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1 Introduction those in[4,5] are two-fold: Denoting/N,,(s) as the transfer func-

tion of the reference model that the plant in closed-loop is re-

Wh2$éa¥nz>éﬁ§m§n:§pr32$:é ?:L?;ﬁ:fo'?tﬁn'iﬁ"gm;irgsr']ogflg’tf‘etf%‘_red to match, the first advantage is that in cases Wh&\Es)
fects related t ianificant tim Ip ’rp rp gnt O’n h is unknown or too difficult to determine, the controller proposed
ects related 1o a signitica e-lag are present. One suc re can be determined unlike thosd %, which requireW,(s).
ample is in combustion systems where recent modeling effo

h h that fh t challenging factors f e second is that the controller proposed here is much simpler,
ave shown that one ot (né most challenging factors 1or SUCCESSfifficy s enabled by making use of properties of positive real

control is the presence of Ie_lrge time-del@;@s In add_it_ion to this, transfer functions. We also note that the controller proposed here
even small perturbations in the operating conditions introdu¢,s peen directly utilized in both simulation and experimental

large and unpredictable changes in the system dynamics mandgfgies of a practical combustion system and has been shown to
ing a controller that can adapt to these uncertainties. The field g s,ccessful in the presence of fairly large defdjs

adaptive control has addressed parametric uncertainties in varioug, section 2, we state the problem. In Section 3, we consider
kinds of dynamic systems including linear and nonlinear, singigie delay-free case and present the controller structure, the adap-
and multivariable, continuous and discrete, deterministic, and si{fe |aws, the proof of stability, and the robustness properties of
chastic systems. Very few of the results in this area pertain Qe controller. Application to the combustion control problem is
problems where large time-delays are present. The main impliaso treated in this section. In Section 4, we consider the case
tion of this is that all results currently available are applicable tghen time-delays are present, and present the requisite adaptive

time-delay systems only when the delay values are small. TBgntroller and its proof of stability. Section 5 contains a summary
results in this paper help in bridging the gap between currenf the paper.

available results and practical needs of control problems.

A unique approach for controlling systems with a known time-
delay was originated by Otto Smith in the 199@3 by compen- 2 Statement of the Problem
sating for the delayed output using input values stored over a timeThe problem is the control of a plant given by the input-output
window of[t—7,t] and estimating the plant output using a modediescription
of the plant. In[3], this idea was extended to include unstable
plants as well, using finite-time integrals of the delayed input
values thereby avoiding unstable pole-zero cancellations that may

occur in Smith's controller. Ih4,5], pole-placement and adaptive hereW,(s) is the transfer function of a finite-dimensional sys-
versions of(3] were developed, and it was shown that the plaq m whose orden is unknown, relative degrem is known, zeros

can be adaptively controlled in a stable manner in the large. More

recently, in[6—8]|, an adaptive posi-cast controller has been pr(?lre in€~, and its high frequency gain is known. The time-delay

P : js assumed to be known as well. The plant poles and zeros are
posed whose des[gn_ls based on the relative degree of the planlgr{] nown and it is assumed that all olgs ha\?e multiplicity one
be controlled. While iff6], controllers were developed for pIantsFOr ease of exposition. in what foIIovF\js We assume thF;t thye hi h
with relative degree two, in this paper, we consider plants of ar- uency gainF:s knOV\;n and is unity u 9
b!trary order and re_zla_tlve degree whose zeros are stable and Whégg is required that the plant output follow the output of a refer-
high frequency gain is known.

The advantages of the controller proposed in this paper overce model with a transfer function

Zy(s)

y(O=Wy(s)[u(t=7)]. Wys)=7 o (1)
p

*Currently at Lehrstuhl fur Thermodynamik, Technische Universitat Munchen, ym(t):Wm(S)[r(t_ 7')], Wm(s): (2)
Germany Rm(s)
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is large. In particular, in problems related to distributed parameter u:kg(t)wﬁ ky(t)y+r (13)
systems, the underlying system is truly infinite-dimensional, in ~

which case any rational finite-dimensional approximations therebkpressing the control parameters lagt) =k +k(t), ko(t)
inevitably leads to a large. It is attractive in such cases to design=k% +Kk,(t), o=[w],y]", k=[k] k31", the closed-loop system
a controller that depends on the number of integrations in tkguations can be described as

system, i.e., the relative degree, rather than the number of state- ~

variables in the system, by making use of the stable zeros if the y=W¢(s)(kTw)+r. (14)

latter are present. . . .
Since the control architecture that we propose is quite similarz%)lc'(s) is not strictly positive realSPR, but has stable poles,

that in the delay fr first present th ntroller for able zeros, and is of relative degmeDue to these properties,
at In the delay iree case, we first prese € controller 10h&s reasonable to assume that one can find a strictly positive real
plant with no delays.

transfer function of the form

_ _ Win(8) =W (s)(s+a)™ .

3 Adaptive Controller in the.DeIf'aly-Fre-e C?ase We note that there may be other ways of choodig. For ex-
The problem that we address in this section is the control ofample, instead of addingi—1 zeros all at—a, they could be
Z.(s) added am—1 distinct locations, but for simplicity, let us assume

YO =Wy(s)[u(®)], Wy(s)==° (3) the above.

Ry(s) To enable the realization oiV,(s) in closed-loop, we choose
whereW,(s) is the transfer function of a finite-dimensional systhe control input, instead dfT(t) w(t) +r(t), as follows:

tem whose orden is unknown, relative degrem is known, zeros _ m-1r T 7 ,

. o o i u(t)=(st+a k t)+r 15

are in¢~, and its high frequency gain is unity. The plant poles ®=( Tk e’ ] (15)

and zeros are unknown, and it is assumed that all poles have , 1
multiplicity one. o'(t)= W[fv(t)] (16)
3.1 Controller Structure. It is well known that any linear
plant with stable zeros and a relative degmeean be stabilized by r'(t)= —[r(t)]
a controller of the form (s+a)™
(s+z)™ ! This will lead to
u=ke——~—vy @) —
Pc(S) y=Wn(s)(kTw'+r"). a7

wherep,(s) is a monic polynomial of degrem—1, for suitable  Now, the problem is to realizél5) without explicitly differen-
values ofk, and coefficients op.(s). In particular, we realize the tiating any signal. Lepp=m—1. Using binomial expansion and

controller in(4) in the following form. the chain rule for differentiation, we obtain that
S ) i -
POy (5)  U=KTdo+pkTdy+ ... +(pc)KTdi+ ... +pkPVTd,
(stz) !
_ +kPTd +r 18
p(S) =kartkasS+ . .. +am_3,S™ 2 ©®) : (19
The controller as in5) and (6) together with the plant as i(B) where
results in a closed-loop transfer function of the form 1
di(t)=|—— )], i=1,...]
w ) (S+Zc)m_1Zp(S) . I( ) (S+a)| [w( )] p
s)= =
o Rp(S)pe(S) +ky(s+20)™ Z(s) % Note that all terms involving andd; are realizable. So, the only
— (st z)m 14 8 remaining piece is the realization of derivativeskdb pth order.
Pe(s)=(s+2o) p(s) C) The overall problem can be summarized as follows: Given the

For a largeky, then+m—1 poles ofW,(s) can be shown, using error model in Eq(17) wherew' is given by(16), determine an
Routh-Hurwitz arguments, to be close to the zeros ef (adaptive law for adjusting so that it is differentiablg times and
+zc)m‘lzp(s) and othem stable locations, for suitable values ofall the signals in the loop are bounded. The time-domain repre-
ky;i=1,... m—1 (see Appendix A an@i9] for further detail3.  sentation of the error model if17) is given by

We note that the controller i(6) and(6) can be represented by

the state-variable form e=Ae+b(k—k*)Tw’, e=hie (19)
w1=Aw,+ U 9) where
u=—klwy—kyy+r (10) he(sl—Ag) " hs=Wp(s)
whereA e R™™ (A, ¢) is controllable, and SinceWr,(s) is SPR, we have that
0(s) AlP+PA=-Q<0, Pgh,=h, (20)
ky(sl—A) M= ———5=. (12) - . , ,
(s+z) We note that' is differentiablep times. In what followsw; and

. . - . k; denote thdth element of a vectown’ andk, respectively.
The above discussions also indicate that for a suitable vdlue Using the high-order tuners developed|[it0], the following

andk? of k; andk,, respectively, the closed-loop transfer func'adaptive law is suggested for adjustikg
tion is stable and is given bw(s).

3.2 Adaptive Controller. The controller structure in(9) K'=-ew (21)
and(10) suggests that when the plant parameters are unknown, an % =(Ax+bk ) f(w), f(x)=1+ ux? (22)
adaptive controller with time-varying parameters of the following ' :
form can be used: ki=c'x;, (23)

wi=Awi;+€u (12) fori=1,...m, where(c, A, b are chosen so that
Journal of Dynamic Systems, Measurement, and Control JUNE 2003, Vol. 125 / 187

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.or g/ on 05/15/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



«(0) (24) k'=-ew —ook!  0¢>0 (30)

a(s) with x; , ki, anda(s) defined as in Eqs22)—(24).
anda(s) is an arbitrary stable polynomial of degrgeThe choice Choose
of k as in Egs.(21)—(24) guarantees thak is differentiablep m
times. V=ePe+ (k' —k*)T(k'—=k*)+ 8>, 7Pz
3.3 Proof of Stability. We choose a Lyapunov function can- =t

didate of the form wherez; is defined as in25). The time-derivative o¥ is of the
form

c'(sl-A) b= —

m
V=e"Pe+ (k' —k*)T(k' —k*)+ 5, z Pz, m
° =1 V=—e'Qe+2e;>, (c"z)w! — 5>, |z]%f(w!)
i=1 i=1

where
z=x;+A bk/ (25) 28>, Z/PA 'beyw/ +2e,d— ook T(K' —k*)
i=1
ATP+PA=—1
Note that from(23) and (24), it follows that —250021 z/PA bk’
=Azf(w])+A bk (26)  If we chooses as
ki—ki=c'z, (27) el
Also Eq. (19) can be expressed as [PA™ bl

e=Ae+ bs(k’—k*)Tw’+bs(k—k’)Tw’ we obtain that
e;=hle (28) Ve

By choosing the parametegsand & appropriately, we will show
thatV is a Lyapunov function.
Using Egs.(20)—(28), we obtain that

m m
Qe+ a2+ 03, [+ ou 3, [0’
i= i=

m

+ 2||e||\|hs|||\0|VH+4||C||He1|\21 Izillf i [+ 20oll " [k
=

m
V=—e'Qe+2e, >, (c'z)w] — 5, |z]*f(w]) 0
e ' +zao\|c\|21 Izill[k|

- 252 Z/PA 'bew/ Completing squares, definingto be the smallest eigenvalue Qf
i=1 ande’ €(0,1), and choosing. as
If we chooses and u as 4)|hy|2m|c|]?
=— 31
oIl alndmie? HE TS 5D
[PA~To] * €o we can show that
and e to be the smallest eigenvalue @f we can show that . e(l—¢€") [Ihgllld, | 1 oo,
B ) L 1oy (2 oy
V=-52 [zlP- 2, ( \ﬁl\el\* vﬁullzillw{l) . m
- g Ee—_ > (Ve
) - | - — e
Hence,V<0. This implies thak, k' andz are bounded. There- om i_ _” E =1 m
fore x; and k are bounded. Using Barbalat's lemma, it can be

argued that lim._, .. e;(t)=0.

m
3.3.1 Robustness PropertiesThe controller proposed in this \/_|z||wl|) E (\/ lzill—Ilc H\/ Hk ||>

section can be viewed as a high-gain controller similar to those in

[11]. Instead of choosing a search-algorithm, a high-order tuner is 1 Ik* |20
proposed to achieve stability. Despite this high-gain feature, we + ———— | hg[2d?+ .
show in this section that the same fixes as in standard adaptive e(1- al1 00, 15
control such asr-modification and dead-zone can result in a ro- B T”C”

bust behavior. if h h th
The problem is to establish boundedness when an external d—taence ifog is chosen such that

turbanced is present in the plant so that 1
—— 2|20
y(t)=Wy(s)[u(t) +d(t)] m 6
The underlying error model can be derived as then V=<0 in D® whereD is a compact set in the space’((k
; T . —k*)T,zNT. This implies thak, k' andz are bounded. Therefore
e=Aetby(k—k*) ' +bd, e=hse (29)  x; andk are bounded, which establishes robustness.
where 3.4 Application to Combustion Control. Continuous com-
hl(sl—Ay) tby=W,(s) bustion systems occur in several propulsion and power generation
S S. m - . . .
problems where a continuous heat source is present in a confined
andW,,(s) is SPR. The adaptive law is chosen as chamber. The unsteady heat release often couples in feedback
188 / Vol. 125, JUNE 2003 Transactions of the ASME
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with the acoustic modes of the chamber thereby causing tivberex, andx,.; are the upstream end and sensor location, re-
modes to be driven into resonance. This dynamic instability ofteypectively, andM,; andu; are the Mach number and mean flow
occurs at operating points of interest where low emissions, higklocity in the cold section, respectiveW,(s) is the transfer
volumetric heat-release, and high efficiency are achievable. ftnction of the fuel-injector.

help realize these desired objectives, active control technology ha#\s can be seenyy(s) is an infinite-dimensional system. Using
been shown to be an effective topl2]. Recent results have a Pade approximationyy(s) can be approximated by a rational
shown that a systematic methodology that uses a model-baseahsfer function of orden. Using the underlying physics, for any
control strategy optimizes the performance of the combustion sygs-one can derive the following properties \0f(s) [7]:

tem[13]. We discuss one such model and its control below.

The plant to be controlled is of the forfif] Since the flame is stabl&Vy(s) has stable zeros;

u The relative degree oiVy(s) is equal to the relative degree
Prei=W(S)V, where W(s)=W,(s)e S (32) of the actuator transfer functiow/,.(s) for simple flame

) ) o models and can be larger for more complex flame models;
V. is the voltage supplied to a fuel injector that modulates a sec-jii. The high frequency gain ofV,(s) is positive.

ondary fuel source thereby affecting the unsteady heat release, and ) o
P, is an acoustic measurement from a reference location in tRéce the ordenin general depends on the level of approximation

combustor. The transfer functiot,(s) is given by that is needed in a given problem, it cannot be assumed to be
known. As a result, the controller proposed in this paper is neces-
F(S)G(S)Wo(S) sary because its design depends on the plant relative degree and
Wo(s)= 1-G(9H(S) (33) ' not on the plant order.

The above model was simulated using a Pade approximation of
where (see Fig. 1 for a schemali&(s) describes the acoustic Wy(s) where all poles and zeros less than 1100 rad/s were in-
response of the duct and is of the form cluded in the control design, which yielded a relative degree of

e s four. Of the poles, two pairs corresponded to unstable locations.
_ (RgYie "—Xpp)(Rye >u—1) Both the fixed version of the controller described in E&s.and
ApCi delS)

(s) (34)

(6) and the adaptive controllers described(I8) and (21)—(23)
were simulated in closed-loop. The resulting performances of the
where input u and the outputy are shown in Fig. 2 for the controller
B —sr, B Csr parametersk; =9, k,;=66100, k,,=19000, k,3=—6085, z,
S= Xu=RYue X1z~ RqY18 ™ (35) =1000. Both controllers yielded a satisfactory performance. It
Xo1— R Y218 5 Xy—RyY e 37 was also observed that the same system was not stabilizable using

. . a controller with a lower order.
Ry, R, are pressure reflection coefficients at the upstream and

downstream ends, respectivel;; andY;; are constants deter-

mined by the conservation equatiops, is the density, and, is 4 Adaptive Controller in the Presence of a Delay
the speed of sound: represents the time-delay due to actuation . . . .
and detection time-delay due to the location of the pressure me We now consider a plant with a time-delay as in En. In [7], .
surement,r, and 74 are time-delays associated with the acoustig ow-order adaptive controller has been_ derived for plants V\."t.h a
wave propagation upstream and downstream of the combusth e-dellay for the case when the relat|ye degree of the finite-
zone. H(s) represents the combustion response whose prec ensional part of the plant has a relative degree two. The sta-

structure varies with the nature of the flame stabilization mech3"Y proof consists, as _|n[6,20], of the construction of a
nism in a given combustoE(s) represents the coupling relation _yapunov-Krasovsku f_u_nctlona_l. The res_ults of the previous sec-
between the pressure and the velocity and is of the form tion demonstrate that it is possible to derive a low-order controller

for plants with an arbitrary relative degree in a stable manner. The

14 R e 250+ Xepicy(1-MD) o question is if these two approaches can be combined somehow to
F(s)=piC; u — gS%et/C1U1  (36) Quarantee any plants of the form @f) where the only require-
Rye -1 ments regarding the plant are that the relative degred/g) is

known, it is minimum phase with a known high frequency gain,
and that its delay is known. In this section, we present a controller
structure, its adaptive version, and show that it can be stabilized
for all initial conditions within a compact set and for al< 7*,

for a given7*.

H(s)

flame dynamics
Qn COMBUSTION SYSTEM u
0.2 T T T T T
G(s)
acoustic waves u o
F(s) e~3Tdet . . . . ,
SENSOR -0.2
acoustic waves 0 05 1 15 2 25 3
Wac(s) e~5Tac 1 . . . . T
from control output ACTUATOR
til fuel combustion P
ref
y 0
\
Ve pmmmmmm—mmm |
‘ \ ! -1 1 . . . .
__________ ! [P S 0 0.5 1.5 2 2.5 3
-1: CONTROLLER I:<- time (s)
\ g
Fig. 2 The performance of a relative degree four controller
Fig. 1 Control of a combustion system during the control of a combustion system in Eq. (32)
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4.1 Controller Structure. Since the controller structure to m-1 -
be_use(_j f(_)r a plant with an arbltrary_relatlve_degree and a delay is u(t) = E Clm—lk(I) (t)d;(t) (44)
quite similar to that for a plant with relative degree two, we i=0

present both of the cases below. WhereC§ denotes the number ¢fcombinations of elements,

4.1.1 Case (i) v2. When the plant relative degree is equal

to 2, it was shown if7] that the following controller suffices: k“)T(t)= ﬂf—)(t)
dt
k
U(t)=| 5 U+ uy(D) +ay (1) 1
C . = —
: di(t) = g7 gy Ld(D)] (45)
0
uy(t)= f 2 ae”Pou(t+o)do (37) As in the delay-free case, we express the control parameters as
—ri=1 k(t)=k* +k(t), to obtain the closed-loop system equations
We note that this is possible since y=W,(s)(KTw)+r (46)
[
ni(s) ny(s s Qi i —v — i
ul(t):(Rl((s))_ Rz((s)) e*ST) [u(t)] mg?rewc,(s) is given by (41). Defininge; =y, — Yy, we obtain
P p
where ex(t)=Wr(s)e Tk ()d4(1)] 47)

ny(s)

@i
Rp(s) =is—Bi" Rys) “is—B SPR. , .
) - The overall problem can be summarized thus: given the error
For a smallr, as shown i 7], the controller stabilizes the plant. model (47) whered, is given by Eq.(43), determine an adaptive
For implementation purposes, the control input(8V) is dis- |aw for adjustingk so that it is differentiablen— 1 times and all

n

n
n,(s a; whereW,,(s)=(s+a)™ W, (s) has relative degree unity and is
2( ):2 i ehiT (38) m( ) ( ) clo( ) g y
i

cretized as signals in the loop are bounded. A time domain representation of
N Eq. (47) follows:
UNF; Nu(t=ia) (39) e(t)=Age+by(k(t—7)—k*)Tdy(t—7)
for a sampling interval ofA. el(t)=hle(t) (48)

4.1.2 Case (i) 2. The controller structures in Sections 3WVhere 0s,As,bs) is a state space representationvdf(s), that
and 4.1.1 imply that the following stabilizes a system with delalp: We have

and arbitrary relative degree: hi(sl— Ay bs=W.(s) (49)
S
u=—kjo;—kyy+ug+r (40)  sinceW,(s) is SPR, for any matrixQ, symmetric strictly posi-
wherek,, k;, andw, are defined as in Eq$9)—(11), andu; is tive, there exists a matriRs symmetric strictly positive, such that
given by(39). Using a combination of the proofs in appendices A ATP.+PTA.=—Q
and B, it can be shown that the above controller stabilizes the st et s
plant for a smallr, k;=k} , k,=k3, and\*, and leads to a Psbs=hg (50)

closed-loop transfer function of the form We note that, is differentiablem—1 times. In what followsdai

Wei(s) =W (s)e™™ (41)  andk; denote theé'" element of the vectord, andk, respectively.

WhereWC|0(s) has stable zeros, and has a relative degree equal toThe following adaptive law is suggested for adjustiag

that of the plant. This sets the stage for the adaptive controller k'(t)= —e(t)dy(t—17) (51)
design, described in the section below. ) ,
(1) = (Ax+bk/)f(dy (t— 7)) (52)

4.2 Adaptive Controller. We introduce the controller pa-
rameter vector and the error parameter vektek —k*. We also ki=cTx; (53)
denote fori=1,... m+N, wheref(.) is defined as iff22) and(c, A, b)
d(O)T=[y(1),V4(t),Va(1), ...Vip_y(),u(t=NA), ... u(t ~ are chosen so that

a)) cTsi—A) o= 20 (54)
where a(s)
si-1 and «(s) is a stable polynomial of degree— 1. The choice ok
V()= ————[u(t)], 1<i=m-1 as in Egs.(51)—(53) guarantees thak is differentiablem—1
(s+2z¢) times.

Similar to the delay free case, the closed-loop transfer functiong 3 proof of Stability. As in [6,20], we shall introduce first
Wei(s) is made to effectively have a relative degree unity by moge| transformatiorof (48) using an integration over one de-

modifying the control signall as lay interval[—r, 0], that is:
u(t)=(s+a)™ kT()da(t)] (42) _ 0.
where e(t)=Ase+by(k(t)—k*)Td,(t—7)— bSJﬂk(H ) Td(t
da(t)= gyt (d(D)] (43) e (59)
The next step is to introduce the following Lyapunov function
Equation(42) can be rewritten as candidate:
190 / Vol. 125, JUNE 2003 Transactions of the ASME
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for somea>0. We show below that the conditions in EqS9)
V:Z Vv, and(60) can be replaced blgoundson states at tim¢, and over
i=1 the interval[t,— 7,to] so that the domain of attraction over which
V=0 can be delineated more precisely.
—al — ’ T(l!
Vi=ePe, Vo=(k'—k*) (k'—k") Suppose the values df, over[t,— 7,to) are such that

m

sup [ da(O)]><7y (61)
V3=(‘>‘Z,l Z/ Pz beltg-rte)
m for some real positivey, and a delay value; is such that
t
v4:2l f f IcTAZ(&)|Pf(dy (6= 7))%dédy  (56) Q-7 yhsh!>al
1= —TJt+v - 62
s—mlcTAl(1+ uy)?>0 (62)
z=xi+A bk/, ATP+PTA=-I (57) _ _
en using thestep-by-stefype argument for the construction o
Th thestep-by-stepy| t for th truct f
c the solution of the associated FDE with persistent perturbation
llc]
6= m [16], it follows that combining bott{61) and(62) on the interval

[tg,tg+ 7), the following inequalities
Note that Eq(56) is similar to the delay free case, except that the T T
Lyapunov-Krasovskii functionaV, in Eq. (56) has been added, as Q—7dy(§— 1) da(§—1)hshg> el
suggested by Burtofil4] (for a second order exampleand Ni- S—m||cTA|y(1+ u|d, (- 7)|2)?>0
culescu[15] for dealing with time delays. !
Using Eqgs.(57) and(52) in (59), it follows: are satisfied for alke[0;7;(y)), and for allé e[ty ,ty+ 7). From
the structure of the inequality i58), it also follows that the
Lyapunov-Krasovskii functionaV is non-increasingon the inter-
val [ty,tp+7), if the bound on the delay is given by 7;. In
addition, sinceV is a positive-definite function of, we have that

(63)

m 0
e(t)=Ase+by(k(t) —k*)Td,(t— 7) —bg >, U cTAzZ(t
i-1 —r

+0)dq (t—7)f(dg (t+6— T))dﬁ) Nmin(Polle(OIP<V()=V(to), Vielto,tot )

. . . We note thaiX=e+ X,,,, whereX andX,, are the overall states of
In Egs.(52) and(56), w is & positive parameter that will be chosenpe cjosed-loop system and the reference model, respectiely,
so thatV<0. Denoting is bounded, and thal is a sub-vector of. Therefore d,(t) is
T o o boundedon the (first) delay interval[ty,ty+ 7), and the corre-
CTAZ(t+0)f(da (1+0—1)=a, ey (t)ds(t—7)=b sponding bound is given by:
it can be shown that V(to)

sup [ da(0)]*=<
beltotghn) N min(Ps)

+Ximo= v2(to) (64)

m m
0
V=-eTqe-53 [afiidy - -3, | (@*-2lallo
i=1 =1 J-r whereX,,, depends on the model initial conditions. Note that the

m boundy,(ty) includes information only with respect to the initial
data of the system.
+b?)do+ i - . N
b*)dé 421 ”C”HZ'(t)H‘el(t)”dai(t gl Let us consider now the derivative ¥f on the(second delay

. interval [ty+ 7,tp+27). Using the form of(62) and (64) on
0 . , A [to,to+ 7), it follows that the derivative oW is negative if the
+Zl ) [llc'Az(t)[*f(d, (t—7))*+b?]d6. delay 7 is bounded byr<7,, where7, satisfies the inequalities:

_ = T
ExpressingQs=Q;+Q,, where bothQ, andQ, are positive- Q—72y2hshs>al
definite matrices, denoting as the minimum eigenvalue @,, S—75)| cTA|(1+ wy,)?>0.
and choosingw as

(65)

By repeating the above process, it can be shown that the construc-

4llhg)?ml|c|)? tions above also hold on the next delay intervéls+ (k
HETT s —1)7,to+Kkr) for (any) positive integek=2. It therefore follows
that if
we obtain that _ .
, : . . r=min{71(y), 2(72)} (66)
= — — —
V(=7 (Qu~rda(t=r)dy(t=nhshye wherer; andr, satisfy Eqs(62) and(65), respectively, then the
m € 2 inequalities in(58) are satisfied for alt=t,. Hence, all the sig-
—E ( \ﬁ||e||— Vou|zll|da (t—7)] nals are bounded, and using the same arguments[agJint can
i=1 m ' be shown that lim, . ..|e(t)||=0. This leads to our main result of
m this section:

_ _ AeTAll2 —]2)2 2
zl (6=l Al (1+ pldy (t=n)[)z]*  (58) Theorem 1: Consider the plant in (1), the model in (2), the
control input as in (44), and the adaptive law specified by Egs.

Thus,V is negative-definite ifr satisfies both of the inequalities (51)~(53). Then for any d satisfying the inequality (61) oft,
—7,tg) Wherey>0, and for any delayr<r given by (66), it can

Q11— 7d,(t—7)Td,(t— 7)hshI>al (59) be shown that
i. the closed-loop system has globally bounded solutions, and
5— T||cTA|\2(1+Md§i(t—T))2>o 60) i tim He(t)HiOy 9 Y
. t—+o .
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tion of the Lyapunov-Krasvoskii functional to demonstrate
stability. All of the four components were used to demon-

m—i—1
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il T ) ) 4 The above relations imply that for a suitable choice of
V4(t):; ) ' AZ(§)[ 1+ pdy (6—7)*dédy Ka1,Kaz, .- . Kom-1y, coefficientscy, ... ,cn_q can be found

TJt+v N . . .
. . . . such thatR(s) is a Hurwitz polynomial. Therefore, it follows that
Using the same computational scheme, the inequalitgOn R.(S) is a Hurwitz polynomial as well.
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