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Abstract 
In t.l& paper, some prelimiuary resu1t.s on the prob- 

lem of squaring-up a non-square linear multivariable sys- 
tern are presented. It. is shown that. for the case considered 
here. the sqnaring-up problem can be transformed into a 
st,at.e feedback problem. An illiist rative numerical esam- 
ple is included to illust.rate the resiilt,s developed. 
1. Introduction 

In certain applicat,ions. e.g., LQG/LTR [l] of non-square 
syst.ems, one possible approach t.o design coiit.rollers is to 
make the system square. This is accomplished by finding 
add i t.ioii a1 p s e ti do- i np t i  ts  or p s e U d 0- o U t p  U ts  such t. 11 at. t he 
resulting square system is a minimum-phase system (with 
t,ransmission zeros at desired locations in left half plane). 
I t  should be point,ed out. t,liat t,he problem of sqnaring can 
also be solved by squaring the system down such that the 
resulting square system has minimum-phase [ 2 ] .  However, 
it is well known t,hat, this is equivalent t,o output, feedback 
compensation aud may typically require dynamic compeu- 
sat.ion. thereby increasing the order and cornplesit,y of the 
> > > 1 < ~ l I l .  

If one has complete freedom in select,ing the 1ocat.ions 
of act.uators and/or sensors. then under certain mild as- 
s:nmpt,ions. it is possible to ensure that t,he transmission 
zeros of t,he syst.em can be assigned a t  arbitrary locations 
in complex plane [3], [4]. However, the freedom of selec- 
tion of actuators or sensors in squaring-up a non-square 
syst.em is considerably reduced. Formally, t,he problem 
addressed here may be st,ated as follows: 

”Giveit the state niotrix (-4 E R ” X ” ,  system dynamics) ,  
thc input matrix (B E R” ””, locotior]. of octuotors), the 
output matr2.r (C E R p x ” ?  locotiota of the sensors) and  the 
input-outprit interaction mritri.r D E RPX”‘ = 0,  p # in.. 
Deterniine a pseudo-output matrix 6 E R(”-p’x’’ If p < 
m ,  .such that the restilting .sqimo“e .system has its zeros i n  
the left half p1rinc. ” 

Of course. the problem of determining a pseudo-inpiit, ma- 
t,ris B .  when in < p is the dual of the above problern 
a.nd can be easily solved. In nest two sect.ions, we deter- 
mine t,he condit.ions under which the a.bove problem cau 
be solved and develop a computational scheme for its so- 
1u t ion. 
2. Main Results 
111 I l i t ,  aequcl. we will cl is .c i i>s  onl! (Ire case when 1.11~ > ~ ‘ b -  

t.em is fot, i.e.. number of inpnt,s is more than number of 
out.put,s. The case of toll systems is t.rue by duality. Al- 
t,liough the results are general. due to lack of space, we 
will consider ouly t,he cases where D = 0. It will be as- 
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sumed t.liat only t.lie elements of C need to he augmented, 
the input-out,put, interaction mat,rix D is to remain a null 
mat,rix. The general case will be preseut,ed in a more com- 
plete version of this paper. The following assumptions will 
be made on t,he system: 

1) ( A ,  B )  is a controllable pair and B has full column 

2 )  rank(CB) = 1’ (same as t.he number of outputs of the 
rank (= m), 

syst.em ). 

Provided t,liat Assumpt.ions 1 and 2 above are sat- 
isfied, t.heoreticallg i t  is a1wa.j.s possible t.0 transform t,he 
syst,ein ( A ,  B ,  C), by means of ort,liogoiial state coordinate 
t,ransforma.t.ions. t,o the following form: 

Now. hy Assnniption 2 ) .  the raitk of C‘ll is 11.  Denot.ing 
t.lie ~)sendo-out.pot, nia.t.rix 1.0 be rlet.ermined by [C‘21 C122]  

such t.liat. rank of is n t ,  the system matrix can be 

writ.ten as 

S(X) k 

c2 1 cI2 2 
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Since rank of C1 is m by construction, clearly, 

Further, rank(S(X)) < n + m a t  all eigenvalues of the 
matrix [A22 - AzlC,’C2]. Since, A22 and A21C;’ are 
known matrices, C2 can be selected such that the matrix 
A22 - AzlC;’C2 has all its eigenvalues at  desired loca- 
tions in the left half plane. Equivalently, the problem of 
finding the augmented output matrix [Cl Cz] such that 
the system (A, B, C, 0) is minimum phase, which in turn 
solves the problem of squaring up a non-square system, 
can be reduced to solving a state feedback problem. No- 
tice that several excellent numerical techniques exist for 
the solution of the state feedback problem [5], [6]. 
3. Computation of CI and C2 

Under the assumption that rank of Ci1 = p, it is easy to 
see that Cz1 can be chosen such that the matrix Cl has 
full rank. Any C2l lying in the null space of C11 will ac- 
complish this goal. Numerical algorithms such as singular 
value decomposition can be employed to  determine C21. 

Determination of Cz is not so straightforward. Note 
that it is required that the matrix A22 - AzlCT’C.2 have 
all its eigenvalues at  desired locations. see how this 
may be accomplished, let us write C2 := C2 + C?2, where 

(3.1) 
where the subscript of 0 denotes its dimension and C22 E 
R(m-P)x(n-m) 

Next, let e A22 - A21CT1C2. Then, the prob- 
lem of determining C 2 2  reduces to  finding a state feedback 
matrix C22 such that the matrix A22 - A21CT1C2 has de- 

sired eigenvalues, where C 2  = 

The above problem can be solved provided the sub- 
system (Azz, Azl)  is controllable. Note that the original 
system is assumed to  be controllable. It is well known that 
for a controllable system 

r I 1  

Knowing that rank B1 = m by assumption, the rank of 
[&I, A22-XIn-,] must be n-m. Equivalently (&, A Z I )  
is a controllable pair. *Therefore, it is always possible to  
find a C22 and hence C2 such that  

S(X) = (3.3) 

has its zeros at  the desired location in the left half plane. I t  
should be emphasized that if the given system did possess 
any transmission zeros, they can be reassigned to the orig- 
inal -locations (if required) by state feedback represented 

4. Numerical Example 

3 inputs, 2 output system (A,  B, C) where 

by A22 - A21Cl1C2. 

For the purpose of illustration, consider a 5-th order, 

1 3 2 3 2  

A =  [ : : : : : I  4 3 1 4 5 , B =  [i;] 0 0 and 

C = [ 3  3 4 0 31. 
1 2 3 2 2  

The given non-square system has no transmission ze- 
ros. On applying the technique proposed in this pa- 
per, it was found that to  assign the transmission ze- 
ros of the squared system at (-1, -2, -3}, the 
pseudo output [CZI C Z ~ ]  (in the transformed coordinates) 
was: [O.OOOOetoO, l.OOOOetoO, -4.5690e-02, 4.8522e-01, 
-1.8061e-01]. Finally, in the coordinates of the original 
system, the second row of the output matrix that will as- 
sign t,he transmission zeros at -1, -2 and -3 was found to 
be [-2.3327e-O1, -7.2575e-01, -4.5690e-02, 2.9193e-01, 
7 .7570e-~~] .  

5. Concluding Remarks 

Even if the given non-square system system has no trans- 
mission zeros, when squared, the resulting system will pos- 
sess some transmission zeros. This paper presented a nu- 
merical approach for squaring-up a system. The proposed 
approach ensures that the resulting squared system can 
retain the existing zeros where they were located and as- 
sign any additional zeros at desired locations. 
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