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Abstract
In this paper, some preliminary results on the prob-
lem of squaring-up a non-square linear multivariable sys-
tem are presented. It is shown that for the case considered
here, the squaring-up problem can be transformed into a
state feedback problem. An illustrative numerical exam-
ple is included to illustrate the results developed.

1. Introduction

In certain applications, e.g., LQG/LTR [1] of non-square
systems, one possible approach to design controllers is to
make the system square. This is accomplished by finding
additional pseudo-inputs or pseudo-outputs such that the
resulting square system is a minimum-phase system (with
transmission zeros at desired locations in left half plane).
It should be pointed out that the problem of squaring can
also be solved by squaring the system down such that the
resulting square system has minimum-phase [2]. However,
it is well known that this is equivalent to output feedback
compensation and may typically require dynamic compen-
sation. thereby increasing the order and complexity of the
svstem.

If one has complete freedom in selecting the locations
of actuators and/or sensors, then under certain mild as-
sumptions, it is possible to ensure that the transmission
zeros of the system can be assigned at arbitrary locations
in complex plane [3], [4]. However, the freedom of selec-
tion of actuators or semsors in squaring-up a non-square
system is considerably reduced. Formally, the problem
addressed here may be stated as follows:

“Given the state matrir (A € R"*", system dynamics),
the input matriz (B € R"™™, location of actuators), the
output matrix (C € RP*™, location of the sensors) and the
input-output interaction matrizr D € RP*™ = O, p # m.
Determine a pseudo-output matriz C € RI™™PY>" jf p <
m. such that the resulting square system has its zeros in
the left half plane.”

Of course, the problem of determining a pseudo-input ma-
trix B. when m < p is the dual of the above problem
and can be easily solved. In next two sections, we deter-
mine the conditions under which the above problem can
be solved and develop a computational scheme for its so-
lution.

2. Main Results

In the sequel, we will discuss only the case when the sys-
tem is fat, i.e.. number of inputs is more than number of
outputs. The case of tall systems is true by duality. Al-
though the results are general. due to lack of space, we
will consider only the cases where D = O. It will be as-
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sumed that only the elements of C' need to be augmented,
the input-output interaction matrix D is to remain a null
matrix. The general case will be presented in a more com-
plete version of this paper. The following assumptions will
be made on the system:

1) (A, B) is a controllable pair and B has full column
rank (= m),

rank(CB) = p (same as the number of outputs of the
system).

2

Provided that Assumptions 1 and 2 above are sat-
isfied, theoretically it is always possible to transform the
system (A, B, C'), by means of orthogonal state coordinate
transformations, to the following form:

All _AIIH AlZ Bl
S = An A = AMo_m 1O . (21
('ll ("l'.? O

Now. by Assumption 2). the rank of Cy; is p. Denoting
the pseudo-output matrix to be determined by [Ch1  Caz]

C . .
such that rank of [Cll is m, the system matrix can be

21
written as
A= M Az B,
A Ay = Ay { O
S(A) & 2 z (2.2)
Cn C12 ]
Cy C'22 (0]
y 12 Cll Clz
Let, [Ch (2] = [6'21 Cy } then.
flll - )\Im -‘{1.’ BI
rank(S(A)) = rank Axn Az = Mpemn | O
(& Cs l (0]
]m _("1—1(’2 O 1
=rank | S(A) o) ) - O
(0] O ’Im i
(2.3)
A - AIm X Bl
= rank A2 A — Aglcl_ICz —Alpem (8]
Cy o} (@]




Since rank of C; is m by construction, clearly,
rank(S(A)) = 2m+rank[AMn—m — A2z + 4210 Co]. (2.4)

Further, rank(S(1)) < n + m at all eigenvalues of the
matrix [Az — A21C;1C;). Since, Az and A2 Gy are
known matrices, Cz can be selected such that the matrix
Aza — A21C71Cy has all its eigenvalues at desired loca-
tions in the left half plane. Equivalently, the problem of
finding the augmented output matrix [C1 C:] such that
the system (A, B,C,O) is minimum phase, which in turn
solves the problem of squaring up a non-square system,
can be reduced to solving a state feedback problem. No-
tice that several excellent numerical techniques exist for
the solution of the state feedback problem [5], [6].

3. Computation of C; and C;

Under the assumption that rank of C11 = p, it is easy to
see that C3; can be chosen such that the matrix C; has
full rank. Any Cz; lying in the null space of Cy; will ac-
complish this goal. Numerical algorithms such as singular
value decomposition can be employed to determine Ca;.
Determination of C: is not so straightforward. Note
that it is required that the matrix Az — A2:CT 1, have
all its eigenvalues at desired locations. To see how this
may be accomplished, let us write C; := Cy + (3, where

A Cr2 A o x{n—m})
= d C = P ,
Cs [O(m—p)x(n—m)] an 2 [ Ca2
(3.1)

where the subscript of O denotes its dimension and C22 €
R(m-p)x(n=m)_

Next, let Ao 2 Az — Anc;‘ C'z. Then, the prob-
lem of determining Cz2 reduces to finding a state feedback
matrix Caq such that the matrix Azs — A21C71C; has de-
Opx(n—m)

C22

The above problem can be solved provided the sub-
system (Azz, A2i1) is controllable. Note that the original
system is assumed to be controllable. It is well known that
for a controllable system

sired eigenvalues, where C; =

A = A, A B
rank . 2 Yl =n (3.2)
A A — Al | O

Knowing that rank B; = m by assumption, the rank of
[A21, A22—Aln_m] must be n—m. Equivalently (A2, A21)
is a controllable pair. Therefore, it is always possible to
find a C22 and hence C; such that

An -l A1z B,
A Ax—-AI | O

S = 2 2 (3.3)
Cn Ci2 o

Cn Ca2 O

has its zeros at the desired location in the left half plane. It
should be emphasized that if the given system did possess
any transmission zeros, they can be reassigned to the orig-
inal locations (if required) by state feedback represented
by Az — A21C;1C2.

4. Numerical Example

For the purpose of illustration, consider a 5-th order,
3 inputs, 2 output system (A, B,C) where

132 3 2 3 3
11435 5 4
A=1|4 3 1 4 5|,B=|0 0} and
1 41 3 2 4 4
1.2 3 2 2 2 5

C=[3 3 4 0 3]

The given non-square system has no transmission ze-
ros. On applying the technique proposed in this pa-
per, it was found that to assign the transmission ze-
ros of the squared system at {-1, —2, -3}, the
pseudo output [C21 C32] (in the transformed coordinates)
was: [0.0000e*%°, 1.0000e%°°, —4.5690e°2, 4.8522¢°%,
—1.8061¢°!]. Finally, in the coordinates of the original
system, the second row of the output matrix that will as-
sign the transmission zeros at —1, —2 and —3 was found to
be [—2.3327e7%, —7.2575¢7°!, —4.5690e~°%, 2.9193¢~°2,
7.7570e~%].

5. Concluding Remarks

Even if the given non-square system system has no trans-
mission zeros, when squared, the resulting system will pos-
sess some transmission zeros. This paper presented a nu-
merical approach for squaring-up a system. The proposed
approach ensures that the resulting squared system can
retain the existing zeros where they were located and as-
sign any additional zeros at desired locations.
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