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the process characteristics alone does not result in satisfactory control while attempts to
control the unknown plant without identification may result in poor response. Hence,
according to Feldbaum, the controller A in an automatic control system with incomplete
information regarding the plant B must simultaneously solve two problems that are
closely related but different in character. Feldbaum referred to this as dual control. First,
on the basis of the information collected, the controller must determine the characteristics
and state of the plant B. Second, on the basis of this acquired knowledge, it has to
determine what actions are necessary for successful control. The first problem may be
considered one of estimation or identification while the second is one of control.

Two philosophically different approaches exist for the solution of the adaptive
control problem discussed earlier. In the first approach, referred to as indirect control,
the plant parameters are estimated on-line and the control parameters are adjusted based
on these estimates. Such a procedure has also been referred to as explicit identification
in the literature [3]. In contrast to this, in what is referred to as direct control, no effort
is made to identify the plant parameters but the control parameters are directly adjusted
to improve a performance index. This is also referred to as implicit identification. In
conformity with the ideas expressed by Feldbaum, we note that in both cases efforts have
to be made to probe the system to determine its behavior even as control action is being
taken based on the most recent information available. The input to the process is therefore
used simuitaneously for both identification and control purposes. However, not every
estimation scheme followed by a suitable control action will result in optimal or even
stable behavior of the overall system. Hence, the estimation and control procedures have
to be blended carefully to achieve the desired objective. The adaptive control schemes
described in the chapters following can be considered special cases where successful
dual control has been realized.

In Sections 1.4.1 and 1.4.2, we deal with parameter perturbation and sensitivity
methods that are examples of the direct and indirect method respectively. These methods
were investigated extensively in the 1960s and represented at that time the two principal
approaches to adaptive control. We provide a somewhat more-than-cursory treatment of
the two methods in this introductory chapter, since many of the adaptive concepts as
well as plant parametrizations suggested later have their origins in these two methods.
The reader who is not interested in these historical developments may proceed directly
to Section 1.5 with no loss of continuity.

1.4.1 Parameter Perturbation Method

Extremum adaptation mentioned in Section 1.3 was perhaps the most popular among the
various adaptive methods investigated in the early 1960s. It had considerable appeal to
researchers due to its simplicity, applicability to nonlinear plants, and the fact that it did
not require explicit identification of plant parameters. For several years it was investigated
extensively and its principal features were studied exhaustively. Starting with the work
of Draper and Li [13], who suggested the scheme for optimizing the performance of an
internal combustion engine, the method collected a large following, and at present a rather
extensive literature exists on this subject. Although its scope is somewhat tangential to
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that of this book, we nevertheless include some details concerning the method since
many of the questions concerning the performance and limitations of adaptive systems
encountered at present have counterparts in the analyses of the parameter perturbation
method carried out over two decades ago. The interested reader is referred to [12,17,31]
for further details.

The parameter perturbation method is a direct-control method and involves pertur-
bation, correlation, and adjustment. Consider, for example, a plant in a laboratory excited
by appropriate inputs, having an artificial environment, and provided with a means of
continuously measuring a performance index. Further assume that knobs can be twid-
dled or switches operated to affect this performance index. The question that is posed is
how one, asked to adjust the knobs and switches to optimize the performance function,
should proceed and what kind of problems the person would face. The most direct and,
perhaps, simplest procedure to follow would be to adjust the controls and see the effect
on the performance index. If the performance improves, one would continue to alter the
controls in the same direction; if it worsens, the controls would have to be changed in
the opposite direction. In principle this is what is artempted in the parameter perturbation
technique. However, in a practical problem, the number of parameters to be adjusted,
the presence of cutput noise, the fact that parameters of the plant vary with time and
that nonlinearities may be present in a plant, and so on, would complicate the problem
considerably. Whether or not the method would be considered practically feasible would
depend on the stability of the overall system as well as the speed with which it would
adapt itself, as the plant parameters varied with time. If the procedure is deemed to be
practically feasible, it is certainly simple in concept and easy to implement in terms of
hardware.

Detailed analyses of extremal adaptation have been carried out by many authors.
The analysis in [23] for example, reveals that sophisticated perturbation methods in-
volving differential equations with multiple time scales would be needed for a precise
analysis of the behavior of such systems. However, such approaches are not directly
relevant to the contents of this book. We shall, instead, merely bring out the salient
qualitative features of the approach as well as its limitations by confining our attention
to a few simple problems.

Exampie 1.1

Consider a no-memory plant in which the input is 6(t) and the output is a performance
function F(@(£)). F(9) is a function of 6 as shown in Fig. 1.3. Let @y correspond to the
value of @ for which F(#) has a minimum, Assuming that the designer can only choose the
value of & and observe the corresponding value of F(#) at every instant, the objective is to
determine a procedure for adjusting 8(¢) so that it converges to the optimal value 6, of 4.

Let the parameter ¢ be varied sinusoidally around a nominal value @ so that () = 6o+
€bg(%), where 8g(£) = sin wpt. € is the amplitude and wp is the frequency of the perturbation.
The output F(f) will then oscillate around the nominal value F(By) as F(fp) + 6p(t). If
B +¢ < Bop, it is obvious that #(t) and E(8(2)) are out of phase while if 8y — ¢ > Bopr, they
are in phase. Hence, by correlating the perturbation and output as

2w fwy A
/ Se()F(B)dt = R(O)
t
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Figure 1.3 Parameter perturbation method — static system.
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Figure 1.4 Parameter perturbation method — dynamic system.

the side of o on which 8 lies can be determined. This in tum indicates whether 8 is to
be increased or decreased from its nominal value 8.

O If for every value of 8, the gradient Vo F'(6) with respect to 8 is known, it follows
directly that if the parameter 6() is adjusted as

I

(%) —yVeF(H() >0

- (1.8)

I

or alternately 163) —v8gn [V F(G(N],

where sgn(z) = +1 if z > 0 and —1 otherwise, then lim;—.. 8(t) = Bope. Since Vo F'()
is not known, Eq. (1.8) cannot be implemented in practice. However, the method outlined
in Example 1.1 represents an approximation of the above since R(f) yields the sign of the
gradient and hence can be used for adjusting the parameter.

Example 1.2

Figure 1.4 shows a simple dynamical plant containiag a single parameter §. The input to
the plant is » and the only relevant output of the plant is the instantaneous performance
index F(8,1). It is assumed that using an averaging device, an averaged performance index
F(8) which is independent of time can be obtained. The function F(0) has the same form
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as (&) given in Example 1.1. Once again the objective is to determine the optimal value
Bopt of @ so that the performance index is minimized.

Note that the problem of optimization of a dynamical system has been reduced to the
minimization of the function F(#) with respect to the parameter £ and that quantities such
as the input u are no longer directly relevant. In this equivalent systemn, the parameter §
can be considered as the input and F(8) as the output as in Example 1.1.

Assuming once again that #(t) is perturbed around a nominal value G as B(t) =
6o + €84(t), the change in the performance index may be approximated by

Flt: o+ ebo(8)] & Ft;60] + € 5o() Vo F |6=6

if I is a smooth function of the parameter §. Correlating §5(¢) and F[¢; 8o + ebg(t)], we
obtain

So(t)F[t: 0] =~  So(tYF[t; 0o + 2V F [omay (1.9)

where the overbar denotes an average value over an interval of time 7. Assuming that §g(2)
is independent of the input «(z) and has an average value zero, the first term can be neglected.
The second term in Eq. (1.9) yields a quantity which is approximately proportional to the
gradient of F with respect to & at the operating point fo. This quantity is used for updating
the parameter 6. At every instant £, the parameter (£) is composed of the nominal value 6o,
the perturbation signal efp(t), and the correction term 4(%), which is based on an estimate of
the sign of the gradient Vo 7(0). w(t) is obtained by integrating the output of the averaging
device and using a feedback gain - as shown in Fig. 1.4.

The model above clearly separates the various aspects of the adaptive problem.
As described here, the four parameters of interest are the amplitude ¢ of the perturbing
signal, its frequency wy, the averaging time T, and the gain vy in the feedback path, which
can be considered as the step-size of the correction term. A few comments regarding the
choice of the values of these parameters are worthwhile [23]:

(i) Too small a value of € makes the determination of the gradient difficult while too
large a value may overlook the optimum value.

(ii) A very high frequency of perturbation wp may have a negligible effect on the
output while a low value of w, requires a large averaging time.

(iif) A small value of T may result in a noisy value of the gradient while a large value
of T’ implies slow adaptation.

(iv) A large step size -y may result in hunting or even instability while a small value
of v would result in very slow convergence.

As mentioned previously, the comproimises indicated in (i)-(iv) above make their appear-
ances in all adaptive schemes in one form or another and are closely related to the ideas
expressed by Feldbaum.

The detailed analysis of even a simple second-order system with a single control
parameter reveals that many assumptions have to be made regarding the drift frequency
of the control parameter which has to be tracked, the frequency of the correction term
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in the adaptive parameters, the frequency of the perturbing signal, the bandwidth of the
plant and the bandwidth of the closed-loop system. This becomes even more complex
if more than one parameter is to be adjusted. Despite these drawbacks, the procedure is
intuitively appealing and easy to implement, and consequently finds frequent application
in a variety of situations where very little is known about the detailed mathematical
model of the plant and only a few parameters can be adjusted. Although such analyses
provide valuable insights into the nature of the adaptive process, they are nevertheless
beyond the scope of this book.

1.4.2 Sensitivity Method

An alternate approach to the control of systems when uncertainty is present is through
the use of sensitivity models. This method gained great popularity in the 1960s and has
wide applicability at present in industrial design. A set of forty-five papers, including
three surveys containing several hundred references, representative of the state of the art
in 1973, was collected in a single volume by Cruz [11], and the reader is referred to
it for further information regarding this subject. In this section we briefly indicate how
sensitivity methods find application in the design of adaptive control systems.

Since uncertainty in a system can arise in a variety of forms, the corresponding
sensitivity questions can also be posed in different ways. Parametric uncertainty may
arise due to tolerances within which -components are manufactured and the combined
effect of variations in parameter values may affect overall system behavior. In adaptive
systems where parameters are adjusted iteratively on-line, it would be useful to know
how the system performance is improved. The effect of changes in parameters on the
eigenvatues of the overall time-invariant system, the states of the system at any instant
of time (for example, the terminal time), or the entire trajectory of the system, can be of
interest in different design problems. In such cases the partial derivative of the quantity
of interest with respect to the parameter that is perturbed has to be computed. Such partial
derivatives are called sensitivity functions and assuming they can be determined on-line,
the control parameters can be adjusted for optimal behavior using standard hill-climbing
methods. Although the use of dynamic models was originally suggested by Byhovskiy
[9] in the late 1940s and later extended by Kokotovic [22], Wilkie and Perkins [44],
Meissinger [32], and others, in the following examples we present the results obtained
independently by Narendra and McBride [34] in the early 1960s and later generalized in
[35].

Example 1.3

Consider the linear time-invariant differential equation
g+thé+fe = u e(ty) =0 (1.10)

Assume that the input u is specified but that the values of the constant parameters &; and
s are to be determined to keep the output et) as small as possible. Quantitatively this can
be represented as the minimization of a performance function J(8y,82) with respect to 8
and & where
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Figure 1.5 Generation of the partial derivative using a sensitivity model.
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0

If a gradient approach is to be used to determine the optimal values of @, and 8, the
partial derivatives 8e(£)/06; and de(t)/56- are needed. To compute them, we consider the
differential equations obtained by taking partial derivatives of the two sides of Eq. (1.10).

ety , Bet) ) de®)
g6, T g, tgem = —e®
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Denoting de /56, 2 y1 and Je/ 00, 2 32, we have

it

i +92y| +31y| —e

H2 + Ba1p2 + Br1p2 —e

so that y; and > can be generated using models identical to the system in Eq. (1.10) but
with inputs —e and —é respectively. Such models are referred to as sensitivity models.

Since de/39) and de/8a can be obtained using sensitivity models, the gradient of
J(@1,8:) in the parameter space can be obtained as

T
{ f e(t)yi(t)dt} i=1,2.
0 .

Hence, by successively adjusting 6;(¢) over intervals of length T by the algorithms

aJ
89;

e [ R

T
Git+T) = 9i(t)—'yf ety (t)dt i=1,2
0

or alternately by adjusting it continuously as §;(£) = —~e(f)yi(t), the performance can be
improved. When 8;(t) converges to some constant value 87, the optimum parameters are
achieved.
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Figure 1.6  Generation of the gradient using a sensitivity model,

Example 1.4 The General Case:

linear time-invariant nature of the systems involved. Assuming that the partial derivatives
with respect to n parameters ¢, 102, ..., 0n are needed, the same procedure can be repeated
using n-sensitivity models of the system. However, it was also shown independently in
[22,35] that in special cases where the outputs of all the gains §; end in the same summing
point, it may be possible to generate all the partial derivatives of ¥ using a single sensitivity
model. This is based once again on relatively simple concepis related to linear time-invariant
systems.

Since the signal 8e/88 can be considered to be obtained as e /¢ = TiTyu, where
T} is the transfer function from the point 3 to the output and 73 is the transfer function from
the input of the system to the point 1, and since T =TT, 8e/08 also can be generated
as the input to the gain parameter ¢ by making the output e as the input to the model as
shown in Fig. 1.6a. This is readily generalized to the many parameter case as shown in Fig.
1.6b since de/86;, (; < 1,2,...,n) would be the signal generated in the sensitivity model
at the input of #;. As in the simpler case described earlier, de/80; can be used to generate
the gradient of the performance index to adjust the parameters 8; of the systern.

¢xample of indirect control.

Although simulation results of adaptive systems based on this approach indicate
that the convergence of the controller is rapid, very little can be said about the theoretica]
stability of the overall system. In fact, the problem of assuring stability for arbitrary initial
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conditions encountered in both of the approaches treated in this section led to a search
for more systematic procedures for synthesizing stable adaptive controllers and, in turn,
resulted in the stability methods discussed in this book.

1.5 MODEL REFERENCE ADAPTIVE SYSTEMS AND SELF-TUNING
REGULATCORS

As mentioned in Section 1.2, the aim of control is to keep the relevant outputs of a given
plant within prescribed limits. If the input and output of a plant P are as shown in Fig.
1.7, the aim of control may be quantitatively stated as the determination of the input u
to keep the error ¢; = y, — y,, between the plant output y,, and a desired output yp,
within prescribed values. If y,, is a constant, the problem is one of regulation around
this value (also known as an operating point or set point). When %,, is a function of
time, the problem is referred to as racking. When the characteristics of the plant P are
completely known, the former involves the determination of a controller to stabilize the
feedback loop around the set point. In the latter case, a suitable controller structure may
be employed and control parameters determined so as to minimize a performance index
based on the error e;. As described earlier, powerful analytical techniques based on the
optimization of quadratic performance indices of the form of Eq. (1.4) are available
when the differential equations describing the behavior of the plant are linear and are
known a priori. When the characteristics of the plant are unknown, both regulation and
tracking can be viewed as adaptive control problems. Our interest will be in determining
suitable controllers for these two cases, when it is known a priori that the plant is linear
but contains unknown parameters. Model reference adaptive systems (MRAS) and self-
tuning regulators (STR) are two classes of systems that achieve this objective.

As discussed.in Section 1.4, the problem above can be attempted using either an
indirect or direct approach. In the indirect approach, the unknown plant parameters
are estimated using a model of the plant, before a control input is chosen. In the
direct approach, an appropriate controller structure is selected and the parameters of the
controiler are directly adjusted to reduce some measure of the error ¢;. While dealing
with the tracking problem, it becomes necessary in both cases to specify the desired output
Ym in a suitable form for mathematical tractability. This is generally accomplished by
the use of 'a reference model. Thus, an indirect approach calls for an explicit model
of the plant as well as a reference model, while the direct approach requires only the
latter. Adaptive systems that make explicit use of such models for identification or
control purposes are called MRAS [24]. In view of the important role played by both
the identification and reference models in the proper formuiation of the adaptive control
problem, we provide some additional comments concerning their choice.




