t).

Using (37), ey(t) = ea −W ′
f (s)

(

eχ − easζT sζ
)

and the

above equation expands as

y(t) =W ′
m(s)r(t) + (1 +W ′

ℓ(s)) ea

− (1 +W ′
ℓ(s))W

′
f (s)

(

eχ − easζT sζ
)

.

Using (50) (51) and noting that 1+W ′
ℓ(s) is asymptotically

stable [8, Lemma 2.9] can be applied again and

y(t) =W ′
m(s)r(t) + (1 +W ′

ℓ(s)) ea

+ o

[

sup
τ≤t

‖sζ(τ)‖

]

+ o

[

sup
τ≤t

‖sω(τ)‖

]

.

Given that r and ea are piecewise continuous and bounded

we finally have that

y(t) = o

[

sup
τ≤t

‖sω(τ)‖

]

. (52)

This contradicts (48) and therefore all signals are bounded.

Furthermore, from (43) it now follows that ėan is bounded

and given that ean ∈ L2, from Step 1, it follows

that ean asymptotically converges to zero and therefore

limt→∞ ea(t) = 0. From (50) it follows that eχ asymptoti-

cally converges to zero. Therefore, limt→∞ ey(t) = 0. The

above analysis differs from the analysis for the ORM output

feedback adaptive control do to the fact that one can not a

priori assume that ym(t) is bounded, do to the feedback of

ey into the reference model.

B. Performance when kp known

Just as in the n∗ = 1 case, with stability proved a Lya-

punov performance function can be studied that uses a

minimal representation of the dynamics. That being said,

consider the minimal representation of the dynamics in (40)

ėam = Aℓeam+bam
(

sφT sζ − easζT sζ
)

, ey = cTameam (53)

in observer canonical form so that cTam = [0 . . . 0 1] and

cTam(sI −Aℓ)
−1bam , W ′

f (s)

Recall the Anderson version of KY Lemma;

AT
ℓ Pp + PpAℓ = −ggT − 2µPp; Ppbam = cam (54)

where µ is defined in (25). The following performance

function Vp = eTamPpeam +
sφT sφ
γ

has a time derivative

V̇p ≤ −2µeTamPpeam − 2e2a
sζT sζ . From (VI-B) it directly fol-

lows that

‖ea(t)‖
2
L2

≤
1

2µ

(

λmax(Pp)

λmin(Pp)
‖e(0)‖2 +

1

γ

‖sφ(0)‖2

λmin(Pp)

)

(55)

and

‖ṡθ(t)‖2L2
≤

1

2

(

γ2λmax(Pp)‖e(0)‖
2 + γ‖sφ(0)‖2

)

. (56)

Ultimately we would like to compute the L2 norm of eχ
and ey . Given that these norms will depend explicitly on the

specific values of the filter and reference model, we perform

that analysis in the following example.

369



Example 2: In this example we consider a relative degree

2 plant. The reference model is chosen as

Wm(s) =
1

s2 + b1s+ b2
(57)

and the filter is chosen as

F (s) =
1

s+ f1
. (58)

The reference model gain is expanded as ℓ =
[

−l1 −l2
]T

.

Then

We(s) =
1

s2 + (b1 + l1)s+ (b2 + l2)
(59)

and

Wf (s) =
s+ f1

s2 + (b1 + l1)s+ (b2 + l2)
. (60)

Since, kp = km = 1, then Wm(s) = W ′
m(s),

We(s) = W ′
e(s) and Wf (s) = W ′

f (s). For stability to

hold W ′
f (s) must be SPR and from (60) it is clear that

the SPR condition can be satisfied by choosing ℓ and f1
appropriately. More importantly though, we see that the

slowest eignvalue of Wf (s) can be arbitrarily placed and

thus the µ in (25) can be arbitrarily increased.

‖eχ(t)‖
2
L2

≤ 3

(

e2χ(0)

2f1
+

(

e2χ(0)

4f2
1

+
‖sω(t)‖2∞

f3
1

)

‖ ˙̄θ(t)‖2L2

)

(61)

A detailed proof of this expression is given in [15, Appendix

A]. Furthermore, we have the following bound for the model

following error

‖ey(t)‖
2
L2

≤ 2‖ea(t)‖
2
L2

+ 2‖eζ(t)‖
2
L2

(62)

where eζ(t) , Wf (s)eχ(t) can be bounded as

‖eζ‖
2
L2

≤ 3m2

(

e2ζ(0)

2µ
+

(

eχ(0)
2

4µf1
+

‖sω(t)‖2∞
µf2

1

)

‖ ˙̄θ(t)‖2L2

)

.

(63)

The bound in (63) is given in [15, Appendix B].

Remark 3: Now we compare the norms in (61) and (63)

for an ORM and CRM system and note that increasing both

f1 and µ decreases the two norms. For the ORM system

ℓ = 0, therefore µ is solely a function of b1 and b2 in (60).

The coefficients b1 and b2 can not be arbitrarily changed

without affecting the matching parameter vector θ̄∗. In the

presence of persistence of excitation, θ̄(t) → θ̄∗ and large θ̄∗

will directly imply a large control input. Furthermore, one

can not arbitrarily change the reference model poles, as the

reference model is a target behavior for the plant, in which

case the control engineer may not want to track a reference

system with arbitrarily fast poles. Therefore, given that b1
and b2 are not completely free to choose this also limits the

value of f1 as Wf (s) must always be SPR. In the CRM case

b1 and b2 can be held fixed and l1, l2 and f1 can be adjusted

so that the poles of Wf (s) are arbitrarily fast and Wf (s)
is still SPR.Therefore, the added degree of freedom through

ℓ in the CRM adaptive systems allows more flexibility in

decreasing the L2 norm of ey.

Remark 4: In the above, we have derived bounds on the

L2 norm of the tracking error. That the same error has

finite L∞ bounds is easily shown using Lyapunov function

arguments and the fact that projection algorithms ensure

exponential convergence of the error to a compact set, similar

to the analysis in [3]–[6].

VII. CONCLUSION

This work shows that with the introduction of CRMs the

adaptive system can have improved transient performance in

terms of reduction of the L2 norm of the model following

error and the derivative of adaptive perimeter. The analysis

techniques used followed from the states accessible CRM

adaptive systems in [3]–[5]. Not reported in this work are

techniques used to analytically support the reduction in

oscillations when CRMs are used, as performed in [6], [7].

Extending the results from [6], [7] to the output feedback

case are the subject of ongoing investigation.
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