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Abstract

In this paper, we present numerical algorithms for
squaring a non-square system by finding additional
columns in input matrix (for tall systems) and by
finding additional rows in output matrix (for fat sys-
tems). Several case are considered depending up the
requirements on the rank of the input-output inter-
action matrix.

1. Introduction

In LQG/LTR controller design [1] of non-square sys-
tems, one is often forced to squaring the systems.
This can be accomplished by squaring-up the system
i.e., by finding additional psesdo-inpuis or pseudo-
oulputs such that the resulting square system has its
seros at desired locations in the complex half plane.
Squaring can also be accomplished by squaring the
system down such that the resulting square system
has minimum-phase [2]. However, it is well known
that this is equivalent to solving an output feedback
compensation problem and may typlcally require dy-
namic compensation, thereby increasing the order
and complexity of the sysiem.

This paper addresses the following problem:
“Given the state matrix (A € R"*"®, system dynam-
ics), the input matrix (B € R**™, location of actua-
tors), the output matrix {C € RP*®, location of the
sensors) and the input-output interaction matrix D
€ RPX™, p # m. Determine a pseudo-output matrix
Ce R(""P)"" and possibly an input-output interac-
tion matrix D € R(M~P)X™ if p < m, such that the
resulting square system has its seros at the desired
locations in the left half plane.”

Note that, the problem of determining a pseudo-
input matrix B, when m < p is the dual of the above
problem and can be easily solved. In next two sec-
tions, we determine the conditions under which the
above problem can be solved and develop a compu-
tational scheme for its solution.

Depending upon the dynamics of the given sys-
tem, the following possible cases for selection of C
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and D may arise:
1) Input-output interaction matrix D = O.

a) Augmented D should remain sero
b) Augmented D should have rank m — p.

2) Rank of input-output interaction matrix D = p.
a) Augmented D should have full rank
b) Augmented D should have rank p.
3) Rank of input-output interaction matrix D =
r(< p). .
a) Augmented D should have rank = r+m—p.
b) Augmented D should have rank r.

Of course to this list of possibilities we can add others
where, for example, while the original D had full row
rank, the augmented D matrix has rank less than

" m. However, such angmentation does not have any

practical application. In the next section we outline
the approach taken to determine the corresponding'
C and D to solve the various cases outlined above.

2. Iﬁput-Output Interaction Matrix D = O

In the sequel, we will discuss only the case when the
system is fat, i.e., number of inputs is more than num-
ber of outputs. The case of tall systems is true by
duality.

2.1. Augmented D remains sero

This case was treated in [4], however, for the sake of
completeness the result is briefly summarised here.
The following assumptions will be made on the sys-
tem:

1) (4, B) is a controllable pair and B has full col-
umn rank (= m),

2) rank(CB) = p (same as the number of outputs
of the system).

For certain cases, additional requirements are
put upon the system and they will be outlined at
appropriate places.



Provided that Assumptions 1 and 2 above are
satisfied, theoretically it is always possible to trans-
form the system (A, B, C, O), by means of orthogonal
state coordinate transformations, to the following for-
m [4]:

Al - Ay Az B,
o A A —Aly_n | O
(1) = Z . . (2.1)
Cn Cia o
| G Ca o |

where [Cn Ci3) are to be determined. By _Assump-
tion 2), the rank of Cy; is p. Therefore [Cn ng]

can always be found such that rank of [ éz1] is m.
Further, the system matrix can be written as

Ay~ A, A1 B
S(A) £ Agy Ap—Aly_m |O (2.2)
C, C, I (o)

C C
where, [C; C3] 2 [ g G

note the rank of (:), then

]. Now, let p(-) de-

Ay — Ay Az B,
pS(A) =p Az An -2y n | O
e o o
Ay — A x B,
= rank A Agg—AMu_n | O |- (23)
G o |o

where A3, = Axp—AyCr 1C,. Since, by construction,
the rank of C; is m, clearly,

A(S(2)) = 2m + p[ALy - mm — A22 + A21C{Ca). (2.4)

Further, rank(S(A)) < n + m at all eigenvalues of
the mtnx [A22 — A21C71C3). Knowing Azz and
AnC'1 , Ca ca.n be selected such that the matrix
Az — Ag;Cl 1C, has all its cigenvalues at desired lo-
cations in the left half plane. Equivalently, the prob-
lem of finding the augmented output matrix [C; Cj]
such that the system (A, B, C, O) is minimum phase,
which in turn solves the problem of squaring up a
non-square system, can be reduced to solving a state
feedback problem [5)], [6].

Example 2.1: For the sake of illustration, we con-
sider a 6-th order system with 3 inputs and 2 outputs.
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The state space description of the system is charac-
terised by

)

, B=

N NN =
O = OtO W
G = O OV = g

C=

LB N C R SR Y O Y R )
Lol R R N TN
N WO NN =
Lol B N N N R )
Lo BTN I N U RS )
Ll S S T Iy

Jo=[s 6 3]

For this system, using the results outlined about,
to assign the transmission seros of the squared
system at —1, —2 and -3, the required third
vector in the output matrix was found to be
e =[0.3542 — 0.4597 0.0342
1.1739 0.2095 0.7600]
and the input-output matrix was a null matrix of or-
der 3. The transmission seros were found to be at the
desired locations.

2. Rank of Augmented D should be m~p
While in the previous case the squared system could
have only n—m transmission seros, the number of se-
ros assignable while squaring the system inereases to
n —p. The augmented system can be transformed by
means of orthogonal state coordinate transformations
to the following form:

~—

UA)S(A)V(A)
Ay - A, Ajz By, By
A Agq — AL O B
- 21 22 » 22 (2.5)
‘ Cu Cia (0] (0}
| (o %) Ca 0 Dy

where U(X) and V(A) are unimodular matrices and
the matrices Cn, Ca2 and ng need to be de-
termined. In order for the transmission seros
to be assigned, we need the following assump-
tion on the transformed system: The rank both
of C;; as well as B;; should be p. Now, since
rank of C;; and Bj; is p, applying some block
row and column operations, it can be shown that

AS(A)) =2p

Azz — A CCra — A, | Bz ]

+p " n
| Cn |Dzz
S (2.6)
.| 4|3
=pl— -
| €21 | D22 ]

Sincewegu!a.lnyslelect f)gg to be a full rank ma-
trix, if (A, B) is a controllable pair, then all n - p



transmission seros of the augmented system can be
assigned at desired locations.

Example 2.2: Consider the same system as in Ex-
ample 2.1. In this case D is required to have rank
(m — p). For sake of simplicity, the angmented sys-
tem was chosen to have

0

of.

1

3

With this choice of D, to assign the squared

system's transmission seros at —1, -2, -3 and

—4, the additional output vector was found to be
c =[-3.6037 — 24.073 — 4.3615
17.759 - 2.1623 7.9220).

It should be noted that, (to the best of the
author’s knowledge) the assumptions on the irans-
formed system cannot be stated in terms of any spe-
cific assumptions on the original system.

3. Rank of Input-Output Matrix D is p

Here again, we will consider two cases. First,
where the rank of augmented input-output matrix is
changed to the maximum possible and second where
the D matrix of the squared system is left unchanged.
3.1. Augmented D should have rank m

This case is fairly straightforward. Using singular val-
ue decomposition, it is always possible to find D such
that the augmented D has full rank (= m). Once
that is done, all n transmission seros of the squared
system can be assigned by solving the state feedback
problem A — BD~!C, where C is partly unknown.
This is a trivial case and therefore, we have not in-
cluded an example to illustrate it.

8.2. Augmentéd.- D should have rank p

In this case, it is required that D = O. A-
gain assume that using unimodular transformations
U(A) and V(}), the system has been transformed to
U(A)S(A)V(A) =

(= 2 — B
[— I — ]

Ay = Ay Ay By, Bi;
A = Al O B
2 z 2 (3.1)
Cn Cua Dy, O
i Cn Ca 0 0 |
Using D, as a pivot, we get
ASs(A)=p
A -2l Ay B;3
+p Ay Az — AL, | By
éa Caz | o (3.2)
. | A=-ar1, |B
= p n
| é¢ o
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Now, provided (.oi, 3) is a controllable pair, and B
has full column rank, this case can be resolved in a
manner similar to that tmted in Sechon 2.1, Le.,
we first perform row compression on B and then us-
ing block row and column operations determine the
square invertible subsystem whose seros will be the
transmission seros of the original system. Further, as
before, these seros can be assigned at desired loca-
tions in the complex plane.

Example 8.1: Once again, the same system triple
(4, B,C) as in Example 2.1 is considered. However,
the D matrix (again for sake of simplicity of presen-
tation) is selected to be

100
b= [0 1 0] )
Is clear that the compensated system has five
transmission seros. The locations of the desired
transmission seros were selected to be -1, -2,
—3, —4 and -5. Using the results presented
above, it was found that if C is augmented by
c = (4.5304 12.840 5.3000
—T7.5324 —3.9470 — 7.7026),
then the resulting squared system will have the de-

sired set of transmission seros. Note that in this case,
the augmented input output matrix is

00
D= 1 0.
00

4. Rank of D = r(<p)
This case is a combination of results developed in Sec-

[— 3 )

- tions 2. and 3. Here again, we will consider the fol-

lowing two situations: First, the rank of input-output
matrix of the squared system is maximum (in this
case rank(D) = m + r — p. The resulting D matrix
remains rank deficient. Second, where D is left un-
changed.

4.1. Augmented D has rank m+r—p

Since D is assumed to have rank r (< p), the giv-
en system can be transformed by means of state

coordinate transformations to the following form:
vA)sAv(y) =

[ Ay — M., Ay Biy Biz Bia ]
Az A—Al; | O By Bn
Cu Cia D, O O
Cn Ca o o0 o
| Ca Css 0 O Dy _
(4.1)



Performing some block row and block col-

umn operations on (4.1), it can be shown that
AS(A)) =
Ay -AL, Ay Bz Bis
Ag Az — Al |By; Bgs
r+p
Ca Cn o o
Car Cs O Dss |

where, A;; = Ay, — By, D1'Chy and A3 = Ay -
BuDﬁlCn. At this stage the situation becomes i-
dentical to that studied in Section 2.2. Hence using
the results from there, we can assign n —m+ r trans-
mission seros at desired locations. Specifically, let the

system matrix be defined as
Ay — AL, Az Bn By
. A Ay — Al |By; B
s -21 22. y | Baa Bas
Cu Ci2 o o0
| G Cs2 0 D ]

Now, assuming that p[C11, C13][BY;, BT,]T has rank
(p—*), we can apply the results of Section 2.1. to S()
and get the desired output submatrix that will square
the system while assigning (n — m + r) transmission
seros at desired locations,

Since the results are practically the same as those
presented in Sections 2 and 3, we are not including
numerical examples for this case.

4.2. Augmented D has rank r

Clearly, in this case the D matrix is left un-
. Looking at the transformed system matrix
U(A)S(A)V(A) =

A = A, Ayl By Byz2 Bia ]
Ay A3 —Al, | O B Ba
Cu Cia D;; O O
Ca Ca o o (0]
| G Csa 0 0 O |
(4.2)
it is easy to see that
p(S(X)) =r+
Ay =2, Ay B3 B3
A Az - Al |By; B
R 2 22 + | Baa Bas (4.3)
Cn C13 o O
C"n ézz (o) (o)
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where ju = Au b BuDﬁlCu and jm = An -
By1 D' Cy3. Therefore, if the reduced order subsys-
tem (4.3) satisfies the conditions in Section 2.1., the
(n—m+r) transmission can be assigned at the desired
locations in the complex plane, subject to complex
conjugate pairing.

5. Computation of ¢ and D

Here we show the computation of the C for one of the
cases. The remaining cases, apart from state trans-
formations follow much the same procedure. Under
the assumption that rank of Ci; = p, it is easy to
see that C3; can be chosen such that the matrix C;
has full rank. Any C3; lying in the null space of Cj;
will accomplish this goal. Numerical algorithms such
as singular value decomposition can be employed to
determine Cj;.

Determination of C; is not so straightforward.
Note that it is required that the matrix Az; —
A CT 1¢, have all its eigenvalues at desired loca-
tions. To see how this may be accomplished, let us
write C; := é) -+ C'g, where

Cia

é,=[ ] and Gy = [OPx(n-m)]’

O(m-p)x(n-m) Ca2

where the subscript of O denotes its dimension and
Cjq € R(m-p)x(n-m)

Next, let Jizz é An - AnCI-IC-'g. Thcn,
the problem of determining C3; reduces to find-
ing a state feedback matrix C;; such that the ma-
trix Az — A31Cy 1&, has desired eigenvalues, where
C",2 — Opx.(n—m) .

Ci2

The above problem can be solved provided the
subsystem (A22, Az1) is controllable. Note that the
original system is assumed to be controllable. It is
well known that for a controllable system

A = AL
rank 1 ™
Az

Ay
A22 - AIn-m

B
o

=n.

(5.2)
Knowing that rank B; = m by assumption, the rank
of [Az1, Aaz — Al,_,,) must be n — m. Equivalent-
ly (Az22, Az1) is a controllable pair. Therefore, it is
always possible to find a C; and hence &3 such that

An - A1 Aj B
A Ay — A
S(A) = 2 = (5.3)
Cu Cha o
Ca1 Caa o

has its seros at the desired location in the left half
plane. It should be emphasizsed that if the given sys-
tem did possess any transmission xeros, they can be



reassigned to the original locations (if required) by
state feedback represented by Az; — AnCI_IC'z.

6. Concluding Remarks

In this paper, we discussed the problem of squaring-
up an non-square system. Since squaring-up can be
transformed into certain state feedback problems, it
has some practical benefits over squaring the system
down where the problem car be equated to an output
feedback problem (often requiring dynamic compen-
sation for complete solution). Numerical examples
were provided to illustrate the proposed results.
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