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Adaptive Control of a Class of
Time-Delay Systems
The control of physical systems in the presence of time-delays becomes particularly
lenging when parametric uncertainties are present. To cope with these ubiquitous u
tainties, we propose an adaptive controller in this paper that can accommodate bo
time-delay and parametric uncertainties. The controller includes a) a control architec
that is based on the plant relative degree rather than the plant order, b) an inte
implementation of the well known Posicast Controller so as to accommodate uns
plants, c) high-order tuners for parameter adaptation, and d) a Lyapunov-Krasvo
functional that allows adaptive stabilization. The controller is shown to be semi-glob
the time-delayt and to result in asymptotic tracking. The implications of the adapt
controller are explored in the context of combustion control through simulation stud
Robustness properties of the controller are briefly discussed.@DOI: 10.1115/1.1567755#
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1 Introduction
Delay systems represent a class of infinite-dimensional syst

where mechanisms related to transport, propagation, or othe
fects related to a significant time-lag are present. One such
ample is in combustion systems where recent modeling eff
have shown that one of the most challenging factors for succes
control is the presence of large time-delays@1#. In addition to this,
even small perturbations in the operating conditions introd
large and unpredictable changes in the system dynamics ma
ing a controller that can adapt to these uncertainties. The fiel
adaptive control has addressed parametric uncertainties in va
kinds of dynamic systems including linear and nonlinear, sin
and multivariable, continuous and discrete, deterministic, and
chastic systems. Very few of the results in this area pertain
problems where large time-delays are present. The main imp
tion of this is that all results currently available are applicable
time-delay systems only when the delay values are small.
results in this paper help in bridging the gap between curre
available results and practical needs of control problems.

A unique approach for controlling systems with a known tim
delay was originated by Otto Smith in the 1950s@2# by compen-
sating for the delayed output using input values stored over a
window of @ t2t,t# and estimating the plant output using a mod
of the plant. In@3#, this idea was extended to include unstab
plants as well, using finite-time integrals of the delayed inp
values thereby avoiding unstable pole-zero cancellations that
occur in Smith’s controller. In@4,5#, pole-placement and adaptiv
versions of@3# were developed, and it was shown that the pla
can be adaptively controlled in a stable manner in the large. M
recently, in@6–8#, an adaptive posi-cast controller has been p
posed whose design is based on the relative degree of the pla
be controlled. While in@6#, controllers were developed for plan
with relative degree two, in this paper, we consider plants of
bitrary order and relative degree whose zeros are stable and w
high frequency gain is known.

The advantages of the controller proposed in this paper o
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those in@4,5# are two-fold: DenotingWm(s) as the transfer func-
tion of the reference model that the plant in closed-loop is
quired to match, the first advantage is that in cases whereWm(s)
is unknown or too difficult to determine, the controller propos
here can be determined unlike those in@5#, which requireWm(s).
The second is that the controller proposed here is much sim
which is enabled by making use of properties of positive r
transfer functions. We also note that the controller proposed h
has been directly utilized in both simulation and experimen
studies of a practical combustion system and has been show
be successful in the presence of fairly large delays@7#.

In Section 2, we state the problem. In Section 3, we consi
the delay-free case and present the controller structure, the a
tive laws, the proof of stability, and the robustness properties
the controller. Application to the combustion control problem
also treated in this section. In Section 4, we consider the c
when time-delays are present, and present the requisite ada
controller and its proof of stability. Section 5 contains a summ
of the paper.

2 Statement of the Problem
The problem is the control of a plant given by the input-outp

description

y~ t !5Wp~s!@u~ t2t!#, Wp~s!5
Zp~s!

Rp~s!
(1)

whereWp(s) is the transfer function of a finite-dimensional sy
tem whose ordern is unknown, relative degreem is known, zeros
are inC” 2, and its high frequency gain is known. The time-del
t is assumed to be known as well. The plant poles and zeros
unknown and it is assumed that all poles have multiplicity o
For ease of exposition, in what follows we assume that the h
frequency gain is known and is unity.

It is required that the plant output follow the output of a refe
ence model with a transfer function

ym~ t !5Wm~s!@r ~ t2t!#, Wm~s!5
1

Rm~s!
(2)

whereRm is a monic Hurwitz polynomial of degreem, and km
.0. Our goal is to determine a stable adaptive controller for t
class of problems whose order depends onm and not onn. These
controllers are motivated by problems where the order of the p

n,
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is large. In particular, in problems related to distributed param
systems, the underlying system is truly infinite-dimensional,
which case any rational finite-dimensional approximations ther
inevitably leads to a largen. It is attractive in such cases to desig
a controller that depends on the number of integrations in
system, i.e., the relative degree, rather than the number of s
variables in the system, by making use of the stable zeros if
latter are present.

Since the control architecture that we propose is quite simila
that in the delay free case, we first present the controller fo
plant with no delays.

3 Adaptive Controller in the Delay-Free Case
The problem that we address in this section is the control o

y~ t !5Wp~s!@u~ t !#, Wp~s!5
Zp~s!

Rp~s!
(3)

whereWp(s) is the transfer function of a finite-dimensional sy
tem whose ordern is unknown, relative degreem is known, zeros
are in C” 2, and its high frequency gain is unity. The plant pol
and zeros are unknown, and it is assumed that all poles h
multiplicity one.

3.1 Controller Structure. It is well known that any linear
plant with stable zeros and a relative degreem can be stabilized by
a controller of the form

u5kc

~s1zc!
m21

pc~s!
y (4)

wherepc(s) is a monic polynomial of degreem21, for suitable
values ofkc and coefficients ofpc(s). In particular, we realize the
controller in ~4! in the following form.

u52
p~s!

~s1zc!
m21 u2k1y (5)

p~s!5k211k22s1 . . . 1k2~m21!s
m22 (6)

The controller as in~5! and ~6! together with the plant as in~3!
results in a closed-loop transfer function of the form

Wcl~s!5
~s1zc!

m21Zp~s!

Rp~s!pc~s!1k1~s1zc!
m21Zp~s!

(7)

pc~s!5~s1zc!
m211p~s! (8)

For a largek1 , then1m21 poles ofWcl(s) can be shown, using
Routh-Hurwitz arguments, to be close to the zeros ofs
1zc)

m21Zp(s) and otherm stable locations, for suitable values o
k2i ; i 51, . . . ,m21 ~see Appendix A and@9# for further details!.

We note that the controller in~5! and~6! can be represented b
the state-variable form

v̇15Lv11,u (9)

u52k2
Tv12k1y1r (10)

whereLPRm3m, ~L, ,! is controllable, and

k2
T~sI2L!21,5

p~s!

~s1zc!
m21 . (11)

The above discussions also indicate that for a suitable valuek1*
andk2* of k1 andk2 , respectively, the closed-loop transfer fun
tion is stable and is given byWcl(s).

3.2 Adaptive Controller. The controller structure in~9!
and~10! suggests that when the plant parameters are unknown
adaptive controller with time-varying parameters of the followi
form can be used:

v̇15Lv11,u (12)
Journal of Dynamic Systems, Measurement, and Control
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u5k2
T~ t !v11k1~ t !y1r (13)

Expressing the control parameters ask1(t)5k1* 1 k̃1(t), k2(t)
5k2* 1 k̃2(t), v5@v1

T ,y#T, k̃5@ k̃1
T ,k̃2

T#T, the closed-loop system
equations can be described as

y5Wcl~s!~ k̃Tv!1r . (14)

Wcl(s) is not strictly positive real~SPR!, but has stable poles
stable zeros, and is of relative degreem. Due to these properties
it is reasonable to assume that one can find a strictly positive
transfer function of the form

Wm~s!5Wcl~s!~s1a!m21.

We note that there may be other ways of choosingWm . For ex-
ample, instead of addingm21 zeros all at2a, they could be
added atm21 distinct locations, but for simplicity, let us assum
the above.

To enable the realization ofWm(s) in closed-loop, we choose
the control input, instead ofkT(t)v(t)1r (t), as follows:

u~ t !5~s1a!m21@kTv8~ t !1r 8# (15)

v8~ t !5
1

~s1a!m21 @v~ t !# (16)

r 8~ t !5
1

~s1a!m21 @r ~ t !#

This will lead to

y5Wm~s!~ k̃Tv81r 8!. (17)

Now, the problem is to realize~15! without explicitly differen-
tiating any signal. Letp5m21. Using binomial expansion and
the chain rule for differentiation, we obtain that

u5kTd01pk̇Td11 . . . 1~pCi
!k~ i !Tdi1 . . . 1pk~p21!Tdp21

1k~p!Tdp1r (18)

where

di~ t !5F 1

~s1a! i G@v~ t !#, i 51, . . . ,p

Note that all terms involvingk anddi are realizable. So, the only
remaining piece is the realization of derivatives ofk to pth order.

The overall problem can be summarized as follows: Given
error model in Eq.~17! wherev8 is given by~16!, determine an
adaptive law for adjustingk so that it is differentiablep times and
all the signals in the loop are bounded. The time-domain rep
sentation of the error model in~17! is given by

ė5Ase1bs~k2k* !Tv8, e15hs
Te (19)

where

hs
T~sI2As!

21bs5Wm~s!

SinceWm(s) is SPR, we have that

As
TPs1PsAs52Q<0, Psbs5hs (20)

We note thatv8 is differentiablep times. In what follows,v i8 and
ki denote thei th element of a vectorv8 andk, respectively.

Using the high-order tuners developed in@10#, the following
adaptive law is suggested for adjustingk:

k̇852e1v8 (21)

ẋi5~Axi1bki8! f ~v i8!, f ~x!511mx2 (22)

ki5cTxi , (23)

for i 51, . . . ,m, where~c, A, b! are chosen so that
JUNE 2003, Vol. 125 Õ 187
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cT~sI2A!21b5
a~0!

a~s!
(24)

anda(s) is an arbitrary stable polynomial of degreep. The choice
of k as in Eqs.~21!–~24! guarantees thatk is differentiablep
times.

3.3 Proof of Stability. We choose a Lyapunov function can
didate of the form

V5eTPse1~k82k* !T~k82k* !1d(
i 51

m

zi
TPzi

where

zi5xi1A21bki8 (25)
ATP1PA52I

Note that from~23! and ~24!, it follows that

żi5Azi f ~v i8!1A21bk̇i8 (26)

ki2ki85cTzi (27)

Also Eq. ~19! can be expressed as

ė5Ase1bs~k82k* !Tv81bs~k2k8!Tv8

e15hs
Te (28)

By choosing the parametersm andd appropriately, we will show
that V is a Lyapunov function.

Using Eqs.~20!–~28!, we obtain that

V̇52eTQe12e1(
i 51

m

~cTzi !v i82d(
i 51

izi i2f ~v i8!

22d(
i 51

zi
TPA21be1v i8

If we choosed andm as

d5
ici

iPA21bi
m5

4ihsi2mici2

ed

ande to be the smallest eigenvalue ofQ, we can show that

V̇<2d(
i 51

m

izi i22(
i 51

m SA e

m
iei2Admizi iuv i8u D 2

Hence,V̇<0. This implies thate, k8 andzi are bounded. There
fore xi and k are bounded. Using Barbalat’s lemma, it can
argued that limt→` e1(t)50.

3.3.1 Robustness Properties.The controller proposed in this
section can be viewed as a high-gain controller similar to thos
@11#. Instead of choosing a search-algorithm, a high-order tune
proposed to achieve stability. Despite this high-gain feature,
show in this section that the same fixes as in standard ada
control such ass-modification and dead-zone can result in a r
bust behavior.

The problem is to establish boundedness when an external
turbanced is present in the plant so that

y~ t !5Wp~s!@u~ t !1d~ t !#

The underlying error model can be derived as

ė5Ase1bs~k2k* !Tv81bsd, e15hs
Te (29)

where

hs
T~sI2As!

21bs5Wm~s!

andWm(s) is SPR. The adaptive law is chosen as
188 Õ Vol. 125, JUNE 2003
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k̇852e1v82s0k8 s0.0 (30)

with xi , ki , anda(s) defined as in Eqs.~22!–~24!.
Choose

V5eTPse1~k82k* !T~k82k* !1d(
i 51

m

zi
TPzi

wherezi is defined as in~25!. The time-derivative ofV is of the
form

V̇52eTQe12e1(
i 51

m

~cTzi !v i82d(
i 51

izi i2f ~v i8!

22d(
i 51

zi
TPA21be1v i812e1d2s0k8T~k82k* !

22ds0(
i 51

zi
TPA21bk8

If we choosed as

d5
ici

iPA21bi

we obtain that

V̇<2FeTQe1s0ik8i21d(
i 51

m

izi
2i1dm(

i 51

m

izi
2iv i8

2G
1F2ieiihsiidni14iciie1i(

i 51

m

izi iuv i8u12s0ik8iik* i

12s0ici(
i 51

m

izi iuki8uG
Completing squares, defininge to be the smallest eigenvalue ofQ
ande8P(0,1), and choosingm as

m5
4ihsi2mici2

ee8d
(31)

we can show that

V̇<2
e~12e8!

m S iei2
ihsiidni
~12e8!e D 2

2S 1

m
2

s0

d
ici2D

3S ik8i2
ik* i

2mS 1

m
2

s0

d
ici2D D

2

2(
i 51

m SAee8

m
iei

2Admizi iuv i8u D 2

2(
i 51

m SA d

s0
izi i2iciAs0

d
ik8i D 2

1
1

e~12e8!
ihsi2d21

ik* i2s0

4S 12
ms0

d
ici2D .

Hence, ifs0 is chosen such that

1

m
2

s0

d
ici2.0

then V̇<0 in Dc whereD is a compact set in the space (eT,(k
2k* )T,zT)T. This implies thate, k8 andzi are bounded. Therefore
xi andk are bounded, which establishes robustness.

3.4 Application to Combustion Control. Continuous com-
bustion systems occur in several propulsion and power genera
problems where a continuous heat source is present in a con
chamber. The unsteady heat release often couples in feed
Transactions of the ASME
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with the acoustic modes of the chamber thereby causing
modes to be driven into resonance. This dynamic instability of
occurs at operating points of interest where low emissions, h
volumetric heat-release, and high efficiency are achievable
help realize these desired objectives, active control technology
been shown to be an effective tool@12#. Recent results have
shown that a systematic methodology that uses a model-b
control strategy optimizes the performance of the combustion
tem @13#. We discuss one such model and its control below.

The plant to be controlled is of the form@7#

Pre f5W~s!Vc where W~s!5W0~s!e2st (32)

Vc is the voltage supplied to a fuel injector that modulates a s
ondary fuel source thereby affecting the unsteady heat release
Pre f is an acoustic measurement from a reference location in
combustor. The transfer functionW0(s) is given by

W0~s!5
F~s!G~s!Wac~s!

12G~s!H~s!
(33)

where ~see Fig. 1 for a schematic! G(s) describes the acousti
response of the duct and is of the form

G~s!5
~RdY12e

2std2X12!~Rue2stu21!

Ar̄1c̄1
2 det~S!

(34)

where

S5S X112RuY11e
2stu X122RdY12e

2std

X212RuY21e
2stu X222RdY22e

2std
D (35)

Rd , Ru are pressure reflection coefficients at the upstream
downstream ends, respectively.Xi j and Yi j are constants deter
mined by the conservation equations,r̄1 is the density, andc̄1 is
the speed of sound.t represents the time-delay due to actuati
and detection time-delay due to the location of the pressure m
surement,tu andtd are time-delays associated with the acous
wave propagation upstream and downstream of the combus
zone. H(s) represents the combustion response whose pre
structure varies with the nature of the flame stabilization mec
nism in a given combustor.F(s) represents the coupling relatio
between the pressure and the velocity and is of the form

F~s!5 r̄1c̄1

11Rue22s~xu1xre f!/ c̄1~12M̄1
2!

Rue2stu21
esxre f / c̄12ū1 (36)

Fig. 1 Control of a combustion system
Journal of Dynamic Systems, Measurement, and Control
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wherexu and xre f are the upstream end and sensor location,
spectively, andM1 and ū1 are the Mach number and mean flo
velocity in the cold section, respectively.Wac(s) is the transfer
function of the fuel-injector.

As can be seen,W0(s) is an infinite-dimensional system. Usin
a Pade approximation,W0(s) can be approximated by a rationa
transfer function of ordern. Using the underlying physics, for an
n, one can derive the following properties ofW(s) @7#:

i. Since the flame is stable,W0(s) has stable zeros;
ii. The relative degree ofW0(s) is equal to the relative degre

of the actuator transfer functionWac(s) for simple flame
models and can be larger for more complex flame mode

iii. The high frequency gain ofW0(s) is positive.

Since the ordern in general depends on the level of approximati
that is needed in a given problem, it cannot be assumed to
known. As a result, the controller proposed in this paper is nec
sary because its design depends on the plant relative degree
not on the plant order.

The above model was simulated using a Pade approximatio
W0(s) where all poles and zeros less than 1100 rad/s were
cluded in the control design, which yielded a relative degree
four. Of the poles, two pairs corresponded to unstable locatio
Both the fixed version of the controller described in Eqs.~5! and
~6! and the adaptive controllers described in~18! and ~21!–~23!
were simulated in closed-loop. The resulting performances of
input u and the outputy are shown in Fig. 2 for the controlle
parametersk159, k21566100, k22519000, k23526085, zc
51000. Both controllers yielded a satisfactory performance
was also observed that the same system was not stabilizable
a controller with a lower order.

4 Adaptive Controller in the Presence of a Delay
We now consider a plant with a time-delay as in Eq.~1!. In @7#,

a low-order adaptive controller has been derived for plants wit
time-delay for the case when the relative degree of the fin
dimensional part of the plant has a relative degree two. The
bility proof consists, as in@6,20#, of the construction of a
Lyapunov-Krasovskii functional. The results of the previous s
tion demonstrate that it is possible to derive a low-order contro
for plants with an arbitrary relative degree in a stable manner.
question is if these two approaches can be combined someho
guarantee any plants of the form of~1! where the only require-
ments regarding the plant are that the relative degree ofWp(s) is
known, it is minimum phase with a known high frequency ga
and that its delay is known. In this section, we present a contro
structure, its adaptive version, and show that it can be stabil
for all initial conditions within a compact set and for allt<t* ,
for a givent* .

Fig. 2 The performance of a relative degree four controller
during the control of a combustion system in Eq. „32…
JUNE 2003, Vol. 125 Õ 189
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4.1 Controller Structure. Since the controller structure t
be used for a plant with an arbitrary relative degree and a dela
quite similar to that for a plant with relative degree two, w
present both of the cases below.

4.1.1 Case (i) m52. When the plant relative degree is equ
to 2, it was shown in@7# that the following controller suffices:

u~ t !5F k2

s1zc
Gu~ t !1u1~ t !1k1y~ t !

u1~ t !5E
2t

0

(
i 51

n

a ie
2b isu~ t1s!ds (37)

We note that this is possible since

u1~ t !5S n1~s!

Rp~s!
2

n2~s!

Rp~s!
e2stD @u~ t !#

where

n1~s!

Rp~s!
5(

i 51

n
a i

s2b i
,

n2~s!

Rp~s!
5(

i 51

n
a i

s2b i
eb it (38)

For a smallt, as shown in@7#, the controller stabilizes the plan
For implementation purposes, the control input in~37! is dis-
cretized as

u1~ t !5(
i 51

N

l i* u~ t2 iD! (39)

for a sampling interval ofD.

4.1.2 Case (ii) m>2. The controller structures in Sections
and 4.1.1 imply that the following stabilizes a system with de
and arbitrary relative degree:

u52k2
Tv12k1y1u11r (40)

wherek2 , k1 , andv1 are defined as in Eqs.~9!–~11!, andu1 is
given by~39!. Using a combination of the proofs in appendices
and B, it can be shown that the above controller stabilizes
plant for a smallt, k15k1* , k25k2* , and l* , and leads to a
closed-loop transfer function of the form

Wcl~s!5Wcl0
~s!e2ts (41)

whereWcl0
(s) has stable zeros, and has a relative degree equ

that of the plant. This sets the stage for the adaptive contro
design, described in the section below.

4.2 Adaptive Controller. We introduce the controller pa
rameter vector and the error parameter vectork̃5k2k* . We also
denote

d~ t !T5@y~ t !,V1~ t !,V2~ t !, . . .Vm21~ t !,u~ t2ND!, . . . ,u~ t

2D!#

where

Vi~ t !5
si 21

~s1zc!
m21 @u~ t !#, 1< i<m21

Similar to the delay free case, the closed-loop transfer func
Wcl(s) is made to effectively have a relative degree unity
modifying the control signalu as

u~ t !5~s1a!m21@kT~ t !da~ t !# (42)

where

da~ t !5
1

~s1a!m21 @d~ t !# (43)

Equation~42! can be rewritten as
190 Õ Vol. 125, JUNE 2003
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u~ t !5 (
i 50

m21

cm21
i k~ i !T

~ t !di~ t ! (44)

whereCi
j denotes the number ofj-combinations ofi elements,

k~ i !T
~ t !5

di~k!

dti
~ t !

di~ t !5
1

~s1a! i @d~ t !# (45)

As in the delay-free case, we express the control paramete
k(t)5k* 1 k̃(t), to obtain the closed-loop system equations

y5Wcl~s!~ k̃Tv!1r (46)

whereWcl(s) is given by~41!. Defining e15yp2ym , we obtain
that

e1~ t !5Wm~s!e2st@ k̃T~ t !da~ t !# (47)

whereWm(s)5(s1a)m21Wcl0
(s) has relative degree unity and i

SPR.
The overall problem can be summarized thus: given the e

model ~47! whereda is given by Eq.~43!, determine an adaptive
law for adjustingk so that it is differentiablem21 times and all
signals in the loop are bounded. A time domain representatio
Eq. ~47! follows:

ė~ t !5Ase1bs~k~ t2t!2k* !Tda~ t2t!

e1~ t !5hs
T e~ t ! (48)

where (hs ,As ,bs) is a state space representation ofWm(s), that
is, we have

hs
T~sI2As!

21bs5Wm~s! (49)

SinceWm(s) is SPR, for any matrixQs symmetric strictly posi-
tive, there exists a matrixPs symmetric strictly positive, such tha

As
TPs1Ps

TAs52Qs

Psbs5hs (50)

We note thatda is differentiablem21 times. In what follows,dai

andki denote thei th element of the vectorsda andk, respectively.
The following adaptive law is suggested for adjustingk:

k̇8~ t !52e1~ t !da~ t2t! (51)

ẋi~ t !5~Axi1bki8! f ~dai
~ t2t!! (52)

ki5cTxi (53)

for i 51, . . . ,m1N, wheref (•) is defined as in~22! and~c, A, b!
are chosen so that

cT~sI2A!21b5
a~0!

a~s!
(54)

anda(s) is a stable polynomial of degreem21. The choice ofk
as in Eqs.~51!–~53! guarantees thatk is differentiablem21
times.

4.3 Proof of Stability. As in @6,20#, we shall introduce first
a model transformationof ~48! using an integration over one de
lay interval @2t, 0#, that is:

ė~ t !5Ase1bs~k~ t !2k* !Tda~ t2t!2bsE
2t

0

k̇~ t1u!Tda~ t

2t!du. (55)

The next step is to introduce the following Lyapunov functio
candidate:
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V5(
i 51

4

Vi

V15eTPse, V25~k82k* !T~k82k* !

V35d(
i 51

m

zi
TPzi

V45(
i 51

m E
2t

0 E
t1n

t

icTAzi~j!i2f ~dai
~j2t!!2djdn (56)

zi5xi1A21bki8 , ATP1PTA52I (57)

d5
ici

iPA21bi

Note that Eq.~56! is similar to the delay free case, except that t
Lyapunov-Krasovskii functionalV4 in Eq. ~56! has been added, a
suggested by Burton@14# ~for a second order example!, and Ni-
culescu@15# for dealing with time delays.

Using Eqs.~57! and ~52! in ~55!, it follows:

ė~ t !5Ase1bs~k~ t !2k* !Tda~ t2t!2bs(
i 51

m S E
2t

0

cTAzi~ t

1u!dai
~ t2t! f ~dai

~ t1u2t!!du D
In Eqs.~52! and~56!, m is a positive parameter that will be chose
so thatV̇<0. Denoting

cTAzi~ t1u! f ~dai
~ t1u2t!!5a, e1~ t !dai

~ t2t!5b

it can be shown that

V̇<2eTQse2d(
i 51

m

izi i2f ~dai
~ t2t!!2(

i 51

m E
2t

0

~a222uauubu

1b2!du14(
i 51

m

iciizi~ t !iue1~ t !idai
~ t2t!u

1(
i 51

m E
2t

0

@ icTAzi~ t !i2f ~dai
~ t2t!!21b2#du.

ExpressingQs5Q11Q2 , where bothQ1 andQ2 are positive-
definite matrices, denotinge as the minimum eigenvalue ofQ2 ,
and choosingm as

m5
4ihsi2mici2

ed

we obtain that

V̇~ t !<2eT~Q12tda
T~ t2t!da~ t2t!hs

Ths!e

2(
i 51

m SA e

m
iei2Admizi iudai

~ t2t!u D 2

2(
i 51

m

~d2ticTAi2~11mudai
~ t2t!u2!2!izi i2 (58)

Thus,V̇ is negative-definite ift satisfies both of the inequalities

Q12tda~ t2t!Tda~ t2t!hshs
T.aI (59)

d2ticTAi2~11mdai

2 ~ t2t!!2.0 (60)
Journal of Dynamic Systems, Measurement, and Control

rom: http://dynamicsystems.asmedigitalcollection.asme.org/ on 05/15/201
e

n

for somea.0. We show below that the conditions in Eqs.~59!
and ~60! can be replaced byboundson states at timet0 and over
the interval@ t02t,t0# so that the domain of attraction over whic
V̇<0 can be delineated more precisely.

Suppose the values ofda over @ t02t,t0) are such that

sup
uP@ t02t,t0!

ida~u!i2<g (61)

for some real positiveg, and a delay valuet̄1 is such that

H Q2 t̄1ghshs
T.aI

d2 t̄1icTAi~11mg!2.0
(62)

Then using thestep-by-steptype argument for the construction o
the solution of the associated FDE with persistent perturba
@16#, it follows that combining both~61! and ~62! on the interval
@ t0 ,t01t), the following inequalities

H Q2tda~j2t!Tda~j2t!hshs
T.eI

d2tmicTAig~11mudai
~j2t!u2!2.0

(63)

are satisfied for alltP@0,t̄1(g)), and for alljP@ t0 ,t01t). From
the structure of the inequality in~58!, it also follows that the
Lyapunov-Krasovskii functionalV is non-increasingon the inter-
val @ t0 ,t01t), if the bound on the delayt is given by t̄1 . In
addition, sinceV is a positive-definite function ofe, we have that

lmin~Ps!ie~z!i2<V~z!<V~ t0!, ;zP@ t0 ,t01t!

We note thatX5e1Xm , whereX andXm are the overall states o
the closed-loop system and the reference model, respectivelyXm
is bounded, and thatd is a sub-vector ofX. Therefore,da(t) is
boundedon the ~first! delay interval@ t0 ,t01t), and the corre-
sponding bound is given by:

sup
uP@ t0 ,t01t!

ida~u!i2<
V~ t0!

lmin~Ps!
1Xmo5g2~ t0! (64)

whereXmo depends on the model initial conditions. Note that t
boundg2(t0) includes information only with respect to the initia
data of the system.

Let us consider now the derivative ofV on the~second! delay
interval @ t01t,t012t). Using the form of ~62! and ~64! on
@ t0 ,t01t), it follows that the derivative ofV is negative if the
delayt is bounded byt, t̄2 , wheret̄2 satisfies the inequalities:

H Q2 t̄2g2hshs
T.aI

d2 t̄2icTAi~11mg2!2.0.
(65)

By repeating the above process, it can be shown that the cons
tions above also hold on the next delay intervals@ t01(k
21)t,t01kt) for ~any! positive integerk>2. It therefore follows
that if

t̄5min$t̄1~g!,t̄2~g2!%. (66)

wheret̄1 and t̄2 satisfy Eqs.~62! and ~65!, respectively, then the
inequalities in~58! are satisfied for allt>t0 . Hence, all the sig-
nals are bounded, and using the same arguments as in@17#, it can
be shown that limt→1`ie(t)i50. This leads to our main result o
this section:

Theorem 1: Consider the plant in (1), the model in (2), th
control input as in (44), and the adaptive law specified by E
(51)–(53). Then for any da satisfying the inequality (61) on@ t0
2t,t0) whereg.0, and for any delayt, t̄ given by (66), it can
be shown that

i. the closed-loop system has globally bounded solutions, and
ii. limt→1`ie(t)i50.
JUNE 2003, Vol. 125 Õ 191
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Remarks:

1. The controller in~44! is of the order ofm21 and is there-
fore independent of the order of the plant. Therefore, in
problems wherem!n, the proposed solution results in
low-order controller leading to a stable performance. W
also note that in problems where the goal is one of stab
zation rather than tracking, no knowledge of the referen
modelWm(s) is required. The stability arguments present
also indicate that stabilization is enabled through a ‘‘hig
gain’’ in the controller parameters. It is interesting to no
that despite such a high-gain characteristic, the contro
structure is still capable of accommodating large time-del
in the plant. Recent numerical and experimental studies h
reported that these controllers can be implemented succ
fully in practical applications. The same robustness prop
ties as in Section 3.3.1 can be derived here as well by ad
a term2s0k8 to the adaptive law in Eq.~51!.

2. The proof of stability is demonstrated in a straightforwa
manner through the use of Lyapunov functions. As a res
estimates of transient performance of the adaptive sys
can be derived quite easily. In this regard, the contro
represents an improvement over those based on augme
errors@5# or recursive Lyapunov functions@18#.

3. A combination of various tools has been incorporated in
proposed adaptive controller. The first is the introduction
a controller that is based on the relative degree of the pl
which exploits its high-gain properties for stabilization a
the presence of stable plant zeros. The second is a varia
of the pole-placement controller proposed in@4# and is
modified in @9# so as to produce a reduced-order controll
The third is the utilization of high-order tuners proposed
@10#. While the details of the control laws differ from thos
in @10#, the general idea behind the control laws was inspi
by the results in@10#. The final component is the construc
tion of the Lyapunov-Krasvoskii functional to demonstra
stability. All of the four components were used to demo
strate closed-loop stability.

4. Further improvements of the delay bounds can be obtaine
V4 in the Lyapunov candidateV is replaced by:

V4~t!5(
i51

m E
2t

0 E
t1n

t

icTAzi~j!i2@11m2dai
~j2t!4#djdn

Using the same computational scheme, the inequality in~60!
will become:

d2ticTAi2~11m2dai
~t2t!4!.0 (67)

which is less conservative than~60!.
5. The adaptive controllers proposed in this paper for the c

whenm52 have been implemented experimentally both
a bench-top@7#, and on a medium-scale combustion rig@19#,
and resulted in about 20-db reduction in pressure in the c
bustion system.

5 Summary
In this paper, the problem of adaptive control in the presenc

large time-delays is considered. The control architecture propo
consists of a reduced order controller that depends on the rel
degree of the plant rather than its order which is combined wi
posicast control structure. This architecture is shown to be a
nable to adaptation and to lead to stability within a bounded
main for a small time-delay. Stable adaptive laws that are imp
mentable were generated by using high-order tuners an
Lyapunov-Krasvoskii functional and are in turn used to guaran
closed-loop stability.
192 Õ Vol. 125, JUNE 2003
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Appendix A
The characteristic polynomial of the closed-loop system in E

~8! can be rewritten as

Rcl~s!5Rp~s!pc~s!1k1~s1zc!
m21Zp~s!

where

pc~s!5sm211 (
i 50

m22

si~Cm21
i zc

m212 i1k2~ i 11!!

for suitable constantsCm21
i , i 50, . . . ,m22. For k1.0 and

large, n21 roots of Rcl(s) are close to the zeros of (s
1zc)

m21Zp(s), and hence are stable. The remainingm zeros of
Rcl(s) are found at larges, and can be shown to be the roots of th
polynomial

R̄~s!5sm1cm21sm211¯1c1s1c0

where

cm215Cm21
m22zc1k2,m211bn21

cm225Cm21
m23zc

21k2,m221bn221bn21~Cm21
m22zc1k2,m21!

. . . 5 . . .

ci5Cm21
i 21 zc

m2 i1k2,i1bn2m1 i1 (
j 51

m2 i 21

bn2 j~Cm21
i 211 j zc

m2 j 2 i

1k2,i 1 j !

. . . 5 . . .

c05bn2m1 (
j 51

m21

bn2 j~Cm21
j 21 zc

m2 j1k2,j !1k0k1

The above relations imply that for a suitable choice
k21,k22, . . . ,k2(m21) , coefficientsc0 , . . . ,cm21 can be found
such thatR̄(s) is a Hurwitz polynomial. Therefore, it follows tha
Rcl(s) is a Hurwitz polynomial as well.
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